1
|
Jing Z, Ye F, Liu X, Gao H. A critical review of microbial profiles in black and odorous waters. ENVIRONMENTAL RESEARCH 2025; 270:120972. [PMID: 39884529 DOI: 10.1016/j.envres.2025.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of waters. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
2
|
Wu M, Zhang W, Wang H, Ding Y, Yu F, Shang J, Tong J, Li Y. How hydrodynamic conditions drive the regime shift towards a bacterial state with lower carbon emissions in river bends. ENVIRONMENTAL RESEARCH 2025; 268:120832. [PMID: 39800304 DOI: 10.1016/j.envres.2025.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover. However, knowledge is lacking for the linkage between carbon emission and bacterial community in disturbed environments caused by river sinuosity. Here, the alternative states of benthic bacterial communities under the hydrodynamic conditions in river bends and the feedback to carbon emissions were investigated for the first time through the experiment of channels with different sinuosity combining hydrodynamic profiling, high-throughput sequencing and ecological theory. In this study, bimodal distributions combined with potential analysis showed direct evidence of bistability and demonstrated that increasing hydrodynamic conditions over a threshold (i.e., bottom velocity >0.73 cm s-1, turbulence kinetic energy >0.029 cm2 s-2) lead to a transition in benthic bacterial communities. Bacterial communities in high hydrodynamics (sinuosity of 1.4 and 2.2) exhibited lower carbon emissions (with averaged CH4 decreasing 0.04 μmol L-1 and averaged CO2 decreasing 2.48 μmol L-1). The bacterial communities in the high hydrodynamic group had higher α-diversity and more stable network structure based on topological properties of co-occurrence networks than in the low hydrodynamics. Homogeneous selection belonging to deterministic processes affected more on community assemblages of bacteria under conditions with both low hydrodynamics and high hydrodynamics, and a larger effect of deterministic processes on bacterial community assemblage was found in low hydrodynamics. Furthermore, the structural equation model showed hydrodynamic conditions induced by sinuosity regulated carbon emissions by directly and indirectly affecting the bacterial status. This study revealed the existence of alternative bacterial states under hydrodynamic conditions in meandering channels and explored the relationships between the bacterial states and carbon emissions, therefore providing insights into river reconstruction for an appropriate trade-off of urban river channel sinuosity.
Collapse
Affiliation(s)
- Meirong Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yanan Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Feng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jiaxin Tong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
3
|
Sun X, Hu S, He R, Zeng J, Zhao D. Ecological restoration enhanced the stability of epiphytic microbial food webs of submerged macrophytes: Insights from predation characteristics of epiphytic predators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174547. [PMID: 38992355 DOI: 10.1016/j.scitotenv.2024.174547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The application of various submerged macrophytes for ecological restoration has gained increasing attention in urban lake ecosystems. The multitrophic microbial communities that colonized in various submerged macrophytes constitute microbial food webs through trophic cascade effects, which affect the biogeochemical cycles of the lake ecosystem and directly determine the effects of ecological restoration. Therefore, it is essential to reveal the diversity, composition, assembly processes, and stability of the microbial communities within epiphytic food webs of diverse submerged macrophytes under eutrophication and ecological restoration scenarios. In this study, we explored the epiphytic microbial food webs of Vallisneria natans and Hydrilla verticillata in both eutrophic and ecological restoration regions. The obtained results indicated that the two regions with different nutrient levels remarkably affected the diversity and composition of epiphytic multitrophic microbial communities of submerged macrophytes, among them, the community composition of epiphytic predators were more prone to change. Secondly, environmental filtering effects played a more important role in driving the community assembly of epiphytic predators than that of prey. Furthermore, the generality and intraguild predation of epiphytic predators were significantly improved within ecological restoration regions, which increased the stability of epiphytic microbial food webs. Additionally, compared with Hydrilla verticillata, the epiphytic microbial food webs of Vallisneria natans exhibited higher multitrophic diversity and higher network stability regardless of regions. Overall, this study focused on the role of the epiphytic microbial food webs of submerged macrophytes in ecological restoration and uncovered the potential of epiphytic predators to enhance the stability of microbial food webs, which may provide new insights into the development of ecological restoration strategies.
