1
|
Dancila AM, Bosomoiu M. Exploring the Possibilities of Using Recovered Collagen for Contaminants Removal-A Sustainable Approach for Wastewater Treatment. Polymers (Basel) 2024; 16:2923. [PMID: 39458751 PMCID: PMC11511115 DOI: 10.3390/polym16202923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Collagen is a non-toxic polymer that is generated as a residual product by several industries (e.g., leather manufacturing, meat and fish processing). It has been reported to be resistant to bacteria and have excellent retention capacity. However, the recovered collagen does not meet the requirements to be used for pharmaceutical and medical purposes. Due to the scarcity of water resources now affecting all continents, water pollution is a major concern. Another major field that could integrate the collagen generated as a by-product is wastewater treatment. Applications of collagen-based materials in wastewater treatment have been discussed in detail, and comparisons with already frequently used materials have been made. Over the last years, collagen-based materials have been tested for removal of both organic (e.g., pharmaceutical substances, dyes) and inorganic compounds (e.g., heavy metals, noble metals, uranium). They have also been tested for the manufacture of oil-water separation materials; therefore, they could be used for the separation of emulsified oily wastewater. Because they have been analysed for a wide range of substances, collagen-based materials could be good candidates for removing contaminants from wastewater streams that have seasonal variations in composition and concentration. The use of recovered collagen in wastewater treatment makes the method eco-friendly and cost efficient. This paper also discusses some of the challenges related to wastewater treatment: material stability, reuse and disposal. The results showed that collagen-based materials are renewable and reusable without significant loss of initial properties. In the sorption processes, the incorporation of experiments with real wastewater has demonstrated that there is a significant competition among the substances present in the sample.
Collapse
Affiliation(s)
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 7 Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
2
|
Liu Y, Wang J, Sun Z. Aromatic Biobased Polymeric Materials Using Plant Polyphenols as Sustainable Alternative Raw Materials: A Review. Polymers (Basel) 2024; 16:2752. [PMID: 39408462 PMCID: PMC11479198 DOI: 10.3390/polym16192752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
In the foreseeable future, the development of petroleum-based polymeric materials may be limited, owing to the gradual consumption of disposable resources and the increasing emphasis on environmental protection policies. Therefore, it is necessary to focus on introducing environmentally friendly renewable biobased materials as a substitute for petroleum-based feed stocks in the preparation of different types of industrially important polymers. Plant polyphenols, a kind of natural aromatic biomolecule, exist widely in some plant species. Benefiting from their special macromolecular structure, high reactivity, and broad abundance, plant polyphenols are potent candidates to replace the dwindling aromatic monomers derived from petroleum-based resources in synthesizing high-quality polymeric materials. In this review, the most related and innovative methods for elaborating novel polymeric materials from plant polyphenols are addressed. After a brief historical overview, the classification, structural characteristics, and reactivity of plant polyphenols are summarized in detail. In addition, some interesting and innovative works concerning the chemical modifications and polymerization techniques of plant polyphenols are also discussed. Importantly, the main chemical pathways to create plant polyphenol-based organic/organic-inorganic polymeric materials as well as their properties and possible applications are systematically described. We believe that this review could offer helpful references for designing multifunctional polyphenolic materials.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Junsheng Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
- Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
- Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Sha D, Sun Y, Xing L, Chen X, Wang X, Wan B, Wang X, Li Y, Chen G, Zhou S, Xing T. Preparation of polyphenol-structural colored silk fabrics with bright colors. Int J Biol Macromol 2024; 266:131140. [PMID: 38537864 DOI: 10.1016/j.ijbiomac.2024.131140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Conventional textile dyeing relies on the use of dyes and pigments, which can cause severe environmental contamination and waste a large amount of water. Structural coloring is one of the effective ways to achieve environmentally friendly coloring of textiles. In this work, three plant polyphenols with the same o-benzenetriol structure (tannic acid (TA), gallic acid (GA), and tea polyphenol (TP)) were selected as raw materials. Three plant polyphenols can quickly form nanofilms at the gas-liquid interface through a Schiff base reaction with polyethyleneimine (PEI) under mildly alkaline conditions, which were deposited to the surface of silk fabric, allowing precise control over the thickness of film by adjusting the time, resulting in various structurally colored silk fabric. This method for creating structural colors is not substrate-specific and enables the quick production of structural colors on various textile substrates. Furthermore, the structural color silk fabric based on plant polyphenol has antibacterial performance. This textile coloring method is simple, cost-effective and environmentally friendly, providing a new approach to eco-friendly textile dyeing.
