1
|
Qin C, Li SL, Wu Y, Bass AM, Luo W, Ding H, Yue FJ, Zhang P. High sensitivity of dissolved organic carbon transport during hydrological events in a small subtropical karst catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174090. [PMID: 38914338 DOI: 10.1016/j.scitotenv.2024.174090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
Dissolved organic carbon (DOC) and discharge are often tightly coupled, though these relationships in karst environments remain poorly constrained. In this study, DOC dynamics over 