1
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
2
|
Wang Y, Shi Q, Zhang M, Xu L, Wei Q, Zhang R, Sun A, Lu Y, Zhang Z, Shi X. Combined ecotoxicity of polystyrene microplastics and Di-(2-ethylhexyl) phthalate increase exposure risks to Mytilus coruscus based on the bioaccumulation, oxidative stress, metabolic profiles, and nutritional interferences. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136381. [PMID: 39500187 DOI: 10.1016/j.jhazmat.2024.136381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and microplastics (MPs) are emerging contaminants frequently detected in the marine environment. However, the influence of MPs on DEHP bioaccumulation and their combined effects on eco-environmental risks remain underexplored. Mytilus coruscus (M. coruscus) were exposed to DEHP (200.0 µg/L), polystyrene (PS) (0.050, 0.50, and 5.0 mg/L), and their combination at environmentally relevant concentrations for 15-day, followed by a 7-day depuration period. The amount of DEHP accumulation followed the order of digestive gland > gills > muscles > gonad, with PS dose-dependently amplifying DEHP bioaccumulation in digestive gland. The changes in antioxidant enzyme activity indicated disruptions in oxidative defense. Furthermore, metabolomic analysis revealed that PS and DEHP considerably altered the lipid, energy, and citric acid cycles in digestive gland and gonad. Post-depuration analysis showed combined exposure resulted in persistent effects. Compared with single exposures, combined exposure had a greater adverse effect on the metabolism of essential amino acids, fatty acids, and volatile compounds, potentially influencing edibility and nutritional value of M. coruscus. This study underscores cumulative eco-environmental toxicity of PS and DEHP toward M. coruscus and highlights the potential increased risks of co-pollution.
Collapse
Affiliation(s)
- Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qiangqiang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Menglan Zhang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Lingyan Xu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qiang Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yin Lu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
3
|
Wang X, Yang X, Lu C, Zhang J, Li B, Du Z, Wang J, Wang J, Juhasz A, Yang Y, Zhu L. Are HFPO-TA and HFPO-DA safe substitutes for PFOA? A comprehensive toxicity study using zebrafish (Danio rerio) embryos and adults. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136718. [PMID: 39637815 DOI: 10.1016/j.jhazmat.2024.136718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Due to the multiple biotoxicity caused by perfluorooctanoic acid (PFOA), the application and production of PFOA is regulated globally. PFOA substitutes including hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA) have been applied to industrial processes and subsequently detected in surface and groundwater, yet there is a lack of comprehensive assessment of their toxicity to aquatic organisms. Therefore, under the same time and same experimental conditions, the toxic effects and differences of PFOA, HFPO-TA, and HFPO-DA on zebrafish adults and embryos were assessed from oxidative damage, apoptosis, immune function impairment, and protein interactions. The HFPO-TA and HFPO-DA caused more severe oxidative damage than PFOA. While PFOA only disrupted immune function in adults, HFPO-TA and HFPO-DA affected immune homeostasis in both adults and embryos. Integrated biomarker response results showed that superoxide dismutase (SOD) activity and reactive oxygen species content could be used as early warning indicators of toxicity in adults and embryos, respectively. Molecular docking simulations identified HFPO-TA as having the lowest binding energy with SOD proteins, thereby exerting the greatest effect on SOD activity. Compared to PFOA, HFPO-TA and HFPO-DA exhibited a greater toxicological response and, therefore, may not be suitable substitutes for PFOA.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Xiao Yang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
4
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
5
|
Shaoyong W, Sun L, Gan Y, Jin H, Wang W, Yin L, Wang Y, Jin M. Sight of Aged Microplastics Adsorbing Heavy Metal Exacerbated Intestinal Injury: A Mechanistic Study of Autophagy-Mediated Toxicity Response. ACS NANO 2024; 18:28849-28865. [PMID: 39392295 DOI: 10.1021/acsnano.4c08737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Contaminant-bearing polystyrene microplastics (PSMPs) may exert significantly different toxicity profiles from their contaminant-free counterparts, with the role of PSMPs in promoting contaminant uptake being recognized. However, studies investigating the environmentally relevant exposure and toxic mechanisms of aged PSMPs binding to Cr are limited. Here, we show that loading of chromium (Cr) markedly alters the physicochemical properties and toxicological profiles of aged PSMPs. Specifically, Cr-bearing aged PSMPs induced severe body weight loss, oxidative stress (OS), autophagy, intestinal barrier injury, inflammation-pyroptosis response, and enteropathogen invasion in mice. Mechanistic investigations revealed that PSMPs@Cr exacerbated the OS, resulting in intestinal barrier damage and inflammation-pyroptosis response via overactivated Notch signaling and autophagy/cathepsin B/IL-1β pathway, respectively, which ultimately elevated mortality related to bacterial pathogen infection. In vitro experiments confirmed that autophagy-mediated reactive oxygen species (ROS) overproduction resulted in severe pyroptosis and impaired intestinal stem cells differentiation alongside the overactivation of Notch signaling in PSMPs@Cr-exposed organoids. Overall, our findings provide an insight into autophagy-modulated ROS overproduction within the acidic environment of autophagosomes, accelerating the release of free Cr from PSMPs@Cr and inducing secondary OS, revealing that PSMPs@Cr is a stable hazard material that induces intestinal injury. These findings provided a potential therapeutic target for environmental MPs pollution caused intestinal disease in patients.