Collapse
Affiliation(s)
- Xiaojian Sun
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwen Hu
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China.
| |
Collapse
|
4
|
Cheng W, Tian W, Wang W, Lv T, Su T, Wu M, Yun Y, Ma T, Li G. Nutrient availability contributes to structural and functional diversity of microbiome in Xinjiang oilfield. Front Microbiol 2024; 15:1450226. [PMID: 39144231 PMCID: PMC11322141 DOI: 10.3389/fmicb.2024.1450226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Indigenous microbial enhanced oil recovery (IMEOR) is a promising alternative way to promote oil recovery. It activates oil recovery microorganisms in the reservoir by adding nutrients to the injected water, utilizing microbial growth and metabolism to enhance recovery. However, few studies have focused on the impact of injected nutrients on reservoir microbial community composition and potential functions. This limits the further strategic development of IMEOR. In this study, we investigated the effects of nutrition on the composition of the reservoir bacterial community and functions in the Qizhong block of Xinjiang Oilfield, China, by constructing a long core microbial flooding simulation device. The results showed that the microbial community structure of the reservoir changed from aerobic state to anaerobic state after nutrient injection. Reducing the nutrient concentration increased the diversity and network stability of the reservoir bacterial community. At the same time, the nitrogen metabolism function also showed the same change response. Overall, these results indicated that nutrition significantly affected the community structure and function of reservoir microorganisms. Injecting low concentrations of nutrients may be more beneficial to improve oil recovery. This study is of great significance for guiding IMEOR technology and saving costs at the field site.
Collapse
Affiliation(s)
- Wei Cheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenzhuo Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weilong Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianhua Lv
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin, China
| |
Collapse
|
5
|
Cohen Y, Johnke J, Abed-Rabbo A, Pasternak Z, Chatzinotas A, Jurkevitch E. Unbalanced predatory communities and a lack of microbial degraders characterize the microbiota of a highly sewage-polluted Eastern-Mediterranean stream. FEMS Microbiol Ecol 2024; 100:fiae069. [PMID: 38684474 PMCID: PMC11099661 DOI: 10.1093/femsec/fiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Wastewater pollution of water resources takes a heavy toll on humans and on the environment. In highly polluted water bodies, self-purification is impaired, as the capacity of the riverine microbes to regenerate the ecosystem is overwhelmed. To date, information on the composition, dynamics and functions of the microbial communities in highly sewage-impacted rivers is limited, in particular in arid and semi-arid environments. In this year-long study of the highly sewage-impacted Al-Nar/Kidron stream in the Barr al-Khalil/Judean Desert east of Jerusalem, we show, using 16S and 18S rRNA gene-based community analysis and targeted qPCR, that both the bacterial and micro-eukaryotic communities, while abundant, exhibited low stability and diversity. Hydrolyzers of organics compounds, as well as nitrogen and phosphorus recyclers were lacking, pointing at reduced potential for regeneration. Furthermore, facultative bacterial predators were almost absent, and the obligate predators Bdellovibrio and like organisms were found at very low abundance. Finally, the micro-eukaryotic predatory community differed from those of other freshwater environments. The lack of essential biochemical functions may explain the stream's inability to self-purify, while the very low levels of bacterial predators and the disturbed assemblages of micro-eukaryote predators present in Al-Nar/Kidron may contribute to community instability and disfunction.
