1
|
Zhang B, Li J, Wang X, Zhang C, Yin W, Zhang B, Qin Y, Liu Y, Shi W. Improved ultrafiltration performance through dielectric barrier discharge/sulfite pretreatment: Effects of water matrices and mechanistic insights. WATER RESEARCH 2024; 268:122755. [PMID: 39522128 DOI: 10.1016/j.watres.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The feasibility of utilizing a dielectric barrier discharge (DBD)/sulfite-ultrafiltration system was investigated in various real water bodies, aiming to clarify the mechanism behind alleviating membrane fouling while synchronously degrading perfluorooctanoic acid (PFOA) during the treatment process of Yangtze River water. The results demonstrated that the DBD/sulfite pretreatment exhibited remarkable rates of membrane flux mitigation (>84.10 %) and efficient degradation rates of PFOA (>85.13 %), which decreased with increasing pH from 3.0 to 11.0. The presence of anions, cations, and natural organic matter slightly hindered the membrane fouling mitigation and PFOA degradation by quenching free radicals; however, the addition of SO42- had a negligible impact. The mitigation of membrane fouling was attributed to the significant involvement of various radicals, including hydroxyl radical (•OH), sulfate radical (SO4•-), electron (e-/eaq-), su-peroxide anion radicals (•O2-), and other radicals such as SO3•-, exhibiting respective contributions of 33.25 %, 28.49 %, 20.56 %, 11.32 %, and 6.39 % in a synergistic redox effect. The pretreatment effectively reduced standard blocking and cake filtration fouling mechanisms by creating a sparse fouling layer on the membrane surface while increasing its roughness. Additionally, the main active species that played a significant role in the degradation of PFOA were identified as SO4•-, •OH, and eaq-. These species contributed approximately 43.63 %, 24.39 %, and 20.65 % respectively to the degradation process. By employing mass spectrometry and density functional theory, a proposed pathway for PFOA degradation was established, effectively reducing the toxicity associated with its degradation byproducts. This study provides innovative insights into membrane-based water treatment technologies that effectively tackle both membrane fouling mitigation and PFOA degradation.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Jianpeng Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Power China Huadong Engineering Co., Ltd., Hangzhou 311122, China
| | - Xiaoping Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chi Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenjie Yin
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Zhang B, Mao X, Shen Y, Ma T, Zhang B, Liu B, Shi W. Enhanced performance and mechanism of adsorption pretreatment for alleviating membrane fouling in AGMBR: Impact of structural variations in carbon adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173702. [PMID: 38830416 DOI: 10.1016/j.scitotenv.2024.173702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
The structural variances of adsorbents play a crucial role in determining the number of effective adsorption sites and pretreatment performance. However, there is still a gap in comprehending the impact of different carbon structural adsorbents on membrane fouling. Therefore, this study aimed to compare the efficacy of granular activated carbon (GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) in mitigating membrane fouling during municipal sewage reclamation using an aerobic granular sludge membrane bioreactor (AGMBR). The results demonstrated that the utilization of PAC significantly enhanced the normalized flux and reduced fouling resistance in comparison to GAC and ACF systems. PAC effectively adsorbed low and medium-molecular-weight pollutants present in raw sewage, resulting in an increase in average particle size and a decrease in foulant content on the membrane surface. The Hermia model indicated that adsorption pretreatment minimized standard blocking while promoting the formation of a sparse and porous cake layer. Moreover, according to the extended Derjaguin-Landau-Verwey-Overbeek theory, PAC has been demonstrated as the optimal antifouling system owing to its enhanced repulsion between membrane-foulant and foulant-foulant interactions. Correlation analysis revealed that the exceptional antifouling performance of the PAC system was due to its high removal rates of chemical oxygen demand (~78 %) and suspended solids (~97 %). This research offers valuable insights into the mitigation of membrane fouling through the utilization of adsorbents featuring diverse carbon structures.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Xin Mao
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Tengfei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China.
