1
|
Liu J, Yang Y, Fan J, Yu T, Wu D. Electrochemical oxidation of glyphosate coupled with induced crystallization for simultaneous phosphorus recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124611. [PMID: 39970654 DOI: 10.1016/j.jenvman.2025.124611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Non-reactive phosphates (NRPs) need to be transformed into orthophosphate (PO43-, P) before they can be precipitated for recovery from water. This study provides a technology for simultaneous degradation and recovery of NRPs through electrochemical advanced oxidation (EAO) coupled with induced crystallization (IC). The EAO-IC process can achieve a degradation rate of 100% of 1 mM glyphosate (Gly), conversion rate of 98.1% of Gly to P, and efficient resource recovery of 79.1% of P to amorphous calcium phosphate (ACP) products with the reaction time of 5h. The use of a carbon felt (CF) wrapped Ti plate cathode provides a localized high pH environment and abundant nucleation sites for efficient recovery of P. Meanwhile, CF-Ti promotes the transfer of the precipitation region of ACP from the liquid phase to the solid phase. Compared with the Ti system, the phosphorus recovery rate and the Ca2+ precipitation rate increased by 5 times and 3.8 times in the CF/Ti system. And 98% of the precipitates was enriched on the CF surface, leading to reduced fouling on the cathode plate. The abundance of C-OH on the surface of CF is considered as the attachment site of ACP. Moreover, the effect of carbon felt on phosphorus recovery increased with the number of applications. This study presents a promising approach for NRP recovery from wastewater and facilitates low-energy resource utilization strategies for simultaneous benefits of 'pollution reduction and carbon reduction' and 'resource recovery' with one investment.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuwei Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jinhong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
2
|
Xiong J, Xiao Y, Tan Z, Xu X, Wang Z, Zhang L, Shi Y, Pi K, Qiu G, Yang X. Influence of coexisting anions on the one-step electrochemical reduction and precipitation removal of Cr(VI): Implications for advanced wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123167. [PMID: 39488961 DOI: 10.1016/j.jenvman.2024.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Electroreduction of Cr(VI) coupled with in-situ precipitation of Cr(III) on the cathode is a promising method for removing Cr(VI) from wastewaters. However, the influence of coexisting anions in wastewaters on the electrochemical removal process remains unclear. This study investigated the impact of common inorganic anions, including nitrate (NO3-), chloride (Cl-), phosphate (PO43-) and sulfate (SO42-), on the electrochemical removal processes of Cr(VI). The results indicated that HCrO4- was directly electrochemically reduced to Cr3+, and the OH- generated through electro-mediated water reduction could complex with Cr3+, thereby transforming Cr3+ into chromium hydroxide (Cr(OH)3) coated at cathode. Coexisting anions would partially penetrate the alkaline Cr(III) complexes, inhibiting the formation of Cr(OH)3 passivation layer and promoting the electroreduction of Cr(VI), whose penetration ability followed the order of SO42- > PO43- > Cl- > NO3-. Both the inhibitory effect on Cr(III) precipitation and promoting effect on Cr(VI) reduction were intensified with increasing concentrations of these anions in the range of 1-100 mmol L-1. Accordingly, after electrolysis of 10 mg L-1 Cr(VI) at an initial pH of 3.0 and -0.2 V (vs. Ag/AgCl), the highest electrochemical reduction ratio of Cr(VI) (99.9%) was achieved in the presence of 100 mmol L-1 SO42-, while the total Cr removal ratio was minimal (3.3%). In contrast, the presence of NO3- at 1 mmol L-1 resulted in a nearly lowest reduction ratio of Cr(VI) (92.9%), with the maximum total Cr removal ratio (92.8%). These findings provide new insights into the electrochemical removal mechanisms of Cr(VI) in complex solution environments.