Collapse
Affiliation(s)
- Yossi Cohen
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Presently at DayTwo, Rehovot, Israel
| | - Julia Johnke
- Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, Kiel, Germany
| | | | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Presently at the Division of Identification and Forensic Science, Israel Police, National Headquarters
| | - Antonis Chatzinotas
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstrasse 33, 04103 Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
6
|
Gao Y, Li Y, Shang J, Zhang W. Temporal profiling of sediment microbial communities in the Three Gorges Reservoir Area discovered time-dissimilarity patterns and multiple stable states. WATER RESEARCH 2024; 252:121225. [PMID: 38309070 DOI: 10.1016/j.watres.2024.121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Microbial communities play vital roles in cycling nutrients and maintaining water quality in aquatic ecosystems. To better understand the dynamics of microbial communities and to pave way to effective ecological remediation, it's essential to reveal the temporal patterns of the communities and to identify their states. However, research exploring the dynamic changes of microbial communities needs a large amount of time-series data, which could be an extravagant requirement for a single study. In this research, we overcame this challenge by conducting a meta-analysis of years of accumulations of 16S rRNA high-throughput sequencing data from the Three Gorges Reservoir Area (TGRA), an ecological and environmental hotspot. For better understanding the microbial communities time-dissimilarity dynamics, three microbial communities time-dissimilarity patterns were hypothesized, and the linear pattern in the TGRA was validated. In addition, to explore the stability of microbial communities in the TGRA, two alternative stable states were revealed, and their differences in community richness, alpha diversity indices, community composition, ecological network topological properties, and metabolic functions were demonstrated. In short, two states of microbial communities showed distinct richness and alpha diversity indices, and the communities in one state were more dominated by Halomonas and Nitrosopumilaceae genera, facilitating nitrogen cycling metabolic processes; whilst the main genera of the other state were Bathyarchaeia and Methanosaeta, which favored methane-related metabolism. Moreover, different studies and environmental differences between mainstream and tributaries were attributed as the potential inducing factors of the state division. Our study provides a comprehensive insight into the dynamics and stability of microbial communities in the TGRA, and a reference for future studies on microbial community dynamics.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
7
|
Hui C, Li Y, Yuan S, Zhang W. River connectivity determines microbial assembly processes and leads to alternative stable states in river networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166797. [PMID: 37673267 DOI: 10.1016/j.scitotenv.2023.166797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
River network is a common form of lotic ecosystems. Variances in river connection modes would form networks with significantly different structures, and further affect aquatic organisms. Microbial communities are vital organisms of river networks, they participate in numerous biogeochemical processes. Identifying associations between microbial community and structural features of river networks are essential for maintaining environmental quality. Thus, dendritic (DRN) and trellised river networks (TRN) were studied by combining molecular biological tools, ecological theory and hydrodynamic calculation. Results illustrated that river connectivity, a vital structural feature exhibiting mass transport ability of river network, increased relative importance of homogeneous selection processes in microbial assembly, which would further shape community with alternative stable states. Between the two researched river networks, DRN possessed higher connectivity, which made homogeneous selection as the driving force in community assembly. The microbial communities in DRN were consisted of species occupying similar ecological niche, and exhibited two alternative stable states, which can decrease influences of environmental disturbance on community composition. On the contrary, lower connectivity of TRN decreased proportions of homogeneous selection in community assembly, which further led to species occupying varied ecological niche. The microbial community exhibited only one stable state, and environmental disturbance would cause loss of ecological niche and significantly alter community composition. This study could provide useful information for the optimization of river connection engineering.
Collapse
Affiliation(s)
- Cizhang Hui
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Saiyu Yuan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
8
|
Liang J, Ding J, Zhu Z, Gao X, Li S, Li X, Yan M, Zhou Q, Tang N, Lu L, Li X. Decoupling the heterogeneity of sediment microbial communities along the urbanization gradients: A Bayesian-based approach. ENVIRONMENTAL RESEARCH 2023; 238:117255. [PMID: 37775011 DOI: 10.1016/j.envres.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Comprehending the response of microbial communities in rivers along urbanization gradients to hydrologic characteristics and pollution sources is critical for effective watershed management. However, the effects of complex factors on riverine microbial communities remain poorly understood. Thus, we established a bacteria-based index of biotic integrity (Ba-IBI) to evaluate the microbial community heterogeneity of rivers along an urbanization gradient. To examine the response of Ba-IBI to multiple stressors, we employed a Bayesian network based on structural equation modeling (SEM-BN) and revealed the key control factors influencing Ba-IBI at different levels of urbanization. Our findings highlight that waterborne nutrients have the most significant direct impact on Ba-IBI (r = -0.563), with a particular emphasis on ammonia nitrogen, which emerged as the primary driver of microbial community heterogeneity in the Liuyang River basin. In addition, our study confirmed the substantial adverse effects of urbanization on river ecology, as urban land use had the greatest indirect effect on Ba-IBI (r = -0.460). Specifically, the discharge load from wastewater treatment plants (WWTP) was found to significantly negatively affect the Ba-IBI of the entire watershed. In the low urbanized watersheds, rice cultivation (RC) and concentrated animal feeding operations (CAFO) are key control factors, and an increase in their emissions can lead to a sharp decrease in Ba-IBI. In moderately urbanized watersheds, the Ba-IBI tended to decrease as the level of RC emissions increased, while in those with moderate RC emissions, an increase in point source emissions mitigated the negative impact of RC on Ba-IBI. In highly urbanized watersheds, Ba-IBI was not sensitive to changes in stressors. Overall, our study presents a novel approach by integrating Ba-IBI with multi-scenario analysis tools to assess the effects of multiple stressors on microbial communities in river sediments, providing valuable insights for more refined environmental decision-making.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China.