| | - Bin Liu
- College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Pan Y, Zhang F, Tan W, Feng X. New insight into wastewater treatment by activation of sulfite with humic acid under visible light irradiation. WATER RESEARCH 2024; 258:121773. [PMID: 38796910 DOI: 10.1016/j.watres.2024.121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Sulfite (S(IV)), as an alternative to persulfate, has demonstrated its cost-effectiveness and environmentally friendly nature, garnering increasing attention in Advanced Oxidation Processes (AOPs). Dissolved organic matter (DOM) commonly occurred in diverse environments and was often regarded as an interfering factor in sulfite-based AOPs. However, less attention has been paid to the promotion of the activation of sulfite by excited DOM, which could produce various reactive intermediates. The study focused on the activation of sulfite using visible light (VL) - excited humic acid (HA) to efficiently degrade many common organic pollutants, which was better than peroxydisulfate (PDS) and peroxymonosulfate (PMS) systems. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed that the triplet states of HA (3HA*) activated sulfite through energy transfer, resulting in the production of SO4·-, O2·-, and 1O2. The most significant active species found in the degradation of roxarsone (ROX) was 1O2, which was a non-radical pathway and exhibits high selectivity for pollutant degradation. This non-radical pathway was not commonly observed in traditional sulfite-based AOPs. Additionally, the coexistence of various inorganic anions, such as NO3-, Cl-, SO42-, CO32-, and PO43-, had little effect on the degradation of ROX. Furthermore, DOM from different natural water demonstrated efficient activation of S(IV) under light conditions, opening up new possibilities for applying sulfite-based advanced oxidation to the remediation of organic pollution in diverse sites and water bodies. In summary, this research offered promising insights into the potential application of sulfite-based AOPs, facilitated by photo-excited HA, as a new strategy for efficiently degrading organic pollutants in various environmental settings.
Collapse
Affiliation(s)
- Yanting Pan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Yang J, Fan Y, Lu Z, Guo Y, Huang J, Cai K, Sun Q, Wang F. Positive profile of natural small molecule organic matters on emerging antivirus pharmaceutical elimination in advance reduction process: A deep dive into the photosensitive mechanism of triplet excited state compounds. WATER RESEARCH 2024; 256:121611. [PMID: 38640567 DOI: 10.1016/j.watres.2024.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Natural small molecular organic matter (NSOM), ubiquitous in natural waters and distinct from humic acid or fulvic acid, is a special type of dissolved organic matter (DOM) which is characterized as strong photosensitivity and simple molecular structure. However, little study had been directed on the role of NSOM in eliminating emerging contaminants in advanced reduction process (ARP). This study took three small molecular isomeric organic acids (p-hydroxybenzoic acid, pHBA; salicylic acid, SA; m-hydroxybenzoic acid, mHBA) as the representative substances of NSOM to explore these mechanisms on promoting Ribavirin (RBV, an anti COVID-19 medicine) degradation in ultraviolet activated sulfite (UV/Sulfite) process. The results demonstrated that the observed degradation rate constant of RBV (kobs-RBV) was 7.56 × 10-6 s-1 in UV/Sulfite process, indicating that hydrated electron (eaq-) from UV/Sulfite process could not effectively degrade RBV, while it increased by 178 and 38 times when pHBA and SA were introduced into UV/Sulfite process respectively, suggesting that pHBA and SA strongly promoted RBV degradation while mHBA had no promotion on RBV abatement in UV/Sulfite process. Transient absorption spectra and reactive intermediates scavenging experiment indicated that the triplet excited state pHBA and SA (3pHBA* and 3SA*) contributed to the degradation of RBV through non-radical process. Notably, eaq- played the role of key initiator in transforming pHBA and SA into their triplet states. The difference of kobs-RBV in UV/Sulfite/pHBA and UV/Sulfite/SA process was attributed to different generation pathways of 3pHBA* and 3SA* (high molar absorptivity at the wavelength of 254 nm and photosensitive cycle, respectively) and their second order rate constants towards RBV (kRBV-3pHBA* = 8.60 × 108 M-1 s-1 and kRBV-3SA* = 6.81 × 107 M-1 s-1). mHBA could not degrade RBV for its lack of intramolecular hydrogen bond and low molar absorptivity at 254 nm to abundantly transform into its triplet state. kobs-RBV increased as pH increased from 5.0 to 11.0 in UV/Sulfite/SA process, due to the high yield of eaq- in alkaline condition which promoted the generation of 3SA* and the stable of the absorbance of SA at 254 nm. By contrast, kobs-RBV underwent a process of first increasing and then decreasing in UV/Sulfite/pHBA process as the increase of pH, and its highest value achieved in a neutral condition. This lied in the exposure of eaq- increased as the increase of pH which promoted the generation of 3pHBA*, while the molar absorptivity of pHBA at 254 nm decreased as the increase of pH in an alkaline condition which inhibited the yield of 3pHBA*. The RBV degradation pathways and products toxicity assessment indicated that UV/Sulfite/pHBA had better detoxification performance on RBV than UV/Sulfite/SA process. This study disclosed a novel mechanism of emerging contaminants abatement through non-radical process in NSOM mediated ARP, and provide a wide insight into positive profile of DOM in water treatment process, instead of only taking DOM as a quencher of reactive intermediates.