Collapse
Affiliation(s)
- Jianhan Xiong
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Yuchi Xiao
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Zhengling Tan
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Xiangrui Xu
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Zhipeng Wang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Liangliang Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Yafei Shi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Kewu Pi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Guohong Qiu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiong Yang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.
| |
Collapse
|
3
|
Zhu Y, Duan W, Huang Z, Tian L, Wu W, Dang Z, Feng C. An Anti-Scaling Strategy for Electrochemical Wastewater Treatment: Leveraging Tip-Enhanced Electric Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13145-13156. [PMID: 38980824 DOI: 10.1021/acs.est.4c03572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Electrode scaling poses a critical barrier to the adoption of electrochemical processes in wastewater treatment, primarily due to electrode inactivation and increased internal reactor resistance. We introduce an antiscaling strategy using tip-enhanced electric fields to redirect scale-forming compounds (e.g., Mg(OH)2 and CaCO3) from the electrode-electrolyte interface to the bulk solution. Our study utilized Cu nanowires (Cu NW) with high-curvature nanostructures as the cathode, in contrast to Cu nanoparticles (Cu NP), Cu foil (CF), and Cu mesh (CM), to evaluate the electrochemical nitrate reduction reaction (NO3RR) performance in hard water conditions. The Cu NW/CF cathode demonstrated superior NO3RR efficiency, with an apparent rate constant (Kapp) of 1.04 h-1, significantly outperforming control electrodes under identical conditions (Kapp < 0.051 h-1). Through experimental and theoretical analysis, including COMSOL simulations, we show that the high-curvature design of Cu NW induced localized electric field enhancements, propelling OH- ions away from the electrode surface into the bulk solution, thus mitigating scale formation on the cathode. Testing with real nitrate-contaminated wastewater confirms that the Cu NW/CF cathode maintained excellent denitrification efficiency over a 60-day period. This study offers a promising perspective on preventing electrode scaling in electrochemical wastewater treatment, paving the way for more efficient and sustainable practices.
Collapse
Affiliation(s)
- Yihui Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Li Tian
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenbo Wu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Santhanam M, Selvaraj R, Sundaram M. A two-step electrochemical method for separating Mg(OH) 2 and CaCO 3: Application to RO reject and polluted groundwater. CHEMOSPHERE 2024; 358:142212. [PMID: 38714251 DOI: 10.1016/j.chemosphere.2024.142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
The process of removing Ca2+ and Mg2+ ions typically results in the co-precipitation of Ca2+ and Mg2+ along with other salt waste. To improve water treatment efficiency towards a zero-waste goal, it is crucial to separate Ca2+ and Mg2+, and recover them in their purified form. This study proposes a two-step electrochemical approach that separately recovers Ca2+ as CaCO3 and Mg2+ as Mg(OH)2. The first step uses an undivided cell with 3D electrodes and controlled flow directions to selectively precipitate CaCO3 on the electrode, keeping the cell removal efficiency. The second step employs a two-compartment cell with a cationic exchange membrane to recover Mg(OH)2. This approach was evaluated on RO reject water with high Ca2+ to Mg2+ ratio and industrial effluent-polluted groundwater with a low ratio. Treatment of domestic RO reject water using undivided cell specifically recovered 64% of CaCO3, although the low conductivity of the RO reject water limited further Mg2+ recovery. Conversely, treating industrial effluent-polluted groundwater with this two-step process successfully recovered 80% of CaCO3 and 94% of Mg(OH)2. SEM, EDAX, and XRD analysis confirmed the quality of the recovered products.