| | - Junjie Ding
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Min Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Qinxue Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| |
Collapse
|
9
|
Yang S, Huang T, Zhang H, Guo H, Xu J, Cheng Y. Pollutants reduction via artificial mixing in a drinking water reservoir: Insights into bacterial metabolic activity, biodiversity, interactions and co-existence of core genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165473. [PMID: 37454840 DOI: 10.1016/j.scitotenv.2023.165473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Shang J, Zhang W, Gao Y, Li Y, Wu H. Dam-induced flow alternations drive the regime shift towards a cyanobacteria-dominated microbiota state in the Yangtze River. WATER RESEARCH 2023; 244:120527. [PMID: 37651866 DOI: 10.1016/j.watres.2023.120527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
While satisfying the demands of social and economic development, dams act as physical barriers affecting both abiotic and biotic factors in large rivers. These altered factors can interact with each other and gradually reshape the local ecosystem state. The reshaped state may spread downstream and affect ecosystem states on a large scale. However, the spread extent and characteristics of ecosystem states along large rivers remain understudied. To address this problem, alternative microbiota states and their responses to environmental conditions in the Yangtze River were investigated, considering the preponderance of alternative stable states theory in explaining the response of ecosystem states as well as the role of benthic microorganisms in indicating ecosystem states. In this study, flow discharge was identified as the main hydrological factor that clustered benthic microbiota into two types, and these two microbiota types were bistable and characterized by differential enrichment of the Cyanobacteria phylum. Potential analysis demonstrated that reducing flow discharge beneath a threshold (i.e., flow discharge < 12,900 m3/s) could shift benthic microbiotas to a state where benthic cyanobacteria would become the dominant species (the Microbiota State B). In the bistable region (i.e., 12,900 < flow discharge < 28,000 m3/s), both the ecological resilience and the contribution of deterministic process were found weak by relative potential depth calculations and neutral community modeling, suggesting that this region is susceptible to the microbiota state of its upstream and thus deserves more scientific attention to prevent the unfavorable state from spreading downstream. In addition, high denitrification potential at sites of the Microbiota State B was likely responsible for the low N:P ratio, further benefiting the dominance of N-fixing cyanobacteria. This study empirically showed the response of alternative microbiota states to flow gradients, and explored the distribution and characteristics of the microbiota states along the mainstream of the Yangtze River, therefore providing insights into environmental flow design and reservoir regulation of large rivers.
Collapse
Affiliation(s)
- Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| |
Collapse
|
11
|
Larson DM, Bungula W, McKean C, Stockdill A, Lee A, Miller FF, Davis K. Quantifying ecosystem states and state transitions of the Upper Mississippi River System using topological data analysis. PLoS Comput Biol 2023; 19:e1011147. [PMID: 37285341 DOI: 10.1371/journal.pcbi.1011147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Aquatic systems worldwide can exist in multiple ecosystem states (i.e., a recurring collection of biological and chemical attributes), and effectively characterizing multidimensionality will aid protection of desirable states and guide rehabilitation. The Upper Mississippi River System is composed of a large floodplain river system spanning 2200 km and multiple federal, state, tribal and local governmental units. Multiple ecosystem states may occur within the system, and characterization of the variables that define these ecosystem states could guide river rehabilitation. We coupled a long-term (30-year) highly dimensional water quality monitoring dataset with multiple topological data analysis (TDA) techniques to classify ecosystem states, identify state variables, and detect state transitions over 30 years in the river to guide conservation. Across the entire system, TDA identified five ecosystem states. State 1 was characterized by exceptionally clear, clean, and cold-water conditions typical of winter (i.e., a clear-water state); State 2 had the greatest range of environmental conditions and contained most the data (i.e., a status-quo state); and States 3, 4, and 5 had extremely high concentrations of suspended solids (i.e., turbid states, with State 5 as the most turbid). The TDA mapped clear patterns of the ecosystem states across several riverine navigation reaches and seasons that furthered ecological understanding. State variables were identified as suspended solids, chlorophyll a, and total phosphorus, which are also state variables of shallow lakes worldwide. The TDA change detection function showed short-term state transitions based on seasonality and episodic events, and provided evidence of gradual, long-term changes due to water quality improvements over three decades. These results can inform decision making and guide actions for regulatory and restoration agencies by assessing the status and trends of this important river and provide quantitative targets for state variables. The TDA change detection function may serve as a new tool for predicting the vulnerability to undesirable state transitions in this system and other ecosystems with sufficient data. Coupling ecosystem state concepts and TDA tools can be transferred to any ecosystem with large data to help classify states and understand their vulnerability to state transitions.