Collapse
Affiliation(s)
- Jing Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yongjie Fan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China; College of the Environment & Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhilei Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yuxin Guo
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Jintao Huang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Qiyuan Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China.
| | - Feifeng Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China.
| |
Collapse
|
5
|
Vahidi-Kolur R, Yazdanbakhsh A, Hosseini SA, Sheikhmohammadi A. Photoreduction of atrazine from aqueous solution using sulfite/iodide/UV process, degradation, kinetics and by-products pathway. Sci Rep 2024; 14:5217. [PMID: 38433251 PMCID: PMC10909853 DOI: 10.1038/s41598-024-55585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Due to its widespread use in agriculture, atrazine has entered aquatic environments and thus poses potential risks to public health. Therefore, researchers have done many studies to remove it. Advanced reduction process (ARP) is an emerging technology for degrading organic contaminants from aqueous solutions. This study was aimed at evaluating the degradation of atrazine via sulfite/iodide/UV process. The best performance (96% of atrazine degradation) was observed in the neutral pH at 60 min of reaction time, with atrazine concentration of 10 mg/L and concentration of sulfite and iodide of 1 mM. The kinetic study revealed that the removal of atrazine was matched with the pseudo-first-order model. Results have shown that reduction induced by e aq - and direct photolysis dominated the degradation of atrazine. The presence of anions (Cl - , CO 3 2 - and SO 4 2 - ) did not have a significant effect on the degradation efficiency. In optimal conditions, COD and TOC removal efficiency were obtained at 32% and 4%, respectively. Atrazine degradation intermediates were generated by de-chlorination, hydroxylation, de-alkylation, and oxidation reactions. Overall, this research illustrated that Sulfite/iodide/UV process could be a promising approach for atrazine removal and similar contaminants from aqueous solutions.
Collapse
Affiliation(s)
- Robabeh Vahidi-Kolur
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Yazdanbakhsh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Arman Hosseini
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sheikhmohammadi
- Environmental Health Engineering, Khoy University of Medical Sciences, Khoy, West Azerbaijan, Iran
| |
Collapse
|
6
|
Chu Y, Xu M, Li X, Lu J, Yang Z, Lv R, Liu J, Lv L, Zhang W. Oxidation of emerging contaminants by S(IV) activated ferrate: Identification of reactive species. WATER RESEARCH 2024; 251:121100. [PMID: 38198974 DOI: 10.1016/j.watres.2024.121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Studies on the Fe(VI)/S(IV) process have focused on improving the efficiency of emerging contaminants (ECs) degradation under alkaline conditions. However, the performance and mechanisms under varying pH levels remain insufficiently investigated. This tudy delved into the efficiency and mechanism of Fe(VI)/S(IV) process using sulfamethoxazole (SMX) and ibuprofen (IBU) as model contaminants. We found that pH was crucial in governing the generation of reactive species, and both Fe(V/IV) and SO4•- were identified in the reaction system. Specifically, an increase in pH favored the formation of SO4•-, while the formation of Fe(VI) to Fe(V/IV) became more significant at lower pH. At pH 3.2, Fe(III) resulting from the Fe(VI) self-decay reactedwith HSO3-to produce SO4•-and •OH. Under near-neutral conditions, the coexistance of Fe(V/IV) and SO4•- in abundance contributed to the optimal oxidation of both pollutants in the Fe(VI)/S(IV) process, with the removal exceeding 74% in 5 min. Competitive quenching experiments showed that the contributions of Fe(V/IV) to SMX and IBU destruction dimished, while the contributions of radicals increased with an increase in pH. However, this evolution was slower during SMX degradation compared to IBU degradation. A comprehensive understnding of pH as the key factor is essential for the optimization of the sulfite-activated Fe(VI) oxidation process in water treatment.
