1
|
Yang Y, Li Q, Yan S, Zhang P, Zhang H, Kong X, Wang H, Hansson LA, Xie S, Xu J, Wang H. Eutrophication promotes resource use efficiency and toxin production of Microcystis in a future climate warming scenario. ENVIRONMENTAL RESEARCH 2024:120219. [PMID: 39448008 DOI: 10.1016/j.envres.2024.120219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Addressing the risks of cyanobacterial blooms and toxin production under ongoing and accelerating eutrophication and climate warming is crucial for both water ecosystem services and human health. Therefore, we here explored the interactive effects of eutrophication and warming on freshwater ecosystems, focusing on Microcystis and its cyanotoxin production. We employed a large-scale mesocosm system simulating future climate warming scenarios in concert with varying degrees of nutrient enrichment. We explored the full range of identified cyanobacterial toxins and cyanotoxin-producing genes under different experimental conditions and assessed the effects of both eutrophication and warming on both phytoplankton community structure (algal densities, community stability) and function (resource use efficiency, RUE). We show here that eutrophication increases the RUE of Microcystis and promotes an increase in toxin-producing genes, leading to a substantial increase in the dominance of Microcystis. This increase correlates with enhanced cyanotoxin production, a trend exacerbated under the influence of future climate warming, suggesting interactions between eutrophication and climate warming on Microcystis ecology and cyanotoxin dynamics. Hence, heatwaves and eutrophication lead the phytoplankton community to be dominated by a minority of algal species with higher toxic capacity. In a broader context, our study underscores the urgent need for holistic management strategies, addressing both nutrient control and climate mitigation, to effectively manage the escalating ecological risks associated with cyanobacterial dominance and toxin production.
Collapse
Affiliation(s)
- Yalan Yang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China; College of Ocean and Earth Sciences, Xiamen University, China.
| | - Qi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, China.
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Xianghong Kong
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | | | - Songguang Xie
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Jun Xu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, China; Institute of Hydrobiology, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Zhang Y, Yu Y, Liu J, Guo Y, Yu H, Liu M. The Driving Mechanism of Phytoplankton Resource Utilization Efficiency Variation on the Occurrence Risk of Cyanobacterial Blooms. Microorganisms 2024; 12:1685. [PMID: 39203527 PMCID: PMC11356996 DOI: 10.3390/microorganisms12081685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Algae are highly sensitive to environmental factors, especially nutrient fluctuations; excessive nutrients can lead to the proliferation of specific algae species, resulting in dominance. In this study, we aimed to reevaluate changes in algal dominance from the perspective of resource utilization efficiency (RUE). We established 80 monitoring sites across different water systems, collecting water and phytoplankton samples. Using canonical correspondence analysis (CCA) and a generalized additive model (GAM), we analyzed the correlation between phytoplankton RUE and nutrient concentrations, quantifying the corresponding relationship between algal dominance and RUE. Our results indicate a significant negative correlation between the RUE of total phosphorus (TP) and total nitrogen (TN) concentration, but a positive correlation with N:P. The RUE of TN was negatively correlated with TN concentration and N:P. We constructed GAMs with interaction terms and confirmed a nonlinear relationship between algal dominance and RUE. When the RUE of TN was low, a positive correlation was observed, while a negative correlation was observed otherwise. These findings reveal the ecological adaptability of algal communities and provide valuable insights for predicting the risk of algal bloom outbreaks.
Collapse
Affiliation(s)
- Yongxin Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Yang Yu
- China Geological Survey Harbin Natural Resources Comprehensive Survey Center, Harbin 150081, China;
| | - Jiamin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Yao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Manhong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| |
Collapse
|
3
|
Kramer BJ, Turk-Kubo K, Zehr JP, Gobler CJ. Intensification of harmful cyanobacterial blooms in a eutrophic, temperate lake caused by nitrogen, temperature, and CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169885. [PMID: 38190910 DOI: 10.1016/j.scitotenv.2024.169885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Warmer temperatures can significantly increase the intensity of cyanobacterial harmful algal blooms (CHABs) in eutrophic freshwater ecosystems. However, few studies have examined the effects of CO2 enrichment in tandem with elevated temperature and/or nutrients on cyanobacterial taxa in freshwater ecosystems. Here, we observed changes in the biomass of cyanobacteria, nutrients, pH, and carbonate chemistry over a two-year period in a shallow, eutrophic freshwater lake and performed experiments to examine the effects and co-effects of CO2, temperature, and nutrient enrichment on cyanobacterial and N2-fixing (diazotrophic) communities assessed via high throughput sequencing of the 16S rRNA and nifH genes, respectively. During both years, there were significant CHABs (50-500 μg cyanobacterial chlorophyll-a L-1) and lake CO2 levels were undersaturated (≤300 μatm pCO2). NH4+ significantly increased the net growth rates of cyanobacteria as well as the biomass of the diazotrophic cyanobacterial order Nostocales under elevated and ambient CO2 conditions. In a fall experiment, the N2 fixation rates of Nostocales were significantly higher when populations were enriched with CO2 and P, relative to CO2-enriched populations that were not amended with P. During a summer experiment, N2 fixation rates increased significantly under N and CO2 - enriched conditions relative to N-enriched and ambient CO2 conditions. Nostocales dominated the diazotrophic communities of both experiments, achieving the highest relative abundance under CO2-enriched conditions when N was added in the first experiment and when CO2 and temperature were elevated in the second experiment, when N2 fixation rates also increased significantly. Collectively, this study indicates that N promotes cyanobacterial blooms including those formed by Dolichospermum and that the biomass and N2 fixation rates of diazotrophic cyanobacterial taxa may benefit from enhanced CO2 levels in eutrophic lakes.
