1
|
Zhang Y, Wang Y, Chen Z, Hu C, Qu J. Recovering nutrients and unblocking the cake layer of an electrochemical anaerobic membrane bioreactor. Nat Commun 2024; 15:9111. [PMID: 39438474 PMCID: PMC11496669 DOI: 10.1038/s41467-024-53341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The sustainable development strategy shifts water treatment from pollution removal to resource recovery. Here, an electrochemical resource-recovery anaerobic membrane bioreactor (eRAnMBR) that employed a magnesium plate and conductive membrane as dual anodes is presented and shows excellent performance in carbon, nitrogen, and phosphorus recovery, as well as 95% membrane anti-fouling. The Mg2+ released alters the physicochemical properties of sludge, unblocking the cake layer, and recovers ammonium and phosphate, yielding 60.64% purity and 0.08 g d-1 struvite deposited onto cathode to be separated from sludge. The enhanced direct interspecies electron transfer, along with hydrogen evolution and alkalinity increase due to the electrochemical reactions, significantly increase methane yield and purity (93.97%) of the eRAnMBR. This increased internal energy can cover the additional electricity and electrode consumption. This integrated eRAnMBR reactor boasts the benefits of short process, low maintenance, and low carbon footprint, introducing a concept for the next generation of wastewater treatment.
Collapse
Affiliation(s)
- Yuhan Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongbin Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
2
|
Wang H, Xing D, Jin C, Zhao Y, Guo L. Cooperation of rhamnolipid and thermophilic bacteria modifies proteinic structure, microbial community, and metabolic traits for efficient solubilization and acidogenesis of mariculture solid wastes. WATER RESEARCH 2024; 268:122634. [PMID: 39461217 DOI: 10.1016/j.watres.2024.122634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Anaerobic fermentation combined with thermophilic bacteria (TB) pretreatment is a promising method to realize effective waste management and carbon resource recovery. However, undesirable properties of high-strength mariculture solid wastes (MSW) such as high solids concentration, excessive salinity and poor bioavailability limited the overall solubilization and acidogenic efficiency. This study innovatively introduced rhamnolipid (RL) to alleviate this adverse effect, and unveiled its cooperation with TB on enhancing organic matter dissolution and volatile fatty acids (VFAs) production. The results showed that VFAs yield from pretreated MSW was improved by 9.4-15.1 folds with enriched acetate (81.4%-94.4%) in the TB+RL groups. The co-pretreatment of RL and TB disintegrated substrate structure for efficient release of electron shuttles and biodegradable organics. This was because introducing RL reconstructed solid-liquid interfacial charge and molecular arrangement, improved thermophilic enzyme activity, and reduced apoptosis and necrosis cells of TB. Substrate bioavailability was further improved with proteinic structure shifted from α-helix and β-sheet to random coil and aggregated strands, and amide II and carboxyl groups interacted with RL molecules. These changes induced the selective enrichment of hydrolytic and acidogenic bacteria, and the upregulated expression of encoding genes responsible for transmembrane transport, protein hydrolysis, carbohydrate metabolism and acetate biosynthesis. This study provides a new strategy to overcome the bottlenecks of acidogenesis from high-strengthen organic wastes and deciphers the underlying mechanism.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
3
|
Fu Q, Li X, Xu Y, Ma X, Wang Y, Long S, Liu X, Wang D. How Does Triclocarban Affect Sulfur Transformation in Anaerobic Systems? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17959-17969. [PMID: 39322606 DOI: 10.1021/acs.est.4c07825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Triclocarban (TCC), as a typical antimicrobial agent, accumulates at substantial levels in natural environments and engineered systems. This work investigated the impact of TCC on anaerobic sulfur transformation, especially toxic H2S production. Experimental findings revealed that TCC facilitated sulfur flow from the sludge solid phase to liquid phase, promoted sulfate reduction and sulfur-containing amino acid degradation, and largely improved anaerobic H2S production, i.e., 50-600 mg/kg total suspended solids (TSS) TCC increased the cumulative H2S yields by 24.76-478.12%. Although TCC can be partially biodegraded in anaerobic systems, the increase in H2S production can be mainly attributed to the effect of TCC rather than its degradation products. TCC was spontaneously adsorbed by protein-like substances contained in microbe extracellular polymers (EPSs), and the adsorbed TCC increased the direct electron transfer ability of EPSs, possibly due to the increase in the content of electroactive polymer protein in EPSs, the polarization of the amide group C═O bond, and the increase of the α-helical peptide dipole moment, which might be one important reason for promoting sulfur bioconversion processes. Microbial analysis showed that the presence of TCC enriched the organic substrate-degrading bacteria and sulfate-reducing bacteria and increased the abundances of functional genes encoding sulfate transport and dissimilatory sulfate reduction.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