Collapse
Affiliation(s)
- Yingying Chu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mujian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaoyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ruolin Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiahang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Zhang J, Li J, Tang W, Liu X, Yang C, Ma J. Highly efficient reduction of bromate by vacuum UV/sulfite system. CHEMOSPHERE 2024; 349:140875. [PMID: 38065260 DOI: 10.1016/j.chemosphere.2023.140875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Bromate (BrO3-), a worldwide regulated by-product after ozone disinfection, is often detected in bromide-containing water, and has a strict limit of 10 μg L-1 in potable water. BrO3- degradation by advanced reduction processes (ARPs) has gained much attention because of efficient removal and easy integration with ultraviolet disinfection (UV at 254 nm). In the vacuum UV (VUV, 185/254 nm)/sulfite system, the elimination kinetics of BrO3- increased by 9-fold and 15-fold comparing with VUV alone and UV/sulfite system. This study further demonstrated the hydrated electron (eaq-) works as the dominant species in BrO3- degradation in alkaline solution, while in the acidic solution the H• became a secondary reactive species besides eaq-. Hence, the influences of pH, sulfite concentration, dissolved gas and water matrix on effectiveness of degradation kinetics of BrO3- was explored in details. With increasing pH, the proportion of SO32- species increased and even became the major ones, which also correlated well with the kobs (min-1) of BrO3- degradation. The stability of eaq- also climbs with increasing pH, while that of H• drops significantly. Higher sulfite dosage favored a more rapid degradation of BrO3-. The presence of dissolved oxygen inhibited BrO3- removal due to the scavenging effect of O2 toward eaq- and transformed VUV/sulfite-based ARP to an advanced oxidation process (AOP), which was ineffective for BrO3- removal. BrO3- removal was inhibited to varying degrees after anions (e.g., bicarbonate (HCO3-), chloride (Cl-), nitrate (NO3-)) and humic acid (HA) being added.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junjie Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Weijie Tang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xin Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Chun Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
8
|
Liang J, Wu J, Gan P, Liu Y, Zhen P, Li Y, Zhao Z, Liu W, Tong M. The synergistic effect of radical and non-radical processes on the dephosphorization of dimethoate by vacuum ultraviolet: The overlooked roles of singlet oxygen atom and high-energy excited state. WATER RESEARCH 2023; 247:120775. [PMID: 39491999 DOI: 10.1016/j.watres.2023.120775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Organophosphorus pesticides are extensively utilized worldwide, but their incomplete dephosphorization poses significant environmental risks. This study investigates the dephosphorization of dimethoate (DMT), a representative organophosphorus pesticide, using a vacuum ultraviolet system. Surprisingly, in addition to hydroxyl radicals (•OH), non-radical processes such as photoexcitation and singlet oxygen atoms (O(1D)) exert more significant effects on DMT dephosphorization. The degradation kinetics of DMT demonstrate a perfect linear correlation with the radical yield in both UV-based and VUV-based advanced oxidation processes (AOPs), with greater efficacy of radical attack observed in the VUV system. This heightened efficiency is attributed to the excitation of DMT to a high-energy excited state induced by UV185 radiation. Additionally, •OH alone is inadequate for achieving complete dephosphorization of DMT. The Fukui index and singly occupied orbital (SOMO) analysis reveal that the O(1D) generated by UV185-induced photolysis of O2 exhibits exceptional selectivity towards P=S bonds, thereby playing an indispensable role in the dephosphorization process of DMT. This study highlights the significant contribution of non-radical pathways in DMT dephosphorization by VUV, which holds great implications for the advancement of photochemical-based AOPs.
Collapse
Affiliation(s)
- Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jingke Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengfei Gan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yudan Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Peng Zhen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
9
|
Mosur Nagarajan A, Subramanian A, Prasad Gobinathan K, Mohanakrishna G, Sivagami K. Electrochemical-based approaches for the treatment of pharmaceuticals and personal care products in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118385. [PMID: 37392690 DOI: 10.1016/j.jenvman.2023.118385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
In recent times, emerging contaminants (ECs) like pharmaceuticals and personal care products (PPCPs) in water and wastewater have become a major concern in the environment. Electrochemical treatment technologies proved to be more efficient to degrade or remove PPCPs present in the wastewater. Electrochemical treatment technologies have been the subject of intense research for the past few years. Attention has been given to electro-oxidation and electro-coagulation by industries and researchers, indicating their potential to remediate PPCPs and mineralization of organic and inorganic contaminants present in wastewater. However, difficulties arise in the successful operation of scaled-up systems. Hence, researchers have identified the need to integrate electrochemical technology with other treatment technologies, particularly advanced oxidation processes (AOPs). Integration of technologies addresses the limitation of indiviual technologies. The major drawbacks like formation of undesired or toxic intermediates, s, energy expenses, and process efficacy influenced by the type of wastewater etc., can be reduced in the combined processes. The review discusses the integration of electrochemical technology with various AOPs, like photo-Fenton, ozonation, UV/H2O2, O3/UV/H2O2, etc., as an efficient way to generate powerful radicals and augment the degradation of organic and inorganic pollutants. The processes are targeted for PPCPs such as ibuprofen, paracetamol, polyparaben and carbamezapine. The discussion concerns itself with the various advantages/disadvantages, reaction mechanisms, factors involved, and cost estimation of the individual and integrated technologies. The synergistic effect of the integrated technology is discussed in detail and remarks concerning the prospects subject to the investigation are also stated.
Collapse
Affiliation(s)
- Aditya Mosur Nagarajan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; Faculty of Process and Systems Engineering, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Krishna Prasad Gobinathan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubli, India.
| | - Krishnasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
10
|
Li Y, Chen X, Tian X, Liang J, Zhao Z, Ye J, Liu Y, Tong M. Sulfite Poses a Risk of Hexavalent Chromium Rebound in Vadose Zone: A Challenge of the Stability of Cr xFe 1-x(OH) 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15203-15212. [PMID: 37729390 DOI: 10.1021/acs.est.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cr(VI) rebound is the primary risk associated with the reduction remediation of Cr(VI)-contaminated soil. The potential impact of sulfites, which can be produced by microbial activities or originate from sulfur-containing remediation agents, on the Cr(VI) rebound in the vadose zone has been overlooked. When sulfites are present, the stability of CrxFe1-x(OH)3 is compromised and significantly inferior to that of Cr(OH)3, as demonstrated in this paper. First, Fe acts as a catalyst for the conversion of adsorbed sulfite to SO4·-, which subsequently triggers the oxidation of Cr(III) and results in the rebound of Cr(VI). The heterogeneous catalysis by Fe on the surface of CrxFe1-x(OH)3 plays a predominant role, contributing to 78% of the actual oxidation of Cr(III) among all employed catalytic processes. The presence of ambient Cl- can exacerbate the rebound effect of Cr(VI) by promoting the generation of HOCl. Furthermore, a portion of released Cr(VI) was reduced to Cr(III) by dissolved sulfite in the presence of dissolved Fe as a catalyst, thereby increasing the dissolution and migration risk associated with CrxFe1-x(OH)3. Hence, the presence of sulfites results in a significant increase in the Cr(VI) rebound and Cr(III) release from CrxFe1-x(OH)3. This challenges the conventional understanding of the stability of CrxFe1-x(OH)3.
Collapse
Affiliation(s)
- Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Xinlei Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Xiaoyu Tian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Zhiwei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiangyu Ye
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
11
|
Zhou Z, Huang J, Zeng G, Yang R, Xu Z, Habib M, Sui Q, Lyu S. Comparative studies of organic contaminant removal in different calcium sulfite-enhanced oxidant/Fe(II) systems: Kinetics, mechanisms, and differentiated degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131955. [PMID: 37390688 DOI: 10.1016/j.jhazmat.2023.131955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
The application of S(IV) for the regeneration of Fe(II) has been widely investigated. As the common S(IV) sources, sodium sulfite (Na2SO3) and sodium bisulfite (NaHSO3) are soluble in the solution, resulting in excessive SO32- concentration and redundant radical scavenging problems. In this research, calcium sulfite (CaSO3) was applied as the substitution for the enhancement of different oxidant/Fe(II) systems. The advantages of CaSO3 could be summarized as follows: (1) it could sustainedly supplement SO32- for Fe(II) regeneration, preventing radical scavenging and unnecessary reagent waste; (2) the cost and toxicity of CaSO3 were extremely lower than that of other S(IV) sources; (3) the concentration of reactive species increased in the presence of CaSO3; and (4) after the reaction, SO42- would form CaSO4 precipitate, which would not increase the burden of SO42- in the solution. In the participation of CaSO3, the removal of trichloroethylene (TCE) and other organic contaminants were significantly promoted and different enhanced systems had high tolerance on complex solution conditions. The major reactive species in different systems were determined through qualitative and quantitative analyses. Eventually, the dechlorination and mineralization of TCE were measured and the differentiated degradation pathways in different CaSO3-enhanced oxidants/Fe(II) systems were elucidated.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyao Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Rumin Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Mudassir Habib
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Cao Y, Li J, Zhao Y, Zhao Y, Qiu W, Pang S, Jiang J. Degradation of metoprolol by UV/sulfite as an advanced oxidation or reduction process: The significant role of oxygen. J Environ Sci (China) 2023; 128:107-116. [PMID: 36801026 DOI: 10.1016/j.jes.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/18/2023]
Abstract
The degradation of metoprolol (MTP) by the UV/sulfite with oxygen as an advanced reduction process (ARP) and that without oxygen as an advanced oxidation process (AOP) was comparatively studied herein. The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of 1.50×10-3sec-1 and 1.20×10-3sec-1, respectively. Scavenging experiments demonstrated that both eaq- and H• played a crucial role in MTP degradation by the UV/sulfite as an ARP, while SO4•- was the dominant oxidant in the UV/sulfite AOP. The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8. The results could be well explained by the pH impacts on the MTP speciation and sulfite species. Totally six transformation products (TPs) were identified from MTP degradation by the UV/sulfite ARP, and two additional ones were detected in the UV/sulfite AOP. The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory (DFT). The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that eaq-/H• and SO4•- might share similar reaction mechanisms, primarily including hydroxylation, dealkylation, and H abstraction. The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Structure Activity Relationships (ECOSAR) software, due to the accumulation of TPs with higher toxicity.