Collapse
Affiliation(s)
- Manikandan Santhanam
- Corrosion and Material Protection Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, 630 006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Rajeswari Selvaraj
- Corrosion and Material Protection Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, 630 006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maruthamuthu Sundaram
- Corrosion and Material Protection Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi, 630 006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Zhou J, Chang Y, Yang D, Yang L, Jiang B, Yan W, Xu H, Xu X. A novel membrane-free electrochemical separation-filtering crystallization coupling process for treating circulating cooling water. WATER RESEARCH 2024; 256:121617. [PMID: 38642535 DOI: 10.1016/j.watres.2024.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The traditional electrochemical descaling process exhibits drawbacks, including low OH- utilization efficiency, constrained cathode deposition area, and protracted homogeneous precipitation time. Consequently, this study introduces a novel membrane-free electrochemical separation-filtering crystallization (MFES-FC) coupling process to treat circulating cooling water (CCW). In the membrane-free electrochemical separation (MFES) system, OH- is rapidly extracted by pump suction from the porous cathode boundary layer solution, preventing neutralization with H+, thereby enhancing the removal of Ca2+ and Mg2+. Experimental results indicate that the pH of the pump suction water can swiftly increase from 8.13 to 11.42 within 10 min. Owing to the high supersaturation of the pump suction water, this study couples the MFES with a filtration crystallization (FC) system that employs activated carbon as the medium. This approach captures scale particles to enhance water quality and expedites the homogeneous precipitation of hardness ions, shortening the treatment time while further augmenting the removal rate. After the MFES-FC treatment, the single-pass removal rates for total hardness, Ca2+ hardness, Mg2+ hardness, and alkalinity in the effluent reached 92 %, 97 %, 64 %, and 67 %, respectively, with turbidity of 3 NTU, current efficiency of 86.6 %, and energy consumption of 7.19 kWh·kg-1 CaCO3. This coupling process facilitates an effective removal of hardness and alkalinity at a comparatively low cost, offering a new reference and inspiration for advancements in electrochemical descaling technology.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuexin Chang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China.
| | - Xing Xu
- Shandong Shenxin Energy Saving and Environmental Protection Technology Co., Ltd., Industrial Recirculating Water Treatment Engineering Technology Centre of Zaozhuang City, Tengzhou 277531, PR China
| |
Collapse
|
6
|
Li Z, Xu B, Tao T, Li F, Zhang G, Wang Y. Coupling of Electric and Flow Fields to Enhance Ion Transport for Energy-Efficient Electrochemical Tap-Water Softening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7643-7652. [PMID: 38573006 DOI: 10.1021/acs.est.3c08333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Electrochemical-induced precipitation is a sustainable approach for tap-water softening, but the hardness removal performance and energy efficiency are vastly limited by the ultraslow ion transport and the superlow local HCO3-/Ca2+ ratio compared to the industrial scenarios. To tackle the challenges, we herein report an energy-efficient electrochemical tap-water softening strategy by utilizing an integrated cathode-anode-cathode (CAC) reactor in which the direction of the electric field is reversed to that of the flow field in the upstream cell, while the same in the downstream cell. As a result, the transport of ions, especially HCO3-, is significantly accelerated in the downstream cell under a flow field. The local HCO3-/Ca2+ ratio is increased by 1.5 times, as revealed by the finite element numerical simulation and in situ imaging. In addition, a continuous flow electrochemical system with an integrated CAC reactor is operated for 240 h to soften tap water. Experiments show that a much lower cell voltage (9.24 V decreased) and energy consumption (28% decreased) are obtained. The proposed ion-transport enhancement strategy by coupled electric and flow fields provides a new perspective on developing electrochemical technologies to meet the flexible and economic demand for tap-water softening.
Collapse
Affiliation(s)
- Zhengsen Li
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tao Tao
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fengting Li
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Lee KM, Joo H, Park EJ, Kim J, Lee Y, Yoon J, Lee C. Electrochemical production of hydroxylamine from nitrate on metal electrodes: A comparative study of selectivity and efficiency. CHEMOSPHERE 2024; 353:141537. [PMID: 38408568 DOI: 10.1016/j.chemosphere.2024.141537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Despite the great potential of electrochemical nitrate reduction as a hydroxylamine production method, this strategy has not been sufficiently examined, and the effects of electrode material type on the selectivity and efficiency of this reduction remain underexplored. To bridge this gap, the present study evaluated six metals (Ag, Cu, Ni, Sn, Ti, and Zn) as cathode materials for the electrochemical reduction of nitrate to hydroxylamine, showing that the selectivity of hydroxylamine production was maximal for Sn, while the corresponding faradaic and energy utilization efficiencies were maximal for Ti. Although all tested materials favored nitrate reduction over hydrogen evolution, the disparity in the onset potentials of these reactions did not adequately explain the variations in nitrate removal efficiency, which was found to be influenced by material resistance and charge-transfer properties. The rate constants of elementary nitrate reduction steps determined from the time-dependent concentrations of nitrate and its reduction products (nitrous acid, hydroxylamine, and ammonium) were used to calculate the selectivity and efficiency of hydroxylamine production for each electrode. In turn, these selectivities and efficiencies were correlated with the density functional theory-computed adsorption energies of a key hydroxylamine precursor on different electrodes to afford a volcano-type plot with Ti and Sn at its pinnacle. Thus, this study introduces valuable descriptors and methods for the further screening of electrocatalysts for hydroxylamine generation and the establishment of more environmentally friendly hydroxylamine production techniques utilizing sustainable electricity.