Collapse
Affiliation(s)
- Weike Shaoyong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Agrobiology and Environmental Sciences Center, Zhejiang University, Hangzhou 310058, China
- Center for Metabolic & Gastroenterology, Institute of Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lu Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Gan
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongli Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wusu Wang
- Center for Metabolic & Gastroenterology, Institute of Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Lin Yin
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhi L, Zhang G, Li Z, Chen F, Qin Q, Huang Y, Huang X, Wang J. Polystyrene nanoplastics significantly facilitate largemouth bass ranavirus infection of host cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135597. [PMID: 39182289 DOI: 10.1016/j.jhazmat.2024.135597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Novel pollutants nanoplastics (NPs) are widely distributed in aquatic environments and may pose a health threat to aquatic organisms. Notably, the contribution of NPs to the occurrence of viral diseases in aquatic animals remains largely uncertain. In this study, the effects of polystyrene nanoplastics (PS-NPs) on Largemouth bass ranavirus (LMBV)-infected MsF cells were investigated. MsF cells took up PS-NPs in a time- and dose-dependent manner and significantly affect cell viability at an exposure concentration of 500 μg/mL. Western blot and qPCR assays indicated that exposure to PS-NPs accelerated LMBV replication in MsF cells. PS-NPs act synergistically with LMBV to disrupt the cellular antioxidant system, as evidenced by increased ROS production and decreased mRNA levels of antioxidant-associated genes. Furthermore, PS-NPs was found to exacerbate LMBV-induced inflammatory responses, as demonstrated by disturbed expression of inflammation-related factors. In addition, our results suggest that PS-NPs reduce IFN production by inhibiting the expression of molecules related to the cGAS-STING signaling pathway, thereby promoting viral replication. Collectively, our findings suggest the potential threat of NPs to infectious diseases caused by freshwater fish viruses and provide new insights for fish disease prevention and control.
Collapse
Affiliation(s)
- Linyong Zhi
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guimei Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; College of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China
| | - Fang Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
7
|
Chen X, Gan Y, Yang X, Zhong L, Zhang M, Lin M, Qing X, Wang J, Huang Y. First insight of the intergenerational effects of tri-n-butyl phosphate and polystyrene microplastics to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174114. [PMID: 38906280 DOI: 10.1016/j.scitotenv.2024.174114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
As an emerging organic pollutant, tributyl phosphate (TnBP) can be easily adsorbed by microplastics, resulting in compound toxic effects. In the present work, the effects of polystyrene microplastics (PS-MPs) and TnBP on the survival, growth, reproduction and oxidative stress of Daphnia magna (D. magna) have been evaluated through multigenerational test. Compared with the alone exposure groups, the somatic growth rate and the expression values of growth related genes rpa1, mre11, rnha, and rfc3_5 in the F1 generation of the combined exposure groups were significantly lower (p < 0.05), indicating synergistic effect of PS-MPs and TnBP on the growth toxicity and transgenerational effects. In addition, compared with the PS-MPs groups, significantly lower average number of offspring and expression values of reproduction related genes ccnb, mcm2, sgrap, and ptch1 were observed in the combined exposure group and TnBP group (p < 0.05), indicating TnBP might be the major factor causing reproductive toxicity to D. magna. Although PS-MPs and TnBP alone or in combination also had toxic impacts on the growth, survival and reproduction of D. magna in generations F0 and F2, the effects were less than F1 generation. Regarding oxidative stress, the activity of SOD, CAT and GSH-Px and MDA content in the generations F0 and F1 of combined exposure groups were higher than the TnBP group but lower than the PS-MPs groups, suggesting that PS-MPs might be the dominant cause of the oxidative damage in D. magna and the presence of TnBP would alleviate oxidative stress by reducing the bioaccumulation of PS-MPs. The present work will provide a theoretical basis for further understanding of the toxic effects and ecological risks of combined TnBP and microplastic pollution on aquatic organisms.