Collapse
Affiliation(s)
- Danelle Marie Larson
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
| | - Wako Bungula
- University of Wisconsin La-Crosse, Department of Mathematics and Statistics, La Crosse, Wisconsin, United States of America
| | - Casey McKean
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Alaina Stockdill
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Amber Lee
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Frederick Forrest Miller
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Killian Davis
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| |
Collapse
|
12
|
Xu N, Hu H, Wang Y, Zhang Z, Zhang Q, Ke M, Lu T, Penuelas J, Qian H. Geographic patterns of microbial traits of river basins in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162070. [PMID: 36764554 DOI: 10.1016/j.scitotenv.2023.162070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
River microbiotas contribute to critical geochemical processes and ecological functions of rivers but are sensitive to variations of environmental drivers. Understanding the geographic pattern of river microbial traits in biogeochemical processes can provide important insights into river health. Many studies have characterized river microbial traits in specific situations, but the geographic patterns of these traits and environmental drivers at a large scale are unknown. We reanalyzed 4505 raw 16S rRNA sequences samples for microbiota from river basins in China. The results indicated differences in the diversity, composition, and structure of microbiotas across diverse river basins. Microbial diversity and functional potential in the river basins decreased over time in northern China and increased in southern China due to niche differentiation, e.g., the Yangtze River basin was the healthiest ecosystem. River microbiotas were mainly involved in the cycling of carbon and nitrogen in the river ecosystems and participated in potential organic metabolic functions. Anthropogenic pollutants discharge was the most critical environmental driver for the microbial traits, e.g., antibiotic discharge, followed by climate change. The prediction by machine-learning models indicated that the continuous discharge of antibiotics and climate change led to high ecological risks for the rivers. Our study provides guidelines for improving the health of river ecosystems and for the formulation of strategies to restore the rivers.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| |
Collapse
|
13
|
Ma X, Li Y, Niu L, Shang J, Yang N. Microbial community structure and denitrification responses to cascade low-head dams and their contribution to eutrophication in urban rivers. ENVIRONMENTAL RESEARCH 2023; 221:115242. [PMID: 36634891 DOI: 10.1016/j.envres.2023.115242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Low-head dams are one of the most common hydraulic facilities, yet they often fragment rivers, leading to profound changes in aquatic biodiversity and river eutrophication levels. Systematic assessments of river ecosystem structure and functions, and their contribution to eutrophication, are however lacking, especially for urban rivers where low-head dams prevail. In this study, we address this gap with a field survey on microbial community structure and ecosystem function, in combination with hydrological, environmental and ecological factors. Our findings revealed that microbial communities showed significant differences among the cascade impoundments, which may be due to the environment heterogeneity resulting from the cascade low-head dams. The alternating lentic-lotic flow environment created by the low-head dams caused nutrient accumulation in the cascade impoundments, enhancing environmental sorting and interspecific competition relationships, and thus possibly contributing to the reduction in sediment denitrification function. Decreased denitrification led to excessive accumulation of nutrients, which may have aggravated river eutrophication. In addition, structural equation model analysis showed that flow velocity may be the key controlling factor for river eutrophication. Therefore, in the construction of river flood control and water storage systems, the location, type and water storage capacity of low-head dams should be fully considered to optimize the hydrodynamic conditions of rivers. To summarize, our findings revealed the cumulative effects of cascade low-head dams in an urban river, and provided new insights into the trade-off between construction and decommissioning of low-head dams in urban river systems.