Collapse
Affiliation(s)
- Ying Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
13
|
Dong S, Ding Y, Feng H, Xu J, Han J, Jiang W, Xia Y, Wang A. Source preventing mechanism of florfenicol resistance risk in water by VUV/UV/sulfite advanced reduction pretreatment. WATER RESEARCH 2023; 235:119876. [PMID: 36931185 DOI: 10.1016/j.watres.2023.119876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/13/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
To avoid the inhibition of microbial activity and the emergence of bacterial resistance, effective abiotic pretreatment methods to eliminate the antibacterial activity of target antibiotics before the biotreatment system for antibiotic-containing wastewater are necessary. In this study, the VUV/UV/sulfite system was developed as a pretreatment technique for the source elimination of florfenicol (FLO) resistance risk. Compared with the VUV/UV/persulfate and sole VUV photolysis, the VUV/UV/sulfite system had the highest decomposition rate (0.33 min‒1) and the highest defluorination (83.0%), resulting in the efficient elimination of FLO antibacterial activity with less than 2.0% mineralization, which would effectively retain the carbon sources for the sludge microorganisms in the subsequent biotreatment process. Furthermore, H• was confirmed to play a more important role in the elimination of FLO antibacterial activity by controlling the environmental conditions for the formation and transformation of reactive species and adding their scavengers. Based on the theoretical calculation and proposed photolytic intermediates, the elimination of FLO antibacterial activity was achieved by dechlorination, defluorination and removal of sulfomethyl groups. When the pretreated FLO-containing wastewater entered the biological treatment unit, the abundance of associated antibiotic resistance genes (ARGs) and the relative abundance of integrons were efficiently prevented by approximately 55.4% and 22.9%, respectively. These results demonstrated that the VUV/UV/sulfite system could be adopted as a promising pretreatment option for the source elimination of FLO resistance risk by target decomposition of its responsible structures before the subsequent biotreatment process.
Collapse
Affiliation(s)
- Shuangjing Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China; School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, P. R. China.
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Jixiao Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Jinglong Han
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Wenli Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
14
|
Kumari M, Pulimi M. Phthalate esters: occurrence, toxicity, bioremediation, and advanced oxidation processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2090-2115. [PMID: 37186617 PMCID: wst_2023_119 DOI: 10.2166/wst.2023.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phthalic acid esters are emerging pollutants, commonly used as plasticizers that are categorized as hazardous endocrine-disrupting chemicals (EDCs). A rise in anthropogenic activities leads to an increase in phthalate concentration in the environment which leads to various adverse environmental effects and health issues in humans and other aquatic organisms. This paper gives an overview of the research related to phthalate ester contamination and degradation methods by conducting a bibliometric analysis with VOS Viewer. Ecotoxicity analysis requires an understanding of the current status of phthalate pollution, health impacts, exposure routes, and their sources. This review covers five toxic phthalates, occurrences in the aquatic environment, toxicity studies, biodegradation studies, and degradation pathways. It highlights the various advanced oxidation processes like photocatalysis, Fenton processes, ozonation, sonolysis, and modified AOPs used for phthalate removal from the environment.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| | - Mrudula Pulimi
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| |
Collapse
|
15
|
Zhang X, Wang X, Zhu R, Tan Q, Li C, Sun Z. Morphology regulation of zero-valent iron nanosheets supported on microsilica for promoting peroxymonosulfate activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116894. [PMID: 36527804 DOI: 10.1016/j.jenvman.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Combing the assisted dispersion strategy of support with the wet chemical reduction method, a novel nano-zero valent iron/microsilica (nZVI/M) composite was successfully fabricated, where the 2D nZVI nanosheets were uniformly anchored and covered on the surface of microsilica. The introduction of microsilica notably relieved the agglomeration effect of nZVI nanosheets, which induced the improvement of specific surface area (45.68 m2/g) and pore volume (0.172 cm3/g), and thereby exposing more active sites for bisphenol A (BPA) removal. The optimized nZVI/M-0.6 displayed the superior catalytic performance in the presence of peroxymonosulfate (PMS) with the degradation rate of BPA reached above 97% within 3 min and a higher constant rate of 0.659 min-1, which was approximately 3.9 times as high as that of nZVI/PMS system. The homogeneously dispersion of nZVI nanosheets on microsilica benefited for the assembly of the pollutants and boosting the kinetics of the catalytic degradation process. As a highly efficient PMS activator, it could well maintain the catalytic activity in different real water samples. The quenching experiments verified that SO4•- played the dominate role for BPA removal. This work offered novel insights for designing and preparing iron-based persulfate activator for wastewater treatment.