Collapse
Affiliation(s)
- Xiaoli Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yijing Gan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinlu Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lixiang Zhong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Menghuan Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingfu Lin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xian Qing
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yumei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Zhao Y, Hu ZY, Lou M, Jiang FW, Huang YF, Chen MS, Wang JX, Liu S, Shi YS, Zhu HM, Li JL. AQP1 Deficiency Drives Phthalate-Induced Epithelial Barrier Disruption through Intestinal Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15334-15344. [PMID: 38916549 DOI: 10.1021/acs.jafc.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
9
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
11
|
Xuan L, Luo J, Qu C, Guo P, Yi W, Yang J, Yan Y, Guan H, Zhou P, Huang R. Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169606. [PMID: 38159744 DOI: 10.1016/j.scitotenv.2023.169606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Wensen Yi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Jingjing Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Yuhui Yan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
12
|
Zhu C, Li Y, Liu G, Abdullah AL, Jiang Q. Effects of nanoplastics on the gut microbiota of Pacific white shrimp Litopenaeus vannamei. PeerJ 2024; 12:e16743. [PMID: 38188162 PMCID: PMC10771760 DOI: 10.7717/peerj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Nanoplastics (NPs) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern because of the serious threats they might pose to ecosystems and species. Identifying the ecological effects of plastic pollution requires understanding the effects of NPs on aquatic organisms. Here, we used the Pacific white shrimp (Litopenaeus vannamei) as a model species to investigate whether ingestion of polystyrene NPs affects gut microbes and leads to metabolic changes in L. vannamei. The abundance of Proteobacteria increased and that of Bacteroidota decreased after NPs treatment. Specifically, Vibrio spp., photobacterium spp., Xanthomarina spp., and Acinetobacter spp. increased in abundance, whereas Sulfitobacter spp. and Pseudoalteromonas spp. decreased. Histological observations showed that L. vannamei exposed to NP displayed a significantly lower intestinal fold height and damaged intestinal structures compared with the control group. Exposure to NPs also stimulated alkaline phosphatase, lysozyme, and acid phosphatase activity, resulting in an immune response in L. vannamei. In addition, the content of triglycerides, total cholesterol, and glucose were significantly altered after NP exposure. These results provided significant ecotoxicological data that can be used to better understand the biological fate and effects of NPs in L. vannamei.
Collapse
Affiliation(s)
- Chenxi Zhu
- Geography, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Anisah Lee Abdullah
- Geography, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| |
Collapse
|
13
|
Zhao P, Lu W, Avellán-Llaguno RD, Liao X, Ye G, Pan Z, Hu A, Huang Q. Gut microbiota related response of Oryzias melastigma to combined exposure of polystyrene microplastics and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167359. [PMID: 37769716 DOI: 10.1016/j.scitotenv.2023.167359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The co-existence of microplastics (MPs) and antibiotics in the coastal environment poses a combined ecological risk. Single toxic effects of MPs or antibiotics on aquatic organisms have been verified, however, the exploration of their combined toxic effects remains limited. Here, foodborne polystyrene microplastics (PS-MPs, 10 μm, 0.1 % w/w in food) and waterborne tetracyclines (TC, 50 μg/L) were used to expose an estuarine fish Oryzias melastigma for four weeks. We found that the aqueous availability of TC was not significantly altered coexisting with MPs. The fish body weight gain was significantly slower in TC alone or combined groups than the control group, consistent with the lower lipid content in livers. The body length gain was significantly inhibited by the combined presence compared to the single exposure. Both exposures led to a shift of gut microbiota composition and diversity. TC and the combined group possessed similar gut microbiota which is distinct from PS-MPs and the control group. The Firmicutes/Bacteroidetes (F/B) ratio in the TC and combined groups were significantly lower compared to the control, while the PS-MPs group showed no significant impact. Metabolomic analysis of the fish liver confirmed the shift of metabolites in specific pathways after different exposures. More, a number of gut microbiota-related metabolites on lipid metabolism was perturbed, which were annotated in arachidonic acid metabolism and linoleic acid metabolism. In all, TC modulates bacterial composition in the fish gut and disturbs their liver metabolites via the gut-liver axis, which led to the slower growth of O. melastigma. More, the adverse impact was aggravated by the co-exposure to foodborne PS-MPs.
Collapse
Affiliation(s)
- Peiqiang Zhao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ricardo David Avellán-Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Liao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhizhen Pan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
14
|
Kakakhel MA, Narwal N, Kataria N, Johari SA, Zaheer Ud Din S, Jiang Z, Khoo KS, Xiaotao S. Deciphering the dysbiosis caused in the fish microbiota by emerging contaminants and its mitigation strategies-A review. ENVIRONMENTAL RESEARCH 2023; 237:117002. [PMID: 37648194 DOI: 10.1016/j.envres.2023.117002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The primary barrier to nutrient absorption in fish is the intestinal epithelium, followed by a community of microorganisms known as the gut microbiota, which can be thought of as a hidden organ. The gastrointestinal microbiota of fish plays a key role in the upholding of overall health by maintaining the homeostasis and disease resistance of the host. However, emerging contaminants as the result of anthropogenic activities have significantly led to disruptions and intestinal dysbiosis in fish. Which probably results in fish mortalities and disrupts the balance of an ecosystem. Therefore, we comprehensively seek to compile the effects and consequences of emerging contaminations on fish intestinal microbiota. Additionally, the mitigation strategies including prebiotics, probiotics, plant-based diet, and Biofloc technology are being outlined. Biofloc technology (BFT) can treat toxic materials, i.e., nitrogen components, and convert them into a useful product such as proteins and demonstrated promising elevating technique for the fish intestinal bacterial composition. However, it remains unclear whether the bacterial isolate is primarily responsible for the BFT's removal of nitrate and ammonia and the corresponding removal mechanism. To answer this, real time polymerase chain reaction (RT-PCR) with metagenomics, transcriptomics, and proteomics techniques probably provides a possible solution.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zewen Jiang