Collapse
Affiliation(s)
- Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Research Institute of Mulan Ecological River, Putian, 351100, PR China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
14
|
Lalzar M, Zvi-Kedem T, Kroin Y, Martinez S, Tchernov D, Meron D. Sediment Microbiota as a Proxy of Environmental Health: Discovering Inter- and Intrakingdom Dynamics along the Eastern Mediterranean Continental Shelf. Microbiol Spectr 2023; 11:e0224222. [PMID: 36645271 PMCID: PMC9927165 DOI: 10.1128/spectrum.02242-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sedimentary marine habitats are the largest ecosystem on our planet in terms of area. Marine sediment microbiota govern most of the benthic biological processes and therefore are responsible for much of the global biogeochemical activity. Sediment microbiota respond, even rapidly, to natural change in environmental conditions as well as disturbances of anthropogenic sources. The latter greatly impact the continental shelf. Characterization and monitoring of the sediment microbiota may serve as an important tool for assessing environmental health and indicate changes in the marine ecosystem. This study examined the suitability of marine sediment microbiota as a bioindicator for environmental health in the eastern Mediterranean Sea. Integration of information from Bacteria, Archaea, and Eukaryota enabled robust assessment of environmental factors controlling sediment microbiota composition: seafloor-depth (here representing sediment grain size and total organic carbon), core depth, and season (11%, 4.2%, and 2.5% of the variance, respectively). Furthermore, inter- and intrakingdom cooccurrence patterns indicate that ecological filtration as well as stochastic processes may control sediment microbiota assembly. The results show that the sediment microbiota was robust over 3 years of sampling, in terms of both representation of region (outside the model sites) and robustness of microbial markers. Furthermore, anthropogenic disturbance was reflected by significant transformations in sediment microbiota. We therefore propose sediment microbiota analysis as a sensitive approach to detect disturbances, which is applicable for long-term monitoring of marine environmental health. IMPORTANCE Analysis of data, curated over 3 years of sediment sampling, improves our understanding of microbiota assembly in marine sediment. Furthermore, we demonstrate the importance of cross-kingdom integration of information in the study of microbial community ecology. Finally, the urgent need to propose an applicable approach for environmental health monitoring is addressed here by establishment of sediment microbiota as a robust and sensitive model.
Collapse
Affiliation(s)
- Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yael Kroin
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Stephane Martinez
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Effect of pressure treatment on Microcystis blooms and the subsequent succession of bacterial community. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
16
|
Lenart-Boroń A, Boroń P, Kulik K, Prajsnar J, Żelazny M, Chmiel MJ. Anthropogenic pollution gradient along a mountain river affects bacterial community composition and genera with potential pathogenic species. Sci Rep 2022; 12:18140. [PMID: 36307524 PMCID: PMC9614195 DOI: 10.1038/s41598-022-22642-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Mountain regions in Poland are among the most frequently visited tourist destinations, causing a significant anthropogenic pressure put on the local rivers. In this study, based on numbers of 9 microorganisms, content of 17 antibiotics and 17 physicochemical parameters, we determined a pollution gradient in six sites along Białka, a typical mountain river in southern Poland. The E.coli/Staphylococcus ratio varied evidently between polluted and non-polluted sites, indicating that the possible utility of this parameter in assessing the anthropogenic impact on river ecosystems is worth further investigation. Then, using next generation sequencing, we assessed the changes in bacterial community structure and diversity as a response to the pollution gradient. Proteobacteria and Bacteroidetes were the most abundant phyla in the majority of samples. Actinobacteria were the most abundant in the most pristine (groundwater) sample, while Firmicutes and Verrucomicrobia were more prevalent in polluted sites. Bacterial diversity at various levels increased with water pollution. Eleven bacterial genera potentially containing pathogenic species were detected in the examined samples, among which Acinetobacter, Rhodococcus, and Mycobacterium were the most frequent. At the species level, Acinetobacter johnsonii was most prevalent potential pathogen, detected in all surface water samples, including the pristine ones. Two bacterial taxa-genus Flectobacillus and order Clostridiales showed very distinct variation in the relative abundance between the polluted and non-polluted sites, indicating their possible potential as biomarkers of anthropogenic impact on mountain river waters.
Collapse
Affiliation(s)
- Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059, Kraków, Poland.