4
|
Wang P, Cao J, Lu J, Xu X, Wu S, Liu H, Wang X. Exogenous MgH 2-derived hydrogen alleviates cadmium toxicity through m 6A RNA methylation in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136073. [PMID: 39395396 DOI: 10.1016/j.jhazmat.2024.136073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Cadmium (Cd) contamination poses a substantial threat to crop yields and human health. While magnesium hydride (MgH2) has been reported as a hydrogen (H2) donor that promotes plant growth under heavy metal contamination, its role in rice remains elusive. Herein, seedlings of Oryza sativa L. Japonica variety Zhonghua 11 (ZH11) were selected and exposed to 20 µL of 1-mol/L cadmium chloride (CdCl2) solution via hydroponics to simulate Cd stress. Meanwhile, 0.1 mg of MgH2 was used to slow-release H2 to the experimental group to explore its potential effects on rice over a 2-week period. The results indicated that Cd exposure severely inhibited the growth and development of ZH11 rice seedlings. However, the exogenous slow-release of H2 from MgH2 effectively mitigated this inhibitory effect by restoring the balance of reactive oxygen species (ROS), maintaining endogenous H2 homeostasis, and supporting the photosynthetic system. High-performance liquid chromatography analysis revealed that exogenous H2 reduces m6A RNA methylation levels in mRNA under Cd stress. Consequently, MeRIP-seq was conducted to investigate the effect of Cd exposure in rice in the presence and absence of H2. The m6A modifications were enriched at the start codon, stop codon, and 3' UTR. By integrating RNA-seq data, 118 transcripts were identified as differentially methylated and expressed genes under Cd stress. These gene annotations were associated with ROS, biological stress, and hormonal responses. Notably, 297 differentially methylated and expressed genes were identified under Cd stress in the presence of H2, linked to heavy metals, protein kinases, and calcium signaling regulation. Cd strongly activates the MAPK pathway in response to stress. Exogenous H2 reduces Cd accumulation as well as enhances plant tolerance and homeostasis by lowering m6A levels, thereby decreasing the mRNA stability of these genes. Our findings indicate that MgH2, by supplying H2, regulates gene expression through m6A RNA methylation and confers Cd tolerance in rice. This study provides potential candidate genes for studying the remediation of heavy metal pollution in plants.
Collapse
Affiliation(s)
- Peiran Wang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Junfeng Cao
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jiayu Lu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Xue Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Shuang Wu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China
| | - Hongru Liu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Fengxian District, Shanghai 201403, PR China
| | - Xiufeng Wang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement (Rice Research Institute, Anhui Academy of Agricultural Sciences), Hefei 230031, PR China.
| |
Collapse
|
5
|
Wang Y, Fu Q, Yang F, Li X, Ma X, Xu Y, Liu X, Wang D. Mechanistic insights into Fe 3O 4-mediated inhibition of H 2S gas production in sludge anaerobic digestion. WATER RESEARCH 2024; 267:122464. [PMID: 39303578 DOI: 10.1016/j.watres.2024.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The addition of iron-based conductive materials has been extensively validated as a highly effective approach to augment methane generation from anaerobic digestion (AD) process. In this work, it was additionally discovered that Fe3O4 notably suppressed the production of hazardous H2S gas during sludge AD. As the addition of Fe3O4 increased from 0 to 20 g/L, the accumulative H2S yields decreased by 89.2 % while the content of element sulfur and acid volatile sulfide (AVS) respectively increased by 55.0 % and 30.4 %. Mechanism analyses showed that the added Fe3O4 facilitated sludge conductive capacity, and boosted the efficiency of extracellular electron transfer, which accelerated the bioprocess of sulfide oxidation. Although Fe3O4 can chemically oxidize sulfide to elemental sulfur, microbial oxidation plays a major role in reducing H2S accumulation. Moreover, the released iron ions reacted with soluble sulfide, which promoted the chemical equilibrium of sulfide species from H2S to metal sulfide. Microbial analysis showed that some SRBs (i.e., Desulfomicrobium and Defluviicoccus) and SOB (i.e., Sulfuritalea) changed into keystone taxa (i.e., connectors and module hubs) in the reactor with Fe3O4 addition, showing that the functions of sulfate reduction and sulfur oxidation may play important roles in Fe3O4-present system. Fe3O4 presence also increased the content of functional genes encoding sulfide quinone reductase and flavocytochrome c sulfidedehydrogenase (e.g., Sqr and Fcc) that could oxidize sulfide to sulfur. The impact of other iron-based conductive material (i.e., zero-valent iron) was also verified, and the results showed that it could also significantly reduce H2S production. These findings provide new insights into the effect of iron-based conductive materials on anaerobic process, especially sulfur conversion.