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Shi Xiaotao
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China; College of Hydraulic & Environmental Engineering, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
15
|
Wan X, Li J, Ao M, McLaughlin RW, Fan F, Wang D, Zheng J. The intestinal microbiota of a Risso's dolphin (Grampus griseus): possible relationships with starvation raised by macro-plastic ingestion. Int Microbiol 2023; 26:1001-1007. [PMID: 37059916 PMCID: PMC10104690 DOI: 10.1007/s10123-023-00355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Ingesting marine plastics is increasingly common in cetaceans, but little is known about their potential effects. Here, by utilizing 16S rRNA gene sequencing, we profiled the intestinal bacterial communities of a stranded Risso's dolphin (Grampus griseus) which died because of the ingestion of rubber gloves. In this study, we explored the potential relationships between starvation raised by plastic ingestion with the dolphin gut microbiota. Our results showed significant differences in bacterial diversity and composition among the different anatomical areas along the intestinal tract, which may be related to the intestinal emptying process under starvation. In addition, the intestinal bacterial composition of the Risso's dolphin showed both similarity and divergence to that of other toothed whales, suggesting potential roles of both host phylogeny and habitat shaping of the cetacean intestinal microbiome. Perhaps, the microbiota is reflecting a potentially disordered intestinal microbial profile caused by the ingestion of macro-plastics which led to starvation. Moreover, two operational taxonomic units (0.17% of the total reads) affiliated with Actinobacillus and Acinetobacter lwoffii were detected along the intestinal tract. These bacterial species may cause infections in immunocompromised dolphins which are malnourished. This preliminary study profiles the intestinal microbiota of a Risso's dolphin, and provides an additional understanding of the potential relationships between starvation raised by ingesting macro-plastics with cetacean gut microbiota.
Collapse
Affiliation(s)
- Xiaoling Wan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jia Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mengxue Ao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | - Fei Fan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Aquatic Biological Resource Center, Wuhan, 430072, China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- National Aquatic Biological Resource Center, Wuhan, 430072, China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- National Aquatic Biological Resource Center, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Liu P, Wan Y, Zhang Z, Ji Q, Lian J, Yang C, Wang X, Qin B, Zhu L, Yu J. Toxic effects of combined exposure to cadmium and nitrate on intestinal morphology, immune response, and microbiota in juvenile Japanese flounder (Paralichthys olivaceus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106704. [PMID: 37813047 DOI: 10.1016/j.aquatox.2023.106704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Cadmium (Cd2+) and nitrate (NO3-) are important environmental pollutants in the offshore marine ecological environment. However, limited research has explored their combined effects, particularly regarding their impact on the microbiota and intestinal health of marine fish. In this study, juvenile Japanese flounders (P. olivaceus) were immersed in seawater samples with different combinations of Cd2+ (0, 0.2, and 2 mg/L) and NO3- (0 and 80 mg/L NO3N) for 30 days to explore their toxic impacts on intestinal morphology, tight junction (TJ) barrier, immune response, and microbiota. Our results showed that Cd2+ or NO3- exposure alone led to histopathological damage of the gut, while their co-exposure aggravated intestinal damage. Moreover, co-exposure substantially decreased TJ-related gene expression, including occludin, claudin-10, and ZO-2, suggesting increased TJ permeability in the gut. Regarding the immune response, we observed upregulated expression of immune-related markers such as HSP40, IL-1β, TNF-α, and MT, suggesting the onset of intestinal inflammation. Furthermore, Cd2+ and NO3- exposure led to changes in intestinal microflora, characterized by decreased the abundance of Sediminibacterium and NS3a_marine_group while increasing the prevalence of pathogens or opportunistic pathogens such as Ralstonia, Proteus, and Staphylococcus. This alteration in microbiota composition increased network complexity and α-diversity, ultimately causing dysbiosis in the fish gut. Additionally, combined exposure resulted in metabolic disorders that affected the predicted functions of the intestinal microbiota. Overall, our study demonstrates that Cd2+-NO3- co-exposure amplifies the deleterious effects compared to single exposure. These findings enhance our understanding of the ecological risks posed by Cd2+-NO3- co-exposure in marine ecosystems.
Collapse
Affiliation(s)
- Pengfei Liu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yingying Wan
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qing Ji
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Lian
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chuanzheng Yang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xingqiang Wang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Bo Qin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Long Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Jiachen Yu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China.