Collapse
Affiliation(s)
- Xiangwei Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xinlin Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Rui Zhu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qi Tan
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, China; National Engineering Research Center for Multipurpose Utilization of Nonmetallic Mineral Resources, Zhengzhou, 450006, China
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
16
|
Xu L, Ye Z, Pan Y, Zhang Y, Gong H, Mei X, Qiao W, Gan L. Effect of lignocellulosic biomass composition on the performance of biochar for the activation of peroxymonosulfate to degrade diclofenac. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Boosted chloramphenicol mineralization and detoxification of UV/S(IV) processes with straightforward aeration: The critical contribution of post-reoxygenation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
So HL, Wang L, Liu J, Chu W, Li T, Abdelhaleem A. Insights into the degradation of diphenhydramine - An emerging SARS-CoV-2 medicine by UV/Sulfite. Sep Purif Technol 2022; 303:122193. [PMID: 36168647 PMCID: PMC9502506 DOI: 10.1016/j.seppur.2022.122193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
As Diphenhydramine (DPH) has been considered as a drug to treat SARS-CoV-2, the degradation of DPH from water was investigated and evaluated in this study by adopting an advanced oxidation/advanced reduction process - the UV/sulfite process. The UV/sulfite system was able to eliminate DPH within 6 mins under UV254nm and 1.0 mM sulfite. It was observed that the presence ofN O 3 - ,N O 2 - ,C l - ,H C O 3 - , andS O 4 2 - anions in water can affect the performance of UV/Sulfite degradation system. The mechanism of UV/sulfite/anions was evaluated which the presence ofN O 3 - in UV/sulfite process has revealed faster initial decay rate but lower final DPH removal. It was observed that the UV/Sulfite process was extremely sensitive to pH as the dissociation of ion species varied among pH. The reaction became sluggish in acidic solution due to the dissociation of less reactive species such as HSO3 -. In alkaline solution, SO3 2- was the dominant species, producing powerfulSO 3 ∙ - ande aq - when activated by UV at 254 nm. By conducting LC/MS analysis, the degradation pathway was proposed and can be summarized into four main pathways: hydroxylation, side chain cleavage, losing aromatic ring or ring opening. Scavenging tests were also carried out and validated the presence of various radicals contributing to the reaction, includinge aq - , H˙, OH˙, SO3 ˙-, O2 •- and SO4 ˙-.
Collapse
Affiliation(s)
- Hiu Lam So
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Liwen Wang
- Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, CA 94720, United States
| | - Jianghui Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Amal Abdelhaleem
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
19
|
Ding Y, Han J, Feng H, Liang Y, Jiang W, Liu S, Liang B, Wang M, Li Z, Wang A, Ren N. Source prevention of halogenated antibiotic resistance genes proliferation: UV/sulfite advanced reduction process achieved accurate and efficient elimination of florfenicol antibacterial activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157844. [PMID: 35934035 DOI: 10.1016/j.scitotenv.2022.157844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The production and consumption of halogenated antibiotics, such as florfenicol (FLO), remain high, accompanied by a large amount of antibiotic-containing wastewater, which would induce the potential proliferation and transmission of antibiotic resistance genes (ARGs) in conventional biological systems. This study revealed that the introduction of reductive species (mainly H) by adding sulfite during UV irradiation process accelerated the decomposition rate of FLO, increasing from 0.1379 min-1 in the single UV photolytic system to 0.3375 min-1 in the UV/sulfite system. The enhanced photodecomposition in UV/sulfite system was attributed to the improved dehalogenation performance and additional removal of sulfomethyl group at the site of the benzene ring, which were the representative structures consisting of FLO antibacterial activity. Compared with single UV photolysis, UV/sulfite advanced reduction process saved the light energy requirement by 40 % for the evolutionary suppression of floR, and its corresponding class of ARGs in subsequent biotreatment system was controlled at the level of the negative group. Compared with UV/H2O2 and UV/persulfate systems, the decomposition rate of FLO in the UV/S system was the highest and preserved the corresponding carbon source of the coexisting organic compounds for the potential utilization of microbial metabolism in subsequent biotreatment process. These results demonstrated that UV/sulfite advanced reduction process could be adopted as a promising pretreatment option for the source prevention of representative ARGs proliferation of halogenated antibiotics in subsequent biotreatment process.
Collapse
Affiliation(s)
- Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jinglong Han
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China.
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yuxiang Liang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wenli Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, United States
| | - Shuhao Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| |
Collapse
|
20
|
Chen H, Lin T, Wang P, Zhang X, Jiang F, Liu W. Treatment of bromate in UV/sulfite autoxidation process enhances formation of dibromoacetonitrile during chlorination. WATER RESEARCH 2022; 225:119207. [PMID: 36215832 DOI: 10.1016/j.watres.2022.119207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The integration of UV/sulfite autoxidation process (USAP, i.e., UV activation of sulfite in the presence of 5 ∼ 10 mg/L O2) into conventional water to degrade micropollutants rises extensive attention, but its impact on water quality, and especially the formation of disinfection byproducts is still unclear. Herein, the formation of dibromoacetonitrile (DBAN) from bromate (BrO3-) upon treatment with USAP followed by chlorination was evaluated, in the presence of amino acids (AAs) selected as representative organic matter in drinking water. Results revealed that hydrated electrons (eaq-) produced during USAP contribute to the reduction of BrO3- to Br-, which is then converted into HBrO/BrO- during post-chlorination. At the same time, sulfate radicals (SO4•-) and hydroxyl radicals (•OH) generated in USAP mediated AAs' conversion via α-hydrogen abstraction and NH2-hydrogen abstraction reactions to produce HN=C(CH3)‒COOH, CH3‒CH=NH, and CH3‒CN, which are released into the post-chlorination stage and therefore, enhance the bromine utilization factor (BUF) value and DBAN formation. The effects of the USAP treatment time, BrO3- concentration, AA concentration, pH, and real waters were also evaluated. Although 63.5% of BrO3- was eliminated by USAP followed by chlorination, the toxicity index (TI) was increased by 1.5-fold due to the formation of the all brominated CX3R-type nitrogenous disinfection byproducts (N-DBPs), demonstrating the potential risk of applying USAP as a treatment process in BrO3- containing waters.