Collapse
Affiliation(s)
- Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Fan Yang
- RIOH High Science and Technology Group, Beijing 100088, PR China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
6
|
Wang S, Rohani V, Leroux P, Gracian C, Nastasi V, Fulcheri L. Progress on hydrogen sulfide removal: From catalytic oxidation to plasma-assisted treatment. CHEMOSPHERE 2024; 364:143174. [PMID: 39181465 DOI: 10.1016/j.chemosphere.2024.143174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Air pollution is a long-standing environmental challenge as well an important economic subject. Hydrogen sulfide is one the major pollutants in the industrial releases. This review focuses on the thermochemical treatment of hydrogen sulfide based on the most recent works to date regarding its removal. By analyzing fundamental steps in chemical reaction engineering, some useful factors are emphasized since they are often neglected in scientific studies, catalysts design and process scale-up. From processing side, the fluid flow conditions including velocity, H2S concentration, relative humidity, temperature and pressure strongly influence the kinetic behavior and so the catalytic performance of the H2S removal reactor. From material side, the catalyst properties including nature, porosity, pore types, size, sites distribution and layer structuration largely influence the removal performance via among others the accessibility to catalytic sites, pores connection and mass transfer resistance. Plasma-assisted catalytic removal of H2S combines many novelties in comparison with a classical thermo-catalytic process. From patents review, we can see that main concerns are about electrodes mounting, reactor lifetime and modular design to solve the problems in the industrial practice. We attempt to provide for scientists, engineers and industrialists a guidance on the design of catalysts and processes for H2S removal which could be applied in laboratorial studies and industrial processes as well.
Collapse
Affiliation(s)
- Shengfei Wang
- Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France.
| | - Vandad Rohani
- Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France.
| | - Patrick Leroux
- Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France.
| | - Catherine Gracian
- Suez International, Tour CB21, 16 Place de l'Iris, 92040, Paris La Défense, France.
| | - Valerie Nastasi
- Suez International, Tour CB21, 16 Place de l'Iris, 92040, Paris La Défense, France.
| | - Laurent Fulcheri
- Mines Paris, Université PSL, Centre Procédés Energies Renouvelables et Systèmes Energétiques (PERSEE), 06904, Sophia Antipolis, France.
| |
Collapse
|
7
|
Chen T, Zhang L, Guo W, Zhang W, Sajjad W, Ilahi N, Usman M, Faisal S, Bahadur A. Temperature drives microbial communities in anaerobic digestion during biogas production from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53823-53838. [PMID: 38436844 DOI: 10.1007/s11356-024-32698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 °C), T25 (25 °C), and T35 (35 °C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 °C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
Collapse
Affiliation(s)
- Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co., Ltd, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Xu Y, Fu Q, He D, Yang F, Ma X, Wang Y, Liu Z, Liu X, Wang D. Exposure of polyethylene microplastics affects sulfur migration and transformation in anaerobic system. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134520. [PMID: 38718512 DOI: 10.1016/j.jhazmat.2024.134520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Polyethylene (PE) microplastic, which is detected in various environmental media worldwide, also inevitably enters wastewater treatment plants, which may have an impact on anaerobic processes in wastewater treatment. In this work, the effect of PE microplastics on anaerobic sulfur transformation was explored. Experimental results showed that PE microplastics addition at 0.1%- 0.5% w/w promoted H2S production by 14.8%-27.4%. PE microplastics enhanced the release of soluble organic sulfur and inorganic sulfate, and promoted the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Mechanism analysis showed that PE microplastics increased the content of electroactive components (e.g., protein and humic acids) contained in extracellular polymeric substances (EPS). In particular, PE microplastics increased the proportion and the dipole moment of α-helix, an important component involved in electron transfer contained in extracelluar protein, which provided more electron transfer sites and promoted the α-helix mediated electron transfer. These enhanced the direct electron transfer ability of EPSs, which might explain why PE microplastics facilitated the bioprocesses of organosulfur compounds hydrolysis and sulfate reduction. Correspondingly, metagenomic analysis revealed that PE microplastics increased the relative abundance of S2- producers (e.g., Desulfobacula and Desulfonema) and the relative abundance of functional genes involved in anaerobic sulfur transformation (e.g., PepD and cysD), which were beneficial to H2S production in anaerobic system.
Collapse
Affiliation(s)
- Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fan Yang
- RIOH High Science and Technology Group, Beijing 100088, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
Fu Q, Li C, Liu Z, Ma X, Xu Y, Wang Y, Liu X, Wang D. The Impact of Bisphenol A on the Anaerobic Sulfur Transformation: Promoting Sulfur Flow and Toxic H 2S Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8043-8052. [PMID: 38648493 DOI: 10.1021/acs.est.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chenxi Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zirui Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
10
|
Chen L, Zhang X, Zhu J, Fan H, Qin Z, Li J, Xie H, Zhu H. Peroxydisulfate activation and versatility of defective Fe 3O 4@MOF-808 for enhanced carbon and phosphorus recovery from sludge anaerobic fermentation. WATER RESEARCH 2024; 254:121401. [PMID: 38447378 DOI: 10.1016/j.watres.2024.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Although being viewed as a promising technology for reclamation of carbon and phosphorus from excess sludge, anaerobic fermentation (AF) grapples with issues such as a low yield of volatile fatty acids (VFAs) and high phosphorus recovery costs. In this study, we synthesized Fe3O4@MOF-808 (FeM) with abundant defects and employed it to simultaneously enhance VFAs and phosphorus recovery during sludge anaerobic fermentation. Through pre-oxidization of sludge catalyzed by FeM-induced peroxydisulfate, the soluble organic matter increased by 2.54 times, thus providing ample substrate for VFAs production. Subsequent AF revealed a remarkable 732.73 % increase in VFAs and a 1592.95 % increase in phosphate. Factors contributing to the high VFAs yield include the non-biological catalysis of unsaturated Zr active sites in defective FeM, enhancing protein hydrolysis, and the inhibition of methanogenesis due to electron competition arising from the transformation between Fe(III) and Fe(II) under Zr influence. Remarkably, FeM exhibited an adsorption capacity of up to 92.64 % for dissolved phosphate through ligand exchange and electrostatic attractions. Furthermore, FeM demonstrated magnetic separation capability from the fermentation broth, coupled with excellent stability and reusability in both catalysis and adsorption processes.