Collapse
Affiliation(s)
- Desheng Sha
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Yurong Sun
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Lili Xing
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Xinpeng Chen
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Xingyi Wang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Bangxu Wan
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Xiangrong Wang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Yichen Li
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China; Zhejiang Sci-Tech University Tongxiang Research Institute, Tongxiang 314500, China.
| | - Guoqiang Chen
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Shaoqiang Zhou
- Nanjing Customs Industrial Product Testing Center, Nanjing 210019, China
| | - Tieling Xing
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Zhao LL, Luo JJ, Cui J, Li X, Hu RN, Xie XY, Zhang YJ, Ding W, Ning LJ, Luo JC, Qin TW. Tannic Acid-Modified Decellularized Tendon Scaffold with Antioxidant and Anti-Inflammatory Activities for Tendon Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15879-15892. [PMID: 38529805 DOI: 10.1021/acsami.3c19019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair. The characterizations and cytocompatibility of the scaffolds were examined in vitro. The antioxidant and anti-inflammatory activities of the scaffold were evaluated in vitro and further studied in vivo using a subcutaneous implantation model. It was found that the modified DTS combined with TA via hydrogen bonds and covalent bonds, and the hydrophilicity, thermal stability, biodegradability, and mechanical characteristics of the scaffold were significantly improved. Afterward, the results demonstrated that DTS-TA could effectively reduce inflammation by increasing the M2/M1 macrophage ratio and interleukin-4 (IL-4) expression, decreasing the secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β), as well as scavenging excessive ROS in vitro and in vivo. In summary, DTS modified with TA provides a potential versatile scaffold for tendon regeneration.
Collapse
Affiliation(s)
- Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruo-Nan Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Zhang K, Huang J, Wang D, Wan X, Wang Y. Covalent polyphenols-proteins interactions in food processing: formation mechanisms, quantification methods, bioactive effects, and applications. Front Nutr 2024; 11:1371401. [PMID: 38510712 PMCID: PMC10951110 DOI: 10.3389/fnut.2024.1371401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins and polyphenols are abundant in the daily diet of humans and their interactions influence, among other things, the texture, flavor, and bioaccessibility of food. There are two types of interactions between them: non-covalent interactions and covalent interactions, the latter being irreversible and more powerful. In this review, we systematically summarized advances in the investigation of possible mechanism underlying covalent polyphenols-proteins interaction in food processing, effect of different processing methods on covalent interaction, methods for characterizing covalent complexes, and impacts of covalent interactions on protein structure, function and nutritional value, as well as potential bioavailability of polyphenols. In terms of health promotion of the prepared covalent complexes, health effects such as antioxidant, hypoglycemic, regulation of intestinal microbiota and regulation of allergic reactions have been summarized. Also, the possible applications in food industry, especially as foaming agents, emulsifiers and nanomaterials have also been discussed. In order to offer directions for novel research on their interactions in food systems, nutritional value, and health properties in vivo, we considered the present challenges and future perspectives of the topic.
Collapse
Affiliation(s)
- Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
- New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Dong L, Cui S, Sun X, Liu J, Lv G, Chen S. Copper sulfides (Cu 7S 4) nanowires with Ag anchored in N-doped carbon layers optimize interfacial charge transfer for rapid water sterilization. J Colloid Interface Sci 2023; 654:1209-1219. [PMID: 39491910 DOI: 10.1016/j.jcis.2023.10.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
There are many methods of water disinfection, and how to realize low energy consumption, high efficiency and safety sterilization has always been a research hotspot. In this work, Cu7S4 nanowires were grown on copper foam, and coated with N-doped carbon layer and Ag particles, which not only improved the conductivity and local field enhancement regions of the material, but also improved the durability and mechanical stability of Cu7S4. DFT (Density functional theory) calculation shows that different kinds of N doping make the electron difference density and work function of the surrounding C different, which leads to high carrier transport capacity at the interface, and Ag anchored in N-doped carbon films can adsorb O2. The band gap of the material is 2.12 eV, and the material has the potential to generate superoxide anion under energy excitation. Under the condition of 6 V voltage and 1000 mL min-1 water flow rate, the long-term water filtration sterilization of high-concentration bacteria can be realized, and the removal efficiency can still reach 99% after 8 h continuous treatment. This work has great application prospects for the purification of highly polluted water in the future.