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425, Kraków, Poland
| | - Klaudia Kulik
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059, Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Mirosław Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Maria J Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059, Kraków, Poland
| |
Collapse
|
17
|
Song W, Liao Z, Wang L, Li Y, Zhang W, Ji Y, Chen J. The distribution and ecological risks of antibiotics in the sediments from a diverging area of the bifurcated river: Effects of hydrological properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115787. [PMID: 35947903 DOI: 10.1016/j.jenvman.2022.115787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The hydrodynamics in the diverging area become complicated because of the basin hydrological conditions, making the distribution of antibiotics largely uncertain and thus bringing uncertain ecological risks of antibiotics. Through field sampling, experiments and numerical simulations, the distribution of antibiotics, its responses to hydrological conditions were studied. Antibiotics in the bifurcated river sediments was mainly distributed in the branch mouth. The hydrodynamic regions were affected by the hydrological frequency. Notably, the center of the low-velocity area moved upstream and gradually expands to the entire tributary as the hydrological frequency shifted from high to low. ENRO (enrofloxacin) and OFC (ofloxacin) were the key hazardous antibiotics affecting the ecological health in the diverging area, and their concentrations are mainly affected by sediment particle size (D < 0.15 mm) and oxygen content. The ecological risk of antibiotics in the diverging area were gradually decreased with the increase of the distance from the central area. The water physical and chemical properties, altered by the river basin hydrological conditions, play an important role in influencing the distribution of antibiotic concentrations, and ultimately posing great threat to aquatic ecosystem. The research provides a scientific basis for antibiotic risk control in the diverging area under different hydrological conditions.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Ziying Liao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yuang Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jiaying Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
18
|
Wu Y, Li Y, Niu L, Zhang W, Wang L, Zhang H. Nutrient status of integrated rice-crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155706. [PMID: 35526617 DOI: 10.1016/j.scitotenv.2022.155706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Increasing rice yield is essential for alleviating global food crisis. High soil nutrient level guarantees high rice yields in conventional rice monoculture (RM) systems, but excessive unconsumed nutrients act as pollutants and can even threaten rice growth. The integrated rice-crayfish (IRC) system aims to transfer the excess nutrients from crayfish to paddy fields to improve the comprehensive utilization rate of nutrients and create additional profits, while the responding characteristics of IRC microbial communities in paddy fields and rice yields to the nutrient status remain unclear. Considering the crucial roles of microbiomes in promoting nutrient cycling for crop absorption in rice production progresses, the composition and functional characteristics of soil microbial communities from six IRC farms with variant nutrient statuses in the Yangtze River Delta were surveyed in this study. Compared with RM systems, IRC systems with appropriately improved (p < 0.05) soil quality created favorable nutrient (FN) status accompanied by 15% rice yields increase, while IRC systems with extremely high nutrients (HN) status (p < 0.01) accompanied by 14% rice yields reduction. Soil microbial diversity and network complexity were maintained in FN-IRC systems, but declined in HN-IRC systems, with the Shannon index significantly decreased by 9.2% and network density decreased from 0.135 (in RM) to 0.062. In the FN-IRC systems, the keystone taxa identified by co-occurrence networks displayed inextricably positive correlations with soil nitrification potential (calculated by normalization of amoA gene abundance) and rice yields. While in HN-IRC systems, the large loss of keystone taxa might limit soil nitrogen fixation potential (calculated by normalization of nifH gene abundance), and further rice yields. Our study indicates that soil nutrient management in IRC systems claim attention, and the improvement of nitrogen metabolism is the key to realize agricultural cleaner production.
Collapse
Affiliation(s)
- Yunyu Wu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
19
|
Zhang Y, Huo Y, Zhang Z, Zhu S, Fan W, Wang X, Huo M. Deciphering the influence of multiple anthropogenic inputs on taxonomic and functional profiles of the microbial communities in Yitong River, Northeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39973-39984. [PMID: 35112248 DOI: 10.1007/s11356-021-18386-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We conducted the analysis of physicochemical parameters, 16S rRNA amplicon sequencing and real-time quantitative polymerase chain reaction to explore the impact of human inputs on the bacterioplankton communities within a tributary of the largest river flowing through a megacity in northeast China. Agriculture largely accounted for the alteration of diversity and functions of the microbial communities. Furthermore, nitrate and total phosphorus declined at the reservoir outlet. The WWTP effluent discharge caused a decrease of the relative abundance of Actinobacteria and Cyanobacteria, while the impact on the variation of alpha diversity of river microbial community was slight. Carbon fixation and nitrogen cycle varied with the change of land use type. The rare taxa contributed with a predominant role in the response to environmental variables and NH3-N as well as NO3--N were the main environmental factors that drove the shift in the bacterial community. The occurrence of the human-specific fecal indicator was mostly derived from agriculture, and its increase in relative abundance was observed in the WWTP effluent. Thus, our study provides guidance for ecological assessment and management of rivers by revealing the response pattern of river bacterioplankton to multiple types of anthropogenic stressors.
