1
|
Dessì E, Company E, Pous N, Milia S, Colprim J, Magrí A. Reagent-free phosphorus precipitation from a denitrified swine effluent in a batch electrochemical system. Heliyon 2024; 10:e36766. [PMID: 39263106 PMCID: PMC11387353 DOI: 10.1016/j.heliyon.2024.e36766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
There is high interest in the recovery of phosphorus (P) from wastewater through crystallization processes. However, the addition of chemical reagents (e.g., sodium hydroxide) to raise the pH may result in high treatment costs and increased concentrations of undesired metal ions (e.g., sodium). As an alternative, in this research we considered electrochemical mediated precipitation at low current densities (0.4-1.2 A m-2) without using chemical reagents. For that purpose, a two-chamber electrochemical system was operated in batch for treating denitrified swine effluent (48 mg P L-1). By applying current at 1.2 A m-2, and targeting pH 11.5, a maximum P removal rate of 33.4 mmol P (L·d-1) was obtained while the P removal efficiency was above 90 %. New solids that formed mostly remained suspended in the catholyte. Before discharge, the catholyte effluent was recirculated to the anodic compartment to neutralize the pH, achieving a final pH of 6.4 ± 0.1. Chlorine (Cl2) production in the anodic compartment was favored by a small anode surface and a high initial pH of the catholyte. Although the production of chlorine achieved was limited (the highest concentration was 8.6 ± 0.1 mg Cl2 L-1) these findings represent a new opportunity for the recovery and onsite use of this side-product. Electrochemical impedance spectroscopy tests confirmed that the deposition of solids inside the cathodic compartment during the experimental period was limited. Membrane analysis revealed significant scaling of carbonate compounds. The electrochemical treatment described above was shown as a promising alternative to sodium hydroxide and sulfuric acid dosage for pH adjustment when crystallizing phosphate salts.
Collapse
Affiliation(s)
- Emma Dessì
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Girona, Spain
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Cagliari, Italy
| | - Emma Company
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Girona, Spain
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Girona, Spain
| | - Stefano Milia
- National Research Council, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Cagliari, Italy
| | - Jesús Colprim
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Girona, Spain
| | - Albert Magrí
- Laboratory of Chemical and Environmental Engineering (LEQUIA), Institute of the Environment, University of Girona, Girona, Spain
| |
Collapse
|
2
|
Botti A, Musmeci E, Matturro B, Vanzetto G, Bosticco C, Negroni A, Rossetti S, Fava F, Biagi E, Zanaroli G. Chemical-physical parameters and microbial community changes induced by electrodes polarization inhibit PCB dechlorination in a marine sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133878. [PMID: 38447365 DOI: 10.1016/j.jhazmat.2024.133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giampietro Vanzetto
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Caterina Bosticco
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
3
|
Ceballos-Escalera A, Pous N, Balaguer MD, Puig S. Nitrate electro-bioremediation and water disinfection for rural areas. CHEMOSPHERE 2024; 352:141370. [PMID: 38316275 DOI: 10.1016/j.chemosphere.2024.141370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Nitrate-contaminated groundwater is a pressing issue in rural areas, where up to 40 % of the population lacks access to safely managed drinking water services. The high costs and complexity of centralised treatment in these regions exacerbate this problem. To address this challenge, the present study proposes electro-bioremediation as a more accessible decentralised alternative. Specifically, the main focus of this study is developing and evaluating a compact reactor designed to accomplish simultaneous nitrate removal and groundwater disinfection. Significantly, this study has established a new benchmark for nitrate reduction rate within bioelectrochemical reactors, achieving the maximum reported rate of 5.0 ± 0.3 kg NO3- m-3NCC d-1 at an HRTcat of 0.7 h. Furthermore, thein-situ generation of free chlorine was effective for water disinfection, resulting in a residual concentration of up to 4.4 ± 1.1 mg Cl2 L-1 in the effluent at the same HRTcat of 0.7 h. These achievements enabled the treated water to meet the drinking water standards for nitrogen compounds (nitrate, nitrite, and nitrous oxide) as well as pathogens content (T. coliforms, E. coli, and Enterococcus). In conclusion, this study demonstrates the potential of the electro-bioremediation of nitrate-contaminated groundwater as a decentralised water treatment system in rural areas with a competitive operational cost of 1.05 ± 0.16 € m-3.
Collapse
Affiliation(s)
- Alba Ceballos-Escalera
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Narcís Pous
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain.
| |
Collapse
|
4
|
Cheng M, Li X, Gao X, Zhao Z. Effects of two plant species combined with slag-sponges on the treatment performance of contaminated saline water in constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63592-63602. [PMID: 37046164 DOI: 10.1007/s11356-023-26788-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 05/11/2023]
Abstract
Constructed wetland (CW), an ecological water treatment system, can purify and repair the damaged saline water body in an open watershed, but its repairing function is limited at low temperature under salt stress. In this study, two different plant species with slag-sponge layer were operated to enhance the purification effect of CW on the damaged saline water body. The results showed that the combination of Scirpus mariqueter and slag-sponges in CW had a better purification effect especially under the condition of salinity of 10‰ (S = 10) with a respective removal efficiency of 91.04% of total nitrogen, 80.07% of total phosphorus, and 93.02% of COD in high temperature (25 ~ 35 °C). Furthermore, ecological traits (enzyme activity and amino acids) of plants, the abundance and distribution of functional microorganisms on the surface of slag-sponges, and the microbial state on the substrate surface of the denitrifying zone of CW were analyzed to explain how exactly the combinations worked. It was found that the enrichment of functional microorganisms in slag-sponge and the anaerobic zone of plants have improved the nitrogen and phosphorus removal. Plants maintained high enzyme activities and the ability to synthesize key amino acids under salt stress to ensure the growth and reproduction of plants and achieve the assimilation function. Scirpus mariqueter combined with slag-sponges in CW effectively improved the purification effect of damaged saline water, indicating that it is an ecological and green saline water treatment way.