| |
Collapse
|
17
|
Liao H, Gao D, Kong C, Junaid M, Li Y, Chen X, Zheng Q, Chen G, Wang J. Trophic transfer of nanoplastics and di(2-ethylhexyl) phthalate in a freshwater food chain (Chlorella Pyrenoidosa-Daphnia magna-Micropterus salmoides) induced disturbance of lipid metabolism in fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132294. [PMID: 37591169 DOI: 10.1016/j.jhazmat.2023.132294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Nanoplastics and di(2-ethylhexyl) phthalate (DEHP) are ubiquitous emerging contaminants that are transferred among organisms through food chain in the ecosystem. This study evaluated the trophic transfer of polystyrene nanoplastics (PSNPs) and DEHP in a food chain including Chlorella pyrenoidosa, Daphnia magna and Micropterus salmoides (algae-crustacean-fish) and lipid metabolism at a higher trophic level in fish. Our results showed that the PSNPs and DEHP accumulated in C. pyrenoidosa or D. magna were transferred to the M. salmoides, of which the DEHP were not biomagnified, while the PSNPs were trophically amplified by the food chain. It is suggested that more PSNPs might be accumulated by higher level consumers in a longer food chain. Additionally, the trophic transfer of PSNPs and DEHP resulted in antioxidant response and histopathological damage in M. salmoides. Moreover, the lipid biochemical parameters and lipid metabolism related genes (fasn, hsl, cpt1a, atgl, apob, fabp1, lpl, cetp) of M. salmoides were significantly affected, which indicated disturbance of lipid metabolism. This study offers great insight into the transfer of contaminants by trophic transfer and their negative effects on organisms at higher trophic levels, which cause human exposure to MNPs and organic contaminants in the ecosystem.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
18
|
Kim S, Hyeon Y, Park C. Microplastics' Shape and Morphology Analysis in the Presence of Natural Organic Matter Using Flow Imaging Microscopy. Molecules 2023; 28:6913. [PMID: 37836755 PMCID: PMC10574296 DOI: 10.3390/molecules28196913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in wastewater treatment plants (WWTPs). In this study, we introduce an innovative rapid approach that employs flow imaging microscopy (FlowCam) to simultaneously identify and quantify microplastics by capturing high-resolution digital images. Real-time image acquisition is followed by semi-automated classification using customized libraries for distinct polyethylene (PE) and polystyrene (PS) microplastics. Subsequently, these images are subjected to further analysis to extract precise morphological details of microplastics, providing insights into their behavior during transport and retention within WWTPs. Of particular significance, a systematic investigation was conducted to explore how the presence of natural organic matter (NOM) in WWTPs affects the accuracy of the FlowCam's measurement outputs for microplastics. It was observed that varying concentrations of NOM induced a more curled shape in microplastics, indicating the necessity of employing pre-treatment procedures to ensure accurate microplastic identification when utilizing the FlowCam. These observations offer valuable new perspectives and potential solutions for designing appropriate treatment technologies for removing microplastics within WWTPs.
Collapse
Affiliation(s)
| | | | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
19
|
Han Q, Gao X, Wang S, Wei Z, Wang Y, Xu K, Chen M. Co-exposure to polystyrene microplastics and di-(2-ethylhexyl) phthalate aggravates allergic asthma through the TRPA1-p38 MAPK pathway. Toxicol Lett 2023; 384:73-85. [PMID: 37500026 DOI: 10.1016/j.toxlet.2023.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Increasing attention has been paid to the potential impact of microplastics (MPs) pollution on human health. MPs and phthalates coexist in the environment, however, the effects of exposure to MPs alone or to a combination of di-(2-ethylhexyl) phthalate (DEHP) and MPs on allergic asthma are unclear. This study investigates the effects of exposure to polystyrene microplastics (PS-MPs) or co-exposure with DEHP, on allergic asthma, and the underlying molecular mechanisms. We established an allergic asthma model using ovalbumin, and mice were exposed to PS-MPs (5 mg/kg bw/day) alone, or combined with DEHP (0.5, 5 mg/kg bw/day), for 28 days. The results showed that in the presence of ovalbumin (OVA) sensitization, exposure to PS-MPs alone slightly affected airway inflammation, and airway hyperresponsiveness, while co-exposure to PS-MPs and DEHP caused more significant damage. Co-exposure also induced more oxidative stress and Th2 immune responses, and activation of the TRPA1 and p38 MAPK pathways. The aggravation of asthmatic symptoms induced by co-exposure to PS-MPs and DEHP were inhibited by blocking TRPA1 ion channel or p38 MAPK pathway. The results demonstrated that co-exposure to PS-MPs and DEHP exacerbates allergic asthma, by exacerbating oxidative stress and inflammatory responses, and activating the TRPA1-p38 MAPK pathway.