Collapse
Affiliation(s)
- Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Xiangyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Jianming Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Helin Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zimu Qin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Jun Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
11
|
Zhu L, Li W, Huang C, Tian Y, Xi B, Wu W, Yan Y. Contribution of sulfur-containing precursors to release of hydrogen sulfide in sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120195. [PMID: 38306858 DOI: 10.1016/j.jenvman.2024.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Hydrogen sulfide (H2S) production during composting can impact the environment and human health. Especially during the thermophilic phase, H2S is discharged in large quantities. However, in sludge composting, the contributions of different sulfur-containing precursors to H2S fluxes, key functional microorganisms, and key environmental parameters for reducing H2S flux remain unclear. Analysis of cysteine (Cys), methionine (Met), and sulfate (SO42-) concentrations, multiple stepwise regression analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis of metagenomes showed that Cys was the main contributor to the production of H2S and that Met was among the main sources during the first three days of composting, while the SO42- contribution to H2S was negligible. Fifteen functional genera involved in the conversion of precursors to H2S were identified by co-occurrence network analysis. Only Bacillus showed high temperature resistance (>50 °C) and the ability to reduce H2S. Redundancy analysis showed that total carbon (64.0 %) and pH (23.3 %) had significant effects on functional bacteria. H2S had a quadratic relationship with sulfur-containing precursors. All microbial network sulfur-containing precursors metabolism modules showed a highly significant relationship with Cys.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yimeng Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
12
|
Wang D, Pan Q, Yang J, Gong S, Liu X, Fu Y. Effects of Mixtures of Engineered Nanoparticles and Cocontaminants on Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2598-2614. [PMID: 38291652 DOI: 10.1021/acs.est.3c09239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Jingnan Yang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Water Resources and Environmental Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
13
|
Ye B, Zhang J, Zhou Y, Tang M, You F, Li X, Yang Q, Wang D, Liu X, Duan A, Liu J. Pretreatment of free nitrous acid combined with calcium hypochlorite for enhancement of hydrogen production in waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165774. [PMID: 37499831 DOI: 10.1016/j.scitotenv.2023.165774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
A variety of variables limit the recovery of resources from anaerobic fermentation of waste activated sludge (WAS), hence pretreatment strategies are necessary to be investigated to increase its efficiency. A combination of free nitrous acid (FNA) and calcium hypochlorite [Ca(ClO)2] was employed in this investigation to significantly improve sludge fermentation performance. The yields of cumulative hydrogen for the blank and FNA treatment group were 1.09 ± 0.16 and 7.36 ± 0.21 mL/g VSS, respectively, and 6.59 ± 0.24 [0.03 g Ca(ClO)2/g TSS], 7.75 ± 0.20 (0.06), and 8.58 ± 0.22 (0.09) mL/g VSS for the Ca(ClO)2 groups. The co-treatment greatly boosted hydrogen generation, ranging from 39.97 ± 2.26 to 76.20 ± 4.78 % as compared to the solo treatment. Mechanism analysis demonstrated that the combined treatment disturbed sludge structure and cell membrane permeability even more, which released more organic substrates and enhanced biodegradability of fermentation broth. This paper describes a unique strategy to sludge pretreatment that expands the use of Ca(ClO)2 and FNA in anaerobic fermentation, with implications for sludge disposal and energy recovery.
Collapse
Affiliation(s)
- Boqun Ye
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yintong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mengge Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fengyuan You
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Liu
- Hunan Engineering Research Center of Mining Site Pollution Remediation, Changsha 410082, PR China
| |
Collapse
|
14
|
Guo H, Liu S, Wang Y, Hou J, Zhu T, Liu Y. A novel free nitrous acid (FNA)-generation pathway via ferric salts hydrolysis to mitigate sulfide and methane production in sewer: Insights into the performance and microbial mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132284. [PMID: 37591170 DOI: 10.1016/j.jhazmat.2023.132284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Ferric chloride (FeCl3) served as a solid acid has attracted attention recently. However, the feasibility of FeCl3 combined with nitrite for free nitrous acid (FNA) generation in controlling sulfide and methane as well as the triggering mechanisms in the complex syntrophic consortium (i.e., sewer biofilm) remain largely unknown. This work disclosed FeCl3 as an alternative acid source could obtain comparable sulfide and methane mitigations at a low FNA dose (i.e., 0.26 mg N/L), compared to that of HCl acid source. Whereas, a faster recovery rate of sulfide production was observed using FeCl3 under a higher FNA dose (i.e., 0.81 mg N/L) despite the methane control still being comparable. The toxicological mechanisms revealed FNA reacted with proteins amide Ⅰ in extracellular polymeric substances and destroyed protein hydrogen bond. Enzymatic and genic analysis unveiled the overall suppression of hydrolysis, acidogenesis, acetogenesis, sulfidogenesis and methanogenesis steps due to the inactivation of viable cells by reactive nitrogen species. Economic and environmental assessments demonstrated that the ferric-based FNA strategy reduced chemical costs and N2O emission (ca. 26.5% decrease) compared to the traditional HCl-based FNA method. This work broadens the application of iron salt-based technology in urban water system, together with understanding the biological mechanisms of FNA-based technology.