Collapse
Affiliation(s)
- Mengqi Cheng
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, China
- Department of Chemical, Biological and Environmental Engineering, Autonomous University of Barcelona, Barcelona, Spain
| | - Xiao Li
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, China
| | - Xueqing Gao
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, China
| | - Zhimiao Zhao
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, China.
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, Hebei, China.
| |
Collapse
|
5
|
Puggioni G, Milia S, Unali V, Ardu R, Tamburini E, Balaguer MD, Pous N, Carucci A, Puig S. Effect of hydraulic retention time on the electro-bioremediation of nitrate in saline groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157236. [PMID: 35810909 DOI: 10.1016/j.scitotenv.2022.157236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.
Collapse
Affiliation(s)
- Giulia Puggioni
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Stefano Milia
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy.
| | - Valentina Unali
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Riccardo Ardu
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - Elena Tamburini
- DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - M Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Alessandra Carucci
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| |
Collapse
|
6
|
Hong X, Du Y, Zhang H, Xue W, San Hui K, Fang G. Electrochemical nitrate removal by magnetically immobilized nZVI anode on ammonia-oxidizing plate of RuO 2-IrO 2/Ti. CHEMOSPHERE 2022; 294:133806. [PMID: 35120957 DOI: 10.1016/j.chemosphere.2022.133806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Ammonium as the major reduction intermediate has always been the limitation of nitrate reduction by cathodic reduction or nano zero-valent iron (nZVI). In this work, we report the electrochemical nitrate removal by magnetically immobilized nZVI anode on RuO2-IrO2/Ti plate with ammonia-oxidizing function. This system shows maximum nitrate removal efficiency of 94.6% and nitrogen selectivity up to 72.8% at pH of 3.0, and it has also high nitrate removal efficiency (90.2%) and nitrogen selectivity (70.6%) near neutral medium (pH = 6). As the increase of the applied anodic potentials, both nitrate removal efficiency (from 27.2% to 94.6%) and nitrogen selectivity (70.4%-72.8%) increase. The incorpration of RuO2-IrO2/Ti plate with ammonia-oxidizing function on the nZVI anode enhances the nitrate reduction. The dosage of nZVI on RuO2-IrO2/Ti plate (from 0.2 g to 0.6 g) has a slight effect (the variance is no more than 10.0%) on the removal performance. Cyclic voltammetry, Tafel analysis and electrochemical impedance spectroscopy (EIS) were further used to investigate the reaction mechanisms occurring on the nZVI surfaces in terms of CV curve area, corrosion voltage, corrosion current density and charge-transfer resistance. In conclusion, high nitrate removal performance of magnetically immobilized nZVI anode coupled with RuO2-IrO2/Ti plate may guide the design of improved electrochemical reduction by nZVI-based anode for practical nitrate remediation.
Collapse
Affiliation(s)
- Xiaoting Hong
- Department of Chemistry, Zhejiang Sci-tech University, Hangzhou, 310018, PR China.
| | - Yingying Du
- Department of Chemistry, Zhejiang Sci-tech University, Hangzhou, 310018, PR China
| | - Haibin Zhang
- Zhejiang Ruicheng New Materials Co., Ltd, Wenzhou, 325401, PR China
| | - Wenjuan Xue
- Department of Chemistry, Zhejiang Sci-tech University, Hangzhou, 310018, PR China
| | - Kwan San Hui
- Engineering, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gangming Fang
- Hangzhou Chuan En Environmental Technology Co., LTD, Hangzhou, 311508, PR China
| |
Collapse
|
7
|
Yin Z, Wu J, Song J, Yang Y, Zhu X, Wu J. Multi-objective optimization-based reactive nitrogen transport modeling for the water-environment-agriculture nexus in a basin-scale coastal aquifer. WATER RESEARCH 2022; 212:118111. [PMID: 35091218 DOI: 10.1016/j.watres.2022.118111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The quantification of trade-offs between social-economic and environmental effects is of great importance, especially in the semi-arid coastal areas with highly developed agriculture. The study presents an integrated multi-objective simulation-optimization (S-O) framework to evaluate the basin-scale water-environment-agriculture (WEA) nexus. First, the variable-density groundwater model (SEAWAT) is coupled to the reactive transport model (RT3D) for the first attempt to simulate the environmental effects subject to seawater intrusion (SWI) and nitrate pollution (NP). Then, the surrogate assisted multi-objective optimization algorithm is utilized to investigate the trade-offs between the net agricultural benefits and extents of SWI and NP while considering the water supply, food security, and land availability simultaneously. The S-O modeling methodology is applied to the Dagu River Basin (DRB), a typical SWI region with intensive agricultural irrigation in China. It is shown that the three-objective space based on Pareto-optimal front can be achieved by optimizing planting area in the irrigation districts, indicating the optimal evolution of the WEA nexus system. The Pareto-optimal solutions generated by multi-objective S-O model are more realistic and pragmatic, avoiding the decision bias that may often lead to cognitive myopia caused by the low-dimensional objectives. Although the net agricultural benefits in Pareto-optimal solutions are declined to some extent, the environmental objectives (the extents of SWI and NP) are improved compared to those in the pre-optimized scheme. Therefore, the proposed multi-objective S-O framework can be applied to the WEA nexus in the river basin with intensive agriculture development, which is significant to implement the integrated management of water, food, and environment, especially for the semi-arid coastal aquifers.
Collapse
Affiliation(s)
- Ziyue Yin
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian Song
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Yun Yang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
| | - Xiaobin Zhu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|