Collapse
Affiliation(s)
- Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuwei Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
20
|
Gao D, Liao H, Junaid M, Chen X, Kong C, Wang Q, Pan T, Chen G, Wang X, Wang J. Polystyrene nanoplastics' accumulation in roots induces adverse physiological and molecular effects in water spinach Ipomoea aquatica Forsk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162278. [PMID: 36801319 DOI: 10.1016/j.scitotenv.2023.162278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The ubiquity of plastic pollution has emerged as a perplexing issue for aquatic and terrestrial plants. To assess the toxic effects of polystyrene NPs (PS-NPs, 80 nm), we conducted a hydroponic experiment in which water spinach (Ipomoea aquatica Forsk) was subjected to low (0.5 mg/L), medium (5 mg/L), and high (10 mg/L) concentrations of fluorescent PS-NPs for 10 days to examine their accumulation and transportation in water spinach and associated impacts on growth, photosynthesis, antioxidant defense systems. Laser confocal scanning microscopy (LCSM) observations at 10 mg/L PS-NPs exposure indicated that PS-NPs only adhered to the root surface of water spinach and were not transported upward, indicating that short-term exposure to high concentrations of PS-NPs (10 mg/L) did not cause the internalization of PS-NPs in the water spinach. However, this high concentration of PS-NPs (10 mg/L) discernibly inhibited the growth parameters (fresh weight, root length and shoot length), albeit failed to induce any significant impact on chlorophyll a and chlorophyll b concentrations. Meanwhile, high concentration of PS-NPs (10 mg/L) significantly decreased the SOD and CAT activities in leaves (p < 0.05). At the molecular level, low and medium concentrations of PS-NPs (0.5, 5 mg/L) significantly promoted the expression of photosynthesis (PsbA and rbcL) and antioxidant-related (SIP) genes in leaves (p < 0.05), and high concentration of PS-NPs (10 mg/L) significantly increased the transcription levels of antioxidant-related (APx) genes (p < 0.01). Our results imply that PS-NPs accumulate in the roots of water spinach, compromising the upward transport of water and nutrients and undermining the antioxidant defense system of the leaves at the physiological and molecular levels. These results provide a fresh perspective to examine the implications of PS-NPs on edible aquatic plants, and future efforts should be focused intensively on the impacts of PS-NPs on agricultural sustainability and food security.
Collapse
Affiliation(s)
- Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
21
|
Liao H, Gao D, Junaid M, Liu S, Kong C, Chen X, Pan T, Zheng Q, Ai W, Chen G, Wang J. Parental exposure to polystyrene nanoplastics and di(2-ethylhexyl) phthalate induces transgenerational growth and reproductive impairments through bioaccumulation in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163657. [PMID: 37084918 DOI: 10.1016/j.scitotenv.2023.163657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous presence of polystyrene nanoplastics (PSNPs) and di(2-ethylhexyl) phthalate (DEHP) in the aquatic environment may cause unpredictable negative effects on aquatic organisms and even continue to the offspring. This study assessed the transgenerational impacts of parental exposure to PSNPs and DEHP over four generations (F0-F3) of Daphnia magna. A total of 480 D. magna larvae (F0, 24 h old) were divided into four groups with six replicates (each of them contains 20 D. magna) and exposed with dechlorinated tap water (control), 1 mg/L PSNPs, 1 μg/L DEHP, and 1 mg/L PSNPs + 1 μg/L DEHP (PSNPs-DEHP) until spawning begins. Subsequent to exposure, all the surviving F1 offspring were transferred to new water and continued to be cultured until the end of F3 generation births in all groups. The results showed that the PSNPs accumulated in F0 generation and were inherited into F1 and F2 generations, and disappeared in F3 generation in PSNPs and PSNPs-DEHP groups. However, the accumulation of DEHP lasted from F0 generation to F3 generation, despite a significant decline in F2 and F3 generations in DEHP and PSNPs-DEHP groups. The accumulation of PSNPs and DEHP caused overproduction of reactive oxygen species in F0-F2 generations and fat deposition in F0-F3 generations. Additionally, single and in combination parental exposure to PSNPs and DEHP induced regulation of growth-related genes (cyp18a1, cut, sod and cht3) and reproduction-related genes (hr3, ftz-f1, vtg and ecr) in F0-F3 generations. Survival rates were decreased in F0-F1 generations and recovered in F2 generation in all treatment groups. Furthermore, the spawning time was prolonged and the average number of offspring was increased in F1-F2 generaions as a defense mechanism against population mortality. This study fosters a greater comprehension of the transgenerational and reproductive effects and associated molecular mechanisms in D. magna.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Ai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Biophysical and Environmental Science Research Center, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
22
|
Wang X, Zhang J, Liu Y, Lu C, Hou K, Huang Y, Juhasz A, Zhu L, Du Z, Li B. Effect of florasulam on oxidative damage and apoptosis in larvae and adult zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130682. [PMID: 36580788 DOI: 10.1016/j.jhazmat.2022.130682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Florasulam is widely used for weed control in wheat fields due to its high activity and low dosage. Previous studies on florasulam have focused on soil microbial and residue determination, however, its ecotoxicity to aquatic organisms is unclear. The toxicity of florasulam was evaluated in larvae (120 h) and adult (14 and 28 d) zebrafish. After florasulam (0.1 and 1 μg L-1) exposure, reactive oxygen species levels in larvae and adult zebrafish significantly increased and antioxidant system was activated. Florasulam induced lipid peroxidation in larvae and adult zebrafish. Florasulam did not cause DNA damage to larvae but caused DNA damage to adult zebrafish. Changes in caspase 3/8/9 genes indicated that apoptosis was induced in larvae but inhibited in adult zebrafish. By calculating integrated biomarker response, caspase 3 and malondialdehyde could be used as early warning indicators of florasulam effect on larvae and adult zebrafish, respectively. The higher the exposure concentration, the greater the toxicity of florasulam to larvae and adult zebrafish. Increasing exposure time resulted in higher toxicity to adult zebrafish. Florasulam has different toxicity at larvae and adult zebrafish. In future studies to investigate florasulam toxicity to zebrafish, different zebrafish life stages (larvae and adult) need to be studied.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Yu Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Yunchen Huang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