Collapse
Affiliation(s)
- Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hwajoo Joo
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Erwin Jongwoo Park
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yunjeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeyong Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Jiang B, Ren X, Liu Q, Yue X, Yang Q, Liu Y, Xu H, Zhou J. Electrochemical water softening technology: From fundamental research to practical application. WATER RESEARCH 2024; 250:121077. [PMID: 38183800 DOI: 10.1016/j.watres.2023.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
In recent decades, the environmentally benign electrochemical softening process has been gaining widespread interest as an emerging alternative for water softening. But, in spite of decades of research, the fundamental advances in laboratory involving electrolytic cell design and treatment system development have not led to urgently needed improvements in industrially practicable electrochemical softening technique. In this review, we firstly provide the critical insights into the mechanism of the currently widely used cathode precipitation process and its inherent limitations, which seriously impede its wide implementation in industry. To relieve the above limitations, some cutting-edge electrochemically homogeneous crystallization systems have been developed, the effectiveness of which are also comprehensively summarized. In addition, the pros and cons between cathode precipitation and electrochemically homogeneous crystallization systems are systematically outlined in terms of performance and economic evaluation, potential application area, and electrolytic cell and system complexity. Finally, we discourse upon practical challenges impeding the industrial-scale deployment of electrochemical water softening technique and highlight the integration of strong engineering sense with fundamental research to realize industry-scale deployment. This review will inspire the researchers and engineers to break the bottlenecks in electrochemical water softening technology and harness this technology with the broadened industrial application area.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuanzhen Ren
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Qiannan Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xiao Yue
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Jie Zhou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| |
Collapse
|
9
|
Mao W, Gu Y, Kang W, Yu H. Facilitated OH¯ diffusion via bubble motion and water flow in a novel electrochemical reactor for enhancing homogeneous nucleation of CaCO 3. WATER RESEARCH 2023; 242:120195. [PMID: 37302179 DOI: 10.1016/j.watres.2023.120195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Electrochemistry is a potential method for water softening. An essential disadvantage is OH¯ ions from water electrolysis accumulate on cathode surface, inducing the generation of the insulating CaCO3 layer and then interrupting the electrochemical reaction. In order to propel OH¯ diffusion into the bulk solution instead of aggregation at cathode, we designed an electrochemical reactor, whose electrodes were placed horizontally in the middle of the reactor, and the bubbles created by water electrolysis move upward, while the water flows downward. The visual evidence displayed that the unique reactor structure allowed OH¯ to spread to almost all the solution rapidly. Average pH value of bulk solution reached 10.6 in only 3 min. Therefore, homogeneous nucleation of CaCO3 in bulk solution would take primary responsibility for water softening, and the softening efficiency is up to 212.9 g CaCO3/h/m2, higher than reported results. The reactor is easy to scale up, providing a new idea for the softening of circulating cooling water.