Collapse
Affiliation(s)
- Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Siru Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Zhang S, Li C, Ke C, Liu S, Yao Q, Huang W, Dang Z, Guo C. Extracellular polymeric substances sustain photoreduction of Cr(VI) by Shewanella oneidensis-CdS biohybrid system. WATER RESEARCH 2023; 243:120339. [PMID: 37482009 DOI: 10.1016/j.watres.2023.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Photosensitized biohybrid system (PBS) enables bacteria to exploit light energy harvested by semiconductors for rapid pollutants transformation, possessing a promising future for water reclamation. Maintaining a biocompatible environment under photocatalytic conditions is the key to developing PBS-based treatment technologies. Natural microbial cells are surrounded by extracellular polymeric substances (EPS) that either be tightly bound to the cell wall (i.e., tightly bound EPS, tbEPS) or loosely associated with cell surface (i.e., loosely bound EPS, lbEPS), which provide protection from unfavorable environment. We hypothesized that providing EPS fractions can enhance bacterial viability under adverse environment created by photocatalytic reactions. We constructed a model PBS consisting of Shewanella oneidensis and CdS using Cr(VI) as the target pollutant. Results showed complete removal of 25 mg/L Cr(VI) within 90 min without an electron donor, which may mainly rely on the synergistic effect of CdS and bacteria on photoelectron transfer. Long-term cycling experiment of pristine PBS and PBS with extra EPS fractions (including lbEPS and tbEPS) for Cr(VI) treatment showed that PBS with extra lbEPS achieved efficient Cr(VI) removal within five consecutive batch treatment cycles, compared to the three cycles both in pristine PBS and PBS with tbEPS. After addition of lbEPS, the accumulation of reactive oxygen species (ROS) was greatly reduced via the EPS-capping effect and quenching effect, and the toxic metal internalization potential was lowered by complexation with Cd and Cr, resulting in enhanced bacterial viability during photocatalysis. This facile and efficient cytoprotective method helps the rational design of PBS for environmental remediation.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Sijia Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
16
|
Gong S, Yang J, Pan Q, Liu X, Zhang Q, Wang D. Simultaneous oxidation of roxarsone and adsorption of released arsenic by FeS-activated sulfite. WATER RESEARCH 2023; 237:119979. [PMID: 37098286 DOI: 10.1016/j.watres.2023.119979] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
The conventional oxidation-adsorption methods are effective for the removal of roxarsone (ROX) but are limited by complicated operation, toxic residual oxidant and leaching of toxic metal ions. Herein, we proposed a new approach to improve ROX removal, i.e., using the FeS/sulfite system. Experimental results showed that approximately 100% of ROX (20 mg/L) was removed and more than 90% of the released inorganic arsenic (As(V) dominated) was adsorbed on FeS within 40 min. This FeS/sulfite system was a non-homogeneous activation process, and SO4·-, ·OH and 1O2 were identified as reactive oxidizing species with their contributions to ROX degradation being 48.36%, 27.97% and 2.64%, respectively. Based on density functional theory calculations and HPLC-MS results, the degradation of ROX was achieved by C-As breaking, electrophilic addition, hydroxylation and denitrification. It was also found that the released inorganic arsenic was adsorbed through a combination of outer-sphere complexation and surface co-precipitation, and the generated arsenopyrite (FeAsS), a precursor to ecologically secure scorodite (FeAsO4·2H2O), was served as the foundation for further inorganic arsenic mineralization. This is the first attempt to use the FeS/sulfite system for organic heavy metal removal, which proposes a prospective technique for the removal of ROX.
Collapse
Affiliation(s)
- Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jingnan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Quan Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
17
|
Fu Q, Long S, Xu Y, Wang Y, Yang B, He D, Li X, Liu X, Lu Q, Wang D. Revealing an unrecognized role of free ammonia in sulfur transformation during sludge anaerobic treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131305. [PMID: 37002999 DOI: 10.1016/j.jhazmat.2023.131305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Free ammonia (FA), the unionized form of ammonium, is presented in anaerobic fermentation of waste activated sludge (WAS) at high levels. However, its potential role in sulfur transformation, especially H2S production, during WAS anaerobic fermentation process was unrecognized previously. This work aims to unveil how FA affects anaerobic sulfur transformation in WAS anaerobic fermentation. It was found that FA significantly inhibited H2S production. With an increase of FA from 0.04 to 159 mg/L, H2S production reduced by 69.9%. FA firstly attacked tyrosine-like proteins and aromatic-like proteins in sludge EPSs, with CO groups being responded first, which decreased the percentage of α-helix/(β-sheet + random coil) and destroyed hydrogen bonding networks. Cell membrane potential and physiological status analysis showed that FA destroyed membrane integrity and increased the ratio of apoptotic and necrotic cells. These destroyed sludge EPSs structure and caused cell lysis, thus strongly inhibited the activities of hydrolytic microorganisms and sulfate reducing bacteria. Microbial analysis showed that FA reduced the abundance of functional microbes (e.g., Desulfobulbus and Desulfovibrio) and genes (e.g., MPST, CysP, and CysN) involved in organic sulfur hydrolysis and inorganic sulfate reduction. These findings unveil an actually existed but previously overlooked contributor to H2S inhibition in WAS anaerobic fermentation.