23
|
Wang X, Zhang J, Lu C, Liu Y, Yang X, Hou K, Du Z, Li B, Juhasz A, Zhu L. Development toxicity and cytotoxicity of pyroxsulam on embryos and adults of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121040. [PMID: 36632968 DOI: 10.1016/j.envpol.2023.121040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Pyroxsulam is a typical triazolopyrimidine sulfonamide herbicide, which plays a vital role in weed control for wheat production. Previous studies on pyroxsulam have mainly focused on weed resistance, control effects, and soil microorganisms, however, research on aquatic ecotoxicity is lacking. This study evaluated the toxicity of pyroxsulam in zebrafish embryos (120 h) and adults (14 and 28 d). Chronic exposure to pyroxsulam (0.2, 2, and 10 μg L-1) reduced reactive oxygen species (ROS) content in embryos but increased ROS content in adults. Pyroxsulam caused lipid peroxidation and DNA damage in embryos and adults. The expression of p53, bcl-2/bax, and caspase 3/8/9 indicated that pyroxsulam inhibited apoptosis in embryos but induced apoptosis in adults. By calculating integrated biomarker response, apoptosis was more readily affected than oxidative damage in embryos and adults. The toxicity of pyroxsulam increased with increasing concentration, however, with increasing exposure time, the toxicity of pyroxsulam to adults decreased. Pyroxsulam exerted toxic effects on zebrafish at different life stages (embryos and adults), and different stages had different toxicity. These results indicate that in future studies on the toxicity of pyroxsulam to zebrafish, different life stages (embryos and adults) need to be studied. The present study evaluated the toxicity of environmentally relevant concentrations of pyroxsulam to zebrafish embryos and adults, providing worthy data for assessing its effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Yu Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Xiao Yang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
24
|
Affiliation(s)
- Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| |
Collapse
|
25
|
Wang Q, Yao X, Jiang N, Zhang J, Liu G, Li X, Wang C, Yang Z, Wang J, Zhu L, Wang J. Environmentally relevant concentrations of butyl benzyl phthalate triggered oxidative stress and apoptosis in adult zebrafish (Danio rerio) liver: Combined analysis at physiological and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160109. [PMID: 36370777 DOI: 10.1016/j.scitotenv.2022.160109] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Butyl benzyl phthalate (BBP), a typical phthalate plasticizer, is frequently detected in aquatic environments, but its possible effects on fish liver are unknown. In this study, adult zebrafish were exposed to 5-500 μg/L BBP and cultured for 28 days. The toxicity mechanism of environmentally relevant concentrations of BBP in the liver was explored using integrated biomarker response (IBR), molecular docking, and histopathological analysis, based on the tests of oxidative stress, apoptosis, and tissue damage, respectively. The results revealed that exposure to 500 μg/L BBP caused lipid peroxidation and DNA damage and induced inflammatory responses in the liver and intestinal tissues. The accumulation of reactive oxygen species (ROS) is the primary manifestation of BBP toxicity and is accompanied by changes in the activities of antioxidant and detoxification enzymes. Notably, the pro-apoptotic genes (p53 and caspase-3) were still significantly upregulated in the 50 μg/L and 500 μg/L treatment groups on day 28. Moreover, BBP interfered with apoptosis by forming a stable complex with apoptosis proteins (P53 and Caspase-3). Our findings are helpful for understanding the toxicity mechanisms of BBP, which could further promote the assessment of the potential environmental risks of BBP.
Collapse
Affiliation(s)
- Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Juan Zhang
- ShanDong Institute for Product Quality Inspection, Jinan 250100, PR China
| | | | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
26
|
Sayed AEDH, Hana MN, Hamed M, Abdel-Latif HMR, Lee JS, Soliman HAM. Protective efficacy of dietary natural antioxidants on microplastic particles-induced histopathological lesions in African catfish (Clarias gariepinus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24424-24440. [PMID: 36342605 PMCID: PMC9938831 DOI: 10.1007/s11356-022-23789-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/19/2022] [Indexed: 05/04/2023]
Abstract
Microplastic particles (MPs) are a common environmental pollutant easily ingested by fish in aquaculture. The current study evaluated the protective efficacies of some antioxidant, e.g., lycopene, citric acid, and chlorella, against the toxic effects of MP ingestion by Clarias gariepinus using histopathological biomarkers. Five experimental groups were established, a control group receiving only a standard diet, a group exposed to 500 mg/kg MP concomitant with the standard diet, and three antioxidant groups exposed to MPs plus either lycopene (500 mg/kg), citric acid (30 g/kg), or chlorella (50 g/kg) in the standard diet. After 15 days, fish were sacrificed for histological and histochemical examinations. Histological analysis of the kidney for group 2 (fed 500 mg/kg MPs alone) revealed distributed tissue dissociation, regional glomerular hypertrophy or shrinkage, melanomacrophage accumulation, and expansion of Bowman's space, while liver tissue exhibited dilation and rupture of the central vein wall, hemorrhage, cytoplasmic vacuolation, and cellular necrosis or apoptosis. Fish exposed to MPs also exhibited connective tissue fiber accumulation around renal blood vessels, renal tubules, the central hepatic vein, hepatic blood sinusoids, and serosal, muscle, and submucosal layers of the intestine. In addition, MP exposure reduced carbohydrate (mainly glycogen) contents in the brush borders and basement membranes of renal tubules, glomeruli, and intestinal tissues as well as in the cytoplasm of hepatocytes. These signs of renal, hepatic, and intestinal histopathology were fully or partially reversed by dietary lycopene, chlorella, or citric acid. Enhancing dietary antioxidants is an effective strategy for preventing MP toxicity in Clarias gariepinus in aquaculture.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Faculty of Science, Zoology Department, Assiut University, Assiut, 71516, Egypt.