Collapse
Affiliation(s)
- Wei Mao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenda Kang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Kang W, Li L, Yan L, Mao W, Wang X, Yu H, Ma C. Spatial and temporal regulation of homogeneous nucleation and crystal growth for high-flux electrochemical water softening. WATER RESEARCH 2023; 232:119694. [PMID: 36764108 DOI: 10.1016/j.watres.2023.119694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical softening is an effective technology for the treatment of circulating cooling water, but its hardness removal efficiency is limited because that nucleation and growth of scale crystals depended on cathode surface. In this study, a novel method was proposed to break through this limit via spatiotemporal management of nucleation and growth processes. A cube reactor was divided into cathodic chamber and anodic chamber via installing a sandwich structure module composed of mesh cathode, nylon nets, and mesh anode. Using this continuous-flowing electrochemical reactor, OH ̄ generated by water electrolysis was rapidly pushed away from cathode surface by water flow and hydrogen bubbles movement. As a result, a wide range of strongly alkaline regions was rapidly constructed in cathodic chamber to play a nucleation region, and homogeneous nucleation in liquid phase replaced heterogeneous nucleation on cathodic surface. Furthermore, the growth process of scale crystals in alkaline regions was monitored in situ. It took only 150 s of residence time to grow to 500 nm, which may be easily separated from water by a microfiltration membrane. With this new method, the precipitation rate was 290.8 g/(hˑm2) and corresponding energy consumption was 2.1 kW·h/kg CaCO3, both were superior to those reported values. Therefore, this study developed an efficient electrochemical softening method by spatial and temporal regulation of homogeneous nucleation and crystal growth processes.
Collapse
Affiliation(s)
- Wenda Kang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lujie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liming Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Mao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xueqing Wang
- National & Local Joint Engineering Research Center for Environmental Pollution Control of Petroleum and Petrochemicals, Dalian 116045, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Chuanjun Ma
- National & Local Joint Engineering Research Center for Environmental Pollution Control of Petroleum and Petrochemicals, Dalian 116045, China.
| |
Collapse
|
11
|
An BH, Xu DM, Geng R, Cheng Y, Qian RB, Tang XC, Fan ZQ, Chen HB. The pretreatment effects of various target pollutant in real coal gasification gray water by coupling pulse electrocoagulation with chemical precipitation methods. CHEMOSPHERE 2023; 311:136898. [PMID: 36257394 DOI: 10.1016/j.chemosphere.2022.136898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
To prevent the scale formation in the equipments and pipelines after pre-treated coal gasification gray water (CGGW) entering the reuse system and reduce the influence of various pollutants in the effluent on subsequent biochemical treatment, this study presented a coupled use of pulse electrocoagulation (PEC) and chemical precipitation (CP) coupling method for the pretreatment of coal gasification gray water (CGGW). In addition, the operation parameters of PEC and the reaction conditions of PEC-CP were optimized based on iron plate as electrode and total hardness, turbidity and sludge yield as assessment indicators. Due to the formation of multi-hydroxyl iron by several minutes of pulse current, and the addition of pH regulator and coagulant aid, the efficient removal of various ions, hardness and turbidity was significantly reduced via various mechanism such as redox, precipitation, adsorption and coagulation reaction. The result indicated that under the optimal operation conditions, the total hardness, turbidity, and Fen+ of PEC-CP effluents were 275.0 mg/L, 3.0 NTU and 5.6 mg/L, respectively and sludge amount was 0.88 kg/m3. The removal rates of Si, B, Mn, Ba, COD, NPOC and NH4+-N by PEC-CP reached 80.0%, 75.4%, 97.0%, 99.8%, 35.0%, 33.6% and 23.8%, respectively. The present results suggested that the CGGW pretreatment effluents could be not only reused directly, but also greatly alleviate the scaling problem of water pipeline and coal gasification production facilities.
Collapse
Affiliation(s)
- Bai-Hong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Yan Cheng
- Ningbo Shentong Environmental Technology Co., LTD, Ningbo, 315105, China
| | - Rui-Bo Qian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Xian-Chun Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Zhi-Qiang Fan
- Shanghai Survey and Design Research Institute Co., LTD, Shanghai, 200434, China
| | - Hong-Bin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Overlooked oxidative role of Ni(III) in the enhanced mineralization of Ni(II)–EDTA complex by ozonation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|