Collapse
Affiliation(s)
- Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
18
|
Wang H, Li H, Zhu L, Yang X, Zhang Q, Wang Y, Wang D. Effect and mechanism of benzalkonium bromide on short chain fatty acid production from anaerobic sludge fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118203. [PMID: 37235988 DOI: 10.1016/j.jenvman.2023.118203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Quaternary ammonium compounds (QACs) was frequently detected in wastewater treatment plants and leads to potential toxicity to the related biological processes. In this study, the effect of benzalkonium bromide (BK) on anaerobic sludge fermentation process for short chain fatty acid (SCFAs) production was investigated. Batch experiments indicated that BK exposure significantly enhanced the SCFAs production from anaerobic fermentation sludge and the maximum concentration of total SCFAs increased from 474.40 ± 12.35 mg/L to 916.42 ± 20.35 mg/L with BK increasing from 0 to 8.69 mg/g VSS. Mechanism exploration exhibited that the presence of BK enhanced much more bioavailable organic matters release, little affected on hydrolysis, acidification, but seriously inhibited methanogenesis. Microbial community investigation revealed that BK exposure importantly enhanced the relative abundances of hydrolytic-acidifying bacteria and also improved the metabolic pathways and functional genes for sludge lysis. This work further supplement the information for environmental toxicity of emerging pollutants.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; School of Life Science, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Lei Zhu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Xianglong Yang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; School of Life Science, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
19
|
Xu Q, Long S, Liu X, Duan A, Du M, Lu Q, Leng L, Leu SY, Wang D. Insights into the Occurrence, Fate, Impacts, and Control of Food Additives in Food Waste Anaerobic Digestion: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6761-6775. [PMID: 37070716 DOI: 10.1021/acs.est.2c06345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recovery of biomass energy from food waste through anaerobic digestion as an alternative to fossil energy is of great significance for the development of environmental sustainability and the circular economy. However, a substantial number of food additives (e.g., salt, allicin, capsaicin, allyl isothiocyanate, monosodium glutamate, and nonnutritive sweeteners) are present in food waste, and their interactions with anaerobic digestion might affect energy recovery, which is typically overlooked. This work describes the current understanding of the occurrence and fate of food additives in anaerobic digestion of food waste. The biotransformation pathways of food additives during anaerobic digestion are well discussed. In addition, important discoveries in the effects and underlying mechanisms of food additives on anaerobic digestion are reviewed. The results showed that most of the food additives had negative effects on anaerobic digestion by deactivating functional enzymes, thus inhibiting methane production. By reviewing the response of microbial communities to food additives, we can further improve our understanding of the impact of food additives on anaerobic digestion. Intriguingly, the possibility that food additives may promote the spread of antibiotic resistance genes, and thus threaten ecology and public health, is highlighted. Furthermore, strategies for mitigating the effects of food additives on anaerobic digestion are outlined in terms of optimal operation conditions, effectiveness, and reaction mechanisms, among which chemical methods have been widely used and are effective in promoting the degradation of food additives and increasing methane production. This review aims to advance our understanding of the fate and impact of food additives in anaerobic digestion and to spark novel research ideas for optimizing anaerobic digestion of organic solid waste.
Collapse
Affiliation(s)
- Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Ling Leng
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
20
|
Liu X, Deng Q, Du M, Lu Q, Zhou W, Wang D. Microplastics decrease the toxicity of cadmium to methane production from anaerobic digestion of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161780. [PMID: 36706993 DOI: 10.1016/j.scitotenv.2023.161780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and Cd have been proven to inhibit methane production from anaerobic digestion of sewage sludge. However, the published studies mainly focused on their single inhibition. This cannot reflect the real-world situations where MPs and Cd co-exist. This study therefore aims to reveal the combined effect of MPs and Cd on anaerobic digestion of sewage sludge. Experimental results showed that PVC-MPs at environmentally relevant levels (e.g., 1, 10 particles/g total solids (TS)) did not affect methane yield but decrease the toxicity of Cd. When PVC-MPs were 30 particles/g TS, the cumulative methane production recovered from 58.8 % (in the presence of 5 mg Cd/g TS) to 89.7 % of the control. Organic fluxes were significantly increased compared with the control, particularly affecting the content of dissolved substances and short-chain fatty acids during anaerobic digestion. Mechanistic exploration showed that the adsorption of Cd by PVC-MPs was higher than that of sludge-substrate, which reduced the bioavailability of Cd by anaerobes, as evidenced by the increased anaerobes driven carbon flux from solid-phase to bio-methane during anaerobic digestion. Overall, these findings identified important factors in determining the toxicity of pollutants on anaerobic digestion process, providing precise data for toxicity evaluation of MPs and metals in anaerobic environment.