| | - Mervat N Hana
- Faculty of Science, Zoology Department, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Hamed
- Faculty of Science, Zoology Department, Al Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hany M R Abdel-Latif
- Faculty of Veterinary Medicine, Department of Poultry and Fish Diseases, Alexandria University, Alexandria, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hamdy A M Soliman
- Faculty of Science, Zoology Department, Sohag University, Sohag, 8562, Egypt
| |
Collapse
|
27
|
Yang TN, Li XN, Wang YX, Ma XY, Li JL. Disrupted microbiota-barrier-immune interaction in phthalates-mediated barrier defect in the duodenum. CHEMOSPHERE 2022; 308:136275. [PMID: 36058374 DOI: 10.1016/j.chemosphere.2022.136275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
As one of the most used phthalates, Di (2-ethylhexyl) phthalate (DEHP) is a widespread environmental contaminant. Extremely persistent plastic can enter the food chain of animals through the aquatic environment, affect metabolic pathways and cause damage to the digestive system. But the molecular mechanism of its toxic effects on the duodenum in birds has not been elucidated. To investigate the toxicity of phthalates in the duodenum, quails were gavaged with 250, 500, and 750 mg/kg doses of DEHP for 45 days, and water and oil control groups were retained. This study revealed that subchronic exposure to DEHP could lead to duodenal barrier defect in quail. The damage to duodenum was reflected in a reduction in V/C and tight junction proteins. Moreover, DEHP also led to a breakdown of antimicrobial defenses through the flora derangement, which acted as a biological barrier. The massive presence of Lipopolysaccharide (LPS) led to the activation of TLR4 receptors. In addition, DEHP activated oxidative stress, which synergized the inflammatory response induced by the TLR4-NFκB pathway, and further promoted duodenum damage. This study provides a base for the further effect of phthalates on the microbiota-barrier-immune interaction.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
28
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
29
|
Zhou Y, Li Y, Lan W, Jiang H, Pan K. Short-Term Exposure to MPs and DEHP Disrupted Gill Functions in Marine Bivalves. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4077. [PMID: 36432362 PMCID: PMC9699028 DOI: 10.3390/nano12224077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 05/26/2023]
Abstract
The synergistic impact of microplastics (MPs) and organic pollutants remains poorly understood in the marine environment. This study aimed to assess the toxicity of polypropylene microplastics (PS) and/or di-(2-ethylhexyl) phthalate (DEHP) on marine clams. Both Ruditapes philippinarum and Tegillarca granosa were exposed to PS and DEHP individually and combined at environmentally relevant concentrations for 48 h. The filtration rate, antioxidant enzymes activity, lipid peroxidation, reactive oxygen species accumulation, and histological alterations were evaluated. Our results show that single or co-exposure to MPs and DEHP significantly decreases the filtration rate in both type of clams, but the latter exhibited stronger inhibition effect. Close examination of accumulation of reactive oxygen species and related biomarkers revealed that combined exposure exerts greater oxidative stress in the cells, which causes more serious histopathological damage in the gills of the bivalves. Our study implies that MPs, in synergy with organic pollutants, can be more harmful for marine organisms.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
30
|
Yang TN, Li XN, Li XW, Li JY, Huang YQ, Li JL. DEHP triggers a damage severity grade increase in the jejunum in quail (Coturnix japonica) by disturbing nuclear xenobiotic receptors and the Nrf2-mediated defense response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104012. [PMID: 36372389 DOI: 10.1016/j.etap.2022.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
As a plasticizer, di-2-ethylhexyl phthalate (DEHP) has been listed as a potential endocrine disruptor by The World Health Organization. The toxicity of DEHP has been widely studied, but its toxicity on the digestive tract of birds has not been clarified. Female quail were treated by gavage with DEHP (250, 500, 750 mg/kg), with the blank and vehicle control groups reserved. The result showed that DEHP raised the damage severity grade, and decreased the ratio of villus length to crypt depth. The content and activity of cytochrome P450 system (CYP450s) were increased by DEHP. DEHP interfered with the transcription of nuclear xenobiotic receptors (NXRs), CYP isoforms, and the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. This study revealed DEHP could cause the imbalance in CYP450s mediated by NXRs, and then promote Nrf2 mediated antioxidant defense. This study provided new evidence about the mechanisms of DEHP-induced toxic effects on digestive tract.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|