Collapse
Affiliation(s)
- Liting Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shaogang Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianhua Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Gaojian Lv
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
7
|
Wen J, Cheng W, Zhang Y, Zhou Y, Zhang Y, Yang L. Highly efficient removal of Cr(VI) from wastewater using electronegative SA/EGCG@Ti/SA/PVDF sandwich membrane. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132073. [PMID: 37467613 DOI: 10.1016/j.jhazmat.2023.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The use of green, non-toxic raw materials is of great significance to the sustainable development of the environment, among which epigallocatechin gallate (EGCG) is a renewable carbon source from plants. At present, there is a lack of research on the metal-polyphenol nanomaterials their use in water decontamination. In this study, a novel SA/EGCG@Ti/SA/PVDF (SESP) sandwich membrane was prepared to effectively solve the problems of difficult recovery of nanomaterials and the leaching of metal ions. The membrane was made by scraping SA on the surface of the PVDF substrate as the bottom protective layer, depositing EGCG@Ti NPs as the functional layer, then coating SA as the surface isolation layer, and finally cross-linking with anhydrous calcium chloride. Results showed that EGCG@Ti NPs dispersed well on the surface of the SA/PVDF basement membrane. SESP sandwich membrane had good hydrothermal and acid-base stability, and it can be applied to wastewater with multiple co-existing heavy metals (e.g., Cu, Pb, Cd, and Ni). The contact angle and pure water flux of the SESP sandwich membrane with a negatively charged surface were 14.0-15.6° and 171.40 L/m2 h, respectively. The pure water flux of the regenerated membrane after BSA pollution recovered to 98.68 L/m2 h, and the interception efficiency and the interception flux of Cr(VI) were 100 % and 72.92 L/m2 h at 40 min of interception, respectively. Additionally, the removal efficiency of Cr(VI) by SESP sandwich membrane was maintained above 83 % for simulated wastewater and 100 % for actual wastewater after five adsorption-desorption cycles. Cr(VI) and Cr(III) can be removed simultaneously with the negatively charged SESP sandwich membrane. EDS and XPS analysis showed that the removal of Cr(VI) was controlled by the Donnan effect, anion exchange, chelation/complexation, and reduction mechanism. In contrast, Cr(III) was mainly influenced by electrostatic attraction and chelation/complexation mechanisms. In conclusion, the newly prepared sandwich membrane has good application potential in treating Cr(VI) wastewater.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing, PR China.
| | - Wenxing Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yichen Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
8
|
Zhao P, Wang R, Xiang J, Zhang J, Wu X, Chen C, Liu G. Antibacterial, antiviral, and biodegradable collagen network mask for effective particulate removal and wireless breath monitoring. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131654. [PMID: 37236103 DOI: 10.1016/j.jhazmat.2023.131654] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Functional face masks that can effectively remove particulate matter and pathogens are critical to addressing the urgent health needs arising from industrial air pollution and the COVID-19 pandemic. However, most commercial masks are manufactured by tedious and complicated network-forming procedures (e.g., meltblowing and electrospinning). In addition, the materials used (e.g., polypropylene) have significant limitations such as a lack of pathogen inactivation and degradability, which can cause secondary infection and serious environmental concerns if discarded. Here, we present a facile and straightforward method for creating biodegradable and self-disinfecting masks based on collagen fiber networks. These masks not only provide superior protection against a wide range of hazardous substances in polluted air, but also address environmental concerns associated with waste disposal. Importantly, collagen fiber networks with naturally existing hierarchical microporous structures can be easily modified by tannic acid to improve its mechanical characteristics and enable the in situ production of silver nanoparticles. The resulting masks exhibit excellent antibacterial (>99.99%, 15 min) and antiviral (>99.999%, 15 min) capabilities, as well as high PM2.5 removal efficiency (>99.9%, 30 s). We further demonstrate the integration of the mask into a wireless platform for respiratory monitoring. Therefore, the smart mask has enormous promise for combating air pollution and contagious viruses, managing personal health, and alleviating waste issues caused by commercial masks.