Collapse
Affiliation(s)
- Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Kendra Turk-Kubo
- Oceans Sciences Department, University of California at Santa Cruz, CA, United States
| | - Jonathan P Zehr
- Oceans Sciences Department, University of California at Santa Cruz, CA, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States.
| |
Collapse
|
4
|
Chen T, Liu T, Wu Z, Wang B, Chen Q, Zhang M, Liang E, Ni J. Virus-pathogen interactions improve water quality along the Middle Route of the South-to-North Water Diversion Canal. THE ISME JOURNAL 2023; 17:1719-1732. [PMID: 37524909 PMCID: PMC10504254 DOI: 10.1038/s41396-023-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Bacterial pathogens and viruses are the leading causes of global waterborne diseases. Here, we discovered an interesting natural paradigm of water "self-purification" through virus-pathogen interactions over a 1432 km continuum along the Middle Route of the South-to-North Water Diversion Canal (MR-SNWDC) in China, the largest water transfer project in the world. Due to the extremely low total phosphorus (TP) content (ND-0.02 mg/L) in the MR-SNWDC, the whole canal has experienced long-lasting phosphorus (P) limitation since its operation in 2015. Based on 4443 metagenome-assembled genomes (MAGs) and 40,261 nonredundant viral operational taxonomic units (vOTUs) derived from our recent monitoring campaign, we found that residential viruses experiencing extreme P constraints had to adopt special adaptive strategies by harboring smaller genomes to minimize nucleotide replication, DNA repair, and posttranslational modification costs. With the decreasing P supply downstream, bacterial pathogens showed repressed environmental fitness and growth potential, and a weakened capacity to maintain P acquisition, membrane formation, and ribonucleotide biosynthesis. Consequently, the unique viral predation effects under P limitation, characterized by enhanced viral lytic infections and an increased abundance of ribonucleotide reductase (RNR) genes linked to viral nuclear DNA replication cycles, led to unexpectedly lower health risks from waterborne bacterial pathogens in the downstream water-receiving areas. These findings highlighted the great potential of water self-purification associated with virus-pathogen dynamics for water-quality improvement and sustainable water resource management.
Collapse
Affiliation(s)
- Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qian Chen
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Environmental Protection Key Laboratory of All Materials Fluxes in River Ecosystems, Peking University, Beijing, 100871, PR China
| | - Mi Zhang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Enhang Liang
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
5
|
Park JH, Lee H, Zhumabieke M, Kim SH, Shin KH, Khim BK. Basin-specific pollution and impoundment effects on greenhouse gas distributions in three rivers and estuaries. WATER RESEARCH 2023; 236:119982. [PMID: 37087919 DOI: 10.1016/j.watres.2023.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Large uncertainties exist regarding the combined effects of pollution and impoundment on riverine greenhouse gas (GHG) emissions. It has also been debated whether river eutrophication can transform downstream estuaries into carbon sinks. To assess human impacts on the riverine and estuarine distributions of CO2, CH4, and N2O, two source-to-estuary surveys along three impounded rivers in Korea were combined with multiple samplings at five or six estuarine sites. The basin-wide surveys revealed predominant pollution effects generating localized hotspots of riverine GHGs along metropolitan areas. The localized pollution effect was pronounced in the lower Han River and estuary adjacent to Seoul, while the highest GHG levels in the upper Yeongsan traversing Gwangju were not carried over into the faraway estuary. CH4 levels were elevated across the eutrophic middle Nakdong reaches regulated by eight cascade weirs in contrast to undersaturated CO2 indicating enhanced phytoplankton production. The levels of all three GHGs tended to be higher in the Han estuary across seasons. Higher summer-time δ13C-CH4 values at some Nakdong and Yeongsan estuarine sites implied that temperature-enhanced CH4 production may have been dampened by increased CH4 oxidation. Our results suggest that the location and magnitude of pollution sources and impoundments control basin-specific longitudinal GHG distributions and estuarine carryover effects, warning against simple generalizations of eutrophic rivers and estuaries as carbon sinks.
Collapse
Affiliation(s)
- Ji-Hyung Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunji Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Maidina Zhumabieke
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Hee Kim
- Department of Marine Science and Convergence Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Boo-Keun Khim
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|