Collapse
Affiliation(s)
- Ying Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Huo
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
- School of Physics, Northeast Normal University, Changchun, 130024, China.
| | - Zhiruo Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| | - Suiyi Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Wei Fan
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Xianze Wang
- School of Environment, Northeast Normal University, Changchun, 130117, China
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun, 130117, China.
- Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
20
|
Song W, Zhang L, Li Y, Zhang W, Wang L, Niu L, Zhang H, Ji Y, Liao Z. Hydrodynamic zones and the influence of microorganisms on nitrogen transformation in the diverging area of branched rivers. ENVIRONMENTAL RESEARCH 2022; 208:112778. [PMID: 35065067 DOI: 10.1016/j.envres.2022.112778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Diverging area is widespread in river networks, and understanding its biogeochemical process characteristics is of great significance to river ecological restoration and environmental quality improvement. Microbial communities affected by hydrodynamics play an important role in biogeochemical processes, but their relationship in diverging area is little known. Here, the composition of microbial community and its feedback to hydrodynamics and nitrogen conversion in the diverging area of river networks were first studied by coupling ecological theory, biogeochemical theory, microbial DNA sequencing and mathematical model of water environment. The results showed that there were five hydrodynamic zones with significant velocity differences in the diverging area, namely low velocity zone, maximum velocity zone, stagnant zone, separation zone, and deflection zone. According to the flow velocity grouping, there were significant differences in the microbial diversity and abundance among low velocity group, maximum velocity group and stagnant group had significant differences (p < 0.05, stress = 0.1207). In the low velocity group, Firmicutes was the dominant phylum which had a highest abundance and may promot the conversion of organic nitrogen into ammonia nitrogen. In the maximum velocity group, Bdellovibrionota was the dominant phylum which had a highest abundance and may promot the conversion of nitrate and nitric oxide to nitrogen. In the stagnant zone, Methylomirabilota was the dominant phylum which had a highest abundance and may promot the conversion of nitrogen into nitrate and ammonium. In addition, dissolved oxygen was the most sensitive environmental factor for shaping microorganisms and nitrogen conversion in the diverging area of the river networks by canonical correlation analysis. The denitrifying bacteria Rhodocyclaceae, was shown to negatively correlated with the flow velocity. This research improves the scientific basis for the study of the ecosystem in river networks, which will guide the construction of river ecological projects.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liyan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yuang Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Ziying Liao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
21
|
Concept and Practices Involved in Comprehensive River Control Based on the Synergy among Flood Control, Ecological Restoration, and Urban Development: A Case Study on a Valley Reach of Luanhe River in a Semiarid Region in North China. WATER 2022. [DOI: 10.3390/w14091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many rivers in semiarid areas have ecological degradation and flood control problems that need to be addressed urgently. In order to maintain river health and to promote the sustainable development of cities near these rivers, a comprehensive river regulation project must be carried out. In this study, first, the factors influencing river health are discussed, and the principles and main restrictions involved in comprehensive regulations are studied. The scientific regulation mode is proposed, and new financing channels for water conservancy construction are also suggested. Second, a river reach adjacent to a city in the middle part of the Luanhe River in North China is used as a case study. The health status of the river is analyzed, and a comprehensive river regulation plan combined with urban development is put forward on this basis. The plan includes embankment construction, river regulations, multilevel rubber dam storage, ecological restoration, and artificial lake and riverside landscape construction. The influence of the engineering treatment on the river flood discharge capacity is examined, and the treatment effect is verified by a hydraulic scale model. After implementation of the comprehensive river regulations, the flood control safety of the city and river ecological environment are found to be significantly improved, with the hidden danger of dust storms eliminated. The treatment project incurs environmental, social, and economic benefits and preliminarily achieves the coordination and mutual promotion of river regulation and urban development.
Collapse
|