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Chaojian Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Gongyan Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Tian Z, Wu G, Libby M, Wu K, Jeong KJ, Kim YJ. Synthesis of biologically derived poly(pyrogallol) nanofibers for antibacterial applications. J Mater Chem B 2023; 11:3356-3363. [PMID: 36987970 PMCID: PMC10387265 DOI: 10.1039/d3tb00312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Herein, we present the facile synthesis of poly(pyrogallol) biopolymers and their application as antibacterial agents. Pyrogallol is a class of phenolic compounds that can be found in various plants. Polymerization was performed by the auto-oxidation of pyrogallol under a hydrated condition. The microscopic image of poly(pyrogallol) shows a highly homogenous nanofibrous structure with a diameter of 100.3 ± 16.3 nm. Spectroscopic analysis by FT-IR spectroscopy, Raman spectroscopy, and XPS corroborated the formation of ether (C-O-C) bonds between the hydroxyl group and adjacent carbons of pyrogallol during polymerization. The FT-IR and XPS spectra also revealed redox-active gallol functional groups on poly(pyrogallol) nanofibers, which can be used to release free electrons and protons during oxidation followed by the generation of reactive oxygen species (ROS). The generated ROS from poly(pyrogallol) was used to inhibit the growth of bacteria, Escherichia coli, at a inhibition rates of 56.3 ± 9.7% and 95.5 ± 2.0% within 0.5 and 2 h, respectively. This finding suggests that poly(pyrogallol) can be used as a naturally occurring antibacterial agent for various biomedical and environmental applications.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Guo Wu
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Matt Libby
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Kang Wu
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | - Young Jo Kim
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
10
|
Tian C, Chen J, Li X, Dai R, Wang Z. Chemical cleaning−solvent treatment−hydrophilic modification strategy for regenerating end-of-life PVDF membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Xu Y, Hu J, Zhang X, Yuan D, Duan G, Li Y. Robust and multifunctional natural polyphenolic composites for water remediation. MATERIALS HORIZONS 2022; 9:2496-2517. [PMID: 35920729 DOI: 10.1039/d2mh00768a] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scarcity of clean water has become a global environmental problem which constrains the development of public health, economy, and sustainability. In recent years, natural polyphenols have drawn increasing interests as promising platforms towards diverse water remediation composites and devices, owing to their abundant and renewable resource in nature, highly active surface chemistry, and multifunctionality. This review aims to summarize the most recent advances and highlights of natural polyphenol-based composite materials (e.g., nanofibers, membranes, particles, and hydrogels) for water remediation, by focusing on their structural and functional features, as well as their diversified applications including membrane filtration, solar distillation, adsorption, advanced oxidation processes, and disinfection. Finally, the future challenges in this field are also prospected. It is anticipated that this review will provide new opportunities towards the future development of natural polyphenols and other kinds of naturally occurring molecules in water purification applications.
Collapse
Affiliation(s)
- Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Junfei Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Gaigai Duan
- Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
12
|
Liu Z, Zhen F, Zhang Q, Qian X, Li W, Sun Y, Zhang L, Qu B. Nanoporous biochar with high specific surface area based on rice straw digestion residue for efficient adsorption of mercury ion from water. BIORESOURCE TECHNOLOGY 2022; 359:127471. [PMID: 35710052 DOI: 10.1016/j.biortech.2022.127471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The unreasonable disposal of residue after anaerobic digestion seriously affects the stability of the ecosystem, and the preparation of adsorbent is an effective way to value-added utilization of the residue. In this study, a high adsorption capacity (209.65 mg/g) biochar-based adsorbent was prepared by hydrothermal carbonization and alkali modification using rice straw biogas residue. The lignocellulosic structure was destroyed after anaerobic digestion, forming porous biochar with larger specific surface area (2372.51 m2/g) and richer pore structure. Besides, the mercury ion complexed on the adsorbent surface in monovalent and divalent forms and possessed favorable selectivity in the presence of other examples of interference. The adsorption process is consistent with pseudo second-order kinetics and the Langmuir isotherm, indicating a predominance of chemisorption. This study provides a methodology for use of rice straw biogas residue and treatment of mercury containing wastewater, which offers a fresh direction for resource utilization of biogas residue.
Collapse
Affiliation(s)
- Zhiyuan Liu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Quanguo Zhang
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Qian
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wenzhe Li
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Lingling Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Qu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Qin Y, Liu Z, Tao C, Shu J, Xiong X. Multifunctional β-Cyclodextrin Polymer for Simultaneous and Effective Removal of Organic Micropollutants, Heavy Metals, and Detrimental Microorganisms from Water. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yibie Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| | - Zuohua Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| | - Changyuan Tao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Xia Xiong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Natural phenolics and flavonoids modified the hierarchical cellular cellulose sponges for efficient water disinfection. Carbohydr Polym 2022; 296:119962. [DOI: 10.1016/j.carbpol.2022.119962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
|