Collapse
Affiliation(s)
- Xuran Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
21
|
Zhang C, Lu Q, Li Y. A review on sulfur transformation during anaerobic digestion of organic solid waste: Mechanisms, influencing factors and resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161193. [PMID: 36581268 DOI: 10.1016/j.scitotenv.2022.161193] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) is an economical and environment-friendly technology for treating organic solid wastes (OSWs). OSWs with high sulfur can lead to the accumulation of toxic and harmful hydrogen sulfide (H2S) during AD, so a considerable amount of studies have focused on removing H2S emissions. However, current studies have found that sulfide induces phosphate release from the sludge containing iron‑phosphorus compounds (FePs) and the feasibility of recovering elemental sulfur (S0) during AD. To tap the full potential of sulfur in OSWs resource recovery, deciphering the sulfur transformation pathway and its influencing factors is required. Therefore, in this review, the sulfur species and distributions in OSWs and the pathway of sulfur transformation during AD were systematically summarized. Then, the relationship between iron (ferric compounds and zero-valent iron), phosphorus (FePs) and sulfur were analyzed. It was found that the reaction of iron with sulfide during AD drove the conversion of sulfide to S0 and iron sulfide compounds (FeSx), and consequently iron was applied in sulfide abatement. In particular, ferric (hydr)oxide granules offer possibilities to improve the economic viability of hydrogen sulfide control by recovering S0. Sulfide is an interesting strategy to release phosphate from the sludge containing FePs for phosphorus recovery. Critical factors affecting sulfur transformation, including the carbon source, free ammonia and pretreatment methods, were summarized and discussed. Carbon source and free ammonia affected sulfur-related microbial diversity and enzyme activity and different sulfur transformation pathways in response to varying pretreatment methods. The study on S0 recovery, organic sulfur conversion, and phosphate release mechanism triggered by sulfur deserves further investigation. This review is expected to enrich our knowledge of the role of sulfur during AD and inspire new ideas for recovering phosphorus and sulfur resources from OSWs.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
22
|
Lu Q, He D, Liu X, Du M, Xu Q, Wang D. 1-Butyl-3-methylimidazolium Chloride Affects Anaerobic Digestion through Altering Organics Transformation, Cell Viability, and Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3145-3155. [PMID: 36795785 DOI: 10.1021/acs.est.2c08004] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
1-Butyl-3-methylimidazolium chloride (BmimCl), an imidazolium-based ionic liquid, is considered the representative emerging persistent aquatic pollutant, and its environmental toxicity has attracted a growing concern. However, most of the investigations focused on monocultures or a single organism, with little information available on the complex syntrophic consortium that dominates the complex and successional biochemical processes, such as anaerobic digestion. In this study, the effect of BmimCl at environmentally relevant levels on glucose anaerobic digestion was therefore investigated in several laboratory-scale mesophilic anaerobic digesters to provide such support. Experimental results showed that BmimCl at 1-20 mg/L inhibited the methane production rate by 3.50-31.03%, and 20 mg/L BmimCl inhibited butyrate, hydrogen, and acetate biotransformation by 14.29%, 36.36%, and 11.57%, respectively. Toxicological mechanism studies revealed that extracellular polymeric substances (EPSs) adsorbed and accumulated BmimCl through carboxyl, amino, and hydroxyl groups, which destroyed the EPSs' conformational structure, thereby leading to the inactivation of microbial cells. MiSeq sequencing data indicated that the abundance of Clostridium_sensu_stricto_1, Bacteroides, and Methanothrix decreased by 6.01%, 7.02%, and 18.45%, respectively, in response to 20 mg/L BmimCl. Molecular ecological network analysis showed that compared with the control, the lower network complexity, fewer keystone taxa, and fewer associations among microbial taxa were found in the BmimCl-present digester, indicating the reduced stability of the microbial community.
Collapse
Affiliation(s)
- Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, PR China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
23
|
H2S Emission and Microbial Community of Chicken Manure and Vegetable Waste in Anaerobic Digestion: A Comparative Study. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In order to solve the problem of H2S corrosion in biogas utilization, it is necessary to understand the characteristics and mechanisms of H2S production in chicken manure anaerobic digestion (CMAD) and vegetable waste anaerobic digestion (VWAD). In this study, lab-scale batch tests of CMAD and VWAD were conducted for 67 days at 35 °C. The results showed that sulfide was found to be the major form of sulfur in CMAD (accounting for 90%) and VWAD (70%). The average concentration of H2S was 198 ± 79 ppm in CMAD and 738 ± 210 ppm in VWAD. Moreover, 81% of total H2S was produced at 20 days of methane production in CMAD, but 80% of total H2S was produced in the first day in VWAD because of the rapid production of biogas and fermentation acidification. The sulfide ion equilibrium model could universally and feasibly predict the H2S production in CMAD and VWAD. The abundance of Firmicutes, Bacteroidetes, Proteobacteria and Euryarchaeota accounted for about 95% of the total microbes in both CMAD and VWAD; the influence of the fermentation stage on the microbial community was greater than that of the difference between CM and VW; the abundance of SRB was 0.01~0.07%, while that concerning organosulfur compounds fermentation was 22.8~30.5%. This study indicated that the H2S concentration of CMAD biogas was more than five times that of VWAD because CM is alkalescent but VW is acidic.