Collapse
Affiliation(s)
- Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Xue Zhang
- Suzhou Water Supply Company Limited, Suzhou 215002, PR China
| | - Fuchun Jiang
- Suzhou Water Supply Company Limited, Suzhou 215002, PR China
| | - Wei Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
21
|
Chen X, Zhu C, Zhu F, Fang G, Zhou D. Mechanistic insight into sulfite-enhanced diethyl phthalate degradation by hydrogen atom under UV light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Zhou Z, Huang J, Zeng G, Yang R, Xu Z, Zhou Z, Lyu S. Insights into the removal of organic contaminants by calcium sulfite activation with Fe(III): Performance, kinetics, and mechanisms. WATER RESEARCH 2022; 221:118792. [PMID: 35777319 DOI: 10.1016/j.watres.2022.118792] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
S(IV)-based advanced oxidation process has been applied for contaminants remediation. However, as a traditional source of sulfite (SO32-), Na2SO3 is extremely soluble in water, resulting in a high concentration of SO32- to quench the generated reactive oxygen species (ROS). In this work, CaSO3 was introduced instead of Na2SO3 for its slow-released SO32- ability and Fe(III)/CaSO3 system was established for the removal of trichloroethylene (TCE) and other organic contaminants. The degradation efficiency of TCE reached 94.0% and TCE could be completely dechlorinated and mineralized, while the removal of other contaminants was all over 85.0% at the optimal tested conditions. Through EPR detection, ROS scavenging and probe tests, and quantification of ROS amounts, it was concluded that the dominant ROS in Fe(III)/CaSO3 system were SO4-· and 1O2, of which the transformation mechanism of SO4-· to 1O2 was revealed and demonstrated comprehensively. The synergistic contaminants degradation performance in different sulfur-iron-containing systems and in the presence of oxidants was evaluated. The effects of various solution conditions were assessed and Fe(III)/CaSO3 system was of higher resistance on complex solution matrixes, suggesting the broad-spectrum and application perspective for the remediation of complex contaminants in actual water.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyao Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Rumin Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhikang Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
23
|
Yue Y, Shen S, Cheng W, Han G, Wu Q, Jiang J. Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Ling C, Wu S, Dong T, Dong H, Wang Z, Pan Y, Han J. Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: Major radicals, the role of sulfur species, and particle size effect. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127082. [PMID: 34488104 DOI: 10.1016/j.jhazmat.2021.127082] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Sulfide-modified zero-valent iron (S-Fe0) is regarded as a promising method to enhance the catalytic activity of Fe0 for peroxymonosulfate (PMS) activation. However, the roles of sulfidation and the application of the sulfidation treatment method are worth to further investigation. In our study, the effects of the S/Fe ratio, Fe0 dosage, and initial pH on sulfadiazine (SDZ) removal were investigated. The characterization of S-Fe0 with SEM, XPS, contact angle and Tafel analysis confirmed that the formation of sulfur species on the Fe0 surface could enhance the catalytic performance of Fe0. S2- played the major role and SO32- played the minor role in accelerating the conversion of Fe3+ to Fe2+. EPR tests, radical quenching and quantitative determination experiments identified •OH as playing the major role and SO4•- also playing an important role in SDZ removal in S-Fe0/PMS system. Sulfidation produced no notable change in the role of •OH and SO4•-. A possible degradation pathway of SDZ was proposed. Effect of sulfidation on various sizes of Fe0 was also studied which demonstrated that the smaller sizes of Fe0 (< 8 µm) were more effective in the sulfidation method treatment. S-Fe0/PMS system also showed a good performance in removing antibiotics in natural fresh water.
Collapse
Affiliation(s)
- Chen Ling
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuai Wu
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tailu Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Haifan Dong
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhengxiao Wang
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuwei Pan
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Jiangang Han
- School of the biological and environment, Nanjing Forestry University, Nanjing 210037, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, PR China.
| |
Collapse
|
25
|
Pan Y, Bu Z, Li J, Wang W, Wu G, Zhang Y. Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: Efficiency, the role of sulfur species, and mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|