Collapse
|
24
|
Lu Q, Liu Q, Liu X, Li Y, Yin Z, Wang D. Enhanced dewaterability of anaerobically fermented sludge through acid-driven indigenous enzymatic hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116212. [PMID: 36261978 DOI: 10.1016/j.jenvman.2022.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The poor dewaterability of fermented sludge is an important factor limiting the development of anaerobic fermentation applications. Herein we reported an efficient strategy, i.e., using acidic regulation to stimulate the release of indigenous enzymes, to enhance the hydrolysis and dewatering of fermented sludge. The results showed that after acidic regulation at pH 4.0 for 1 day, the activity of protease and α-glucosidase were improved by 131.4% and 146.0%, while the capillary suction time and specific resistance to filtration were decreased by 93.8% and 69.5%, respectively. Mechanism study revealed that the method firstly destroyed the slime and bound EPS and cells of fermented sludge, causing the release of indigenous enzymes (i.e., protease and α-glucosidase) contained in. Then, the released enzymes directly accelerated the hydrolysis and acidification of fragmentized extracellular polymeric substances, thereby benefited the release of bound water in sludge particles. Finally, such acidic condition decreased the electrostatic repulsive interactions between destroyed sludge particles, further improving their flocculation. The findings not only deepen the understanding of indigenous enzymes contained in fermented sludge affecting sludge dewatering, but also might guide engineers to develop promising strategies to facilitate fermented sludge dewatering and fermentation liquid recovery in the future.
Collapse
Affiliation(s)
- Qi Lu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Qiang Liu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| | - Xuran Liu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Yifu Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China
| | - Zhuo Yin
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| | - Dongbo Wang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
25
|
Liu X, Wang D, Chen Z, Wei W, Mannina G, Ni BJ. Advances in pretreatment strategies to enhance the biodegradability of waste activated sludge for the conversion of refractory substances. BIORESOURCE TECHNOLOGY 2022; 362:127804. [PMID: 36007767 DOI: 10.1016/j.biortech.2022.127804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is a low-cost technology widely used to divert waste activated sludge (WAS) to renewable energy production, but is generally restricted by its poor biodegradability which mainly caused by the endogenous and exogenous refractory substances present in WAS. Several conventional methods such as thermal-, chemical-, and mechanical-based pretreatment have been demonstrated to be effective on organics release, but their functions on refractory substances conversion are overlooked. This paper firstly reviewed the presence and role of endogenous and exogenous refractory substances in anaerobic biodegradability of WAS, especially on their inhibition mechanisms. Then, the pretreatment strategies developed for enhancing WAS biodegradability by facilitating refractory substances conversion were comprehensively reviewed, with the conversion pathways and underlying mechanisms being emphasized. Finally, the future research needs were directed, which are supposed to improve the circular bioeconomy of WAS management from the point of removing the hindering barrier of refractory substances on WAS biodegradability.
Collapse
Affiliation(s)
- Xuran Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giorgio Mannina
- Engineering Department - Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
26
|
Liu X, Deng Q, Zheng Y, Wang D, Ni BJ. Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. WATER RESEARCH 2022; 221:118780. [PMID: 35759845 DOI: 10.1016/j.watres.2022.118780] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 05/21/2023]
Abstract
Microplastics (MPs) have been frequently detected in effluent wastewater and sludge in wastewater treatment plants (WWTPs), the discharge and agricultural application of which represent a primary source of environmental MPs contamination. As important as quantitative removal is, changes of physicochemical characteristics of MPs (e.g., shapes, sizes, density, crystallinity) in WWTPs are crucial to their environmental behaviors and risks and have not been put enough attention yet. This review is therefore to provide a current overview on the changes of physicochemical characteristics of MPs in WWTPs and their corresponding environmental risks. The changes of physicochemical characteristics as well as the underlying mechanisms of MPs in different successional wastewater and sludge treatment stages that mainly driven by mechanical (e.g., mixing, pumping, filtering), chemical (e.g., flocculation, advanced oxidation, ultraviolet radiation, thermal hydrolysis, incineration and lime stabilization), biological (e.g., activated sludge process, anaerobic digestion, composition) and their combination effects were first recapitulated. Then, the inevitable correlations between physicochemical characteristics of MPs and their environmental behaviors (e.g., migration, adsorption) and risks (e.g., animals, plants, microbes), are comprehensively discussed with particular emphasis on the leaching of additives and physicochemical characteristics that affect the co-exist pollutants behavior of MPs in WWTPs on environmental risks. Finally, knowing the summarized above, some relating unanswered questions and concerns that need to be unveiled in the future are prospected. The physicochemical properties of MPs change after passing through WWTP, leading to subsequent changes in co-contaminant adsorption, migration, and toxicity. This could threaten our ecosystems and human health and must be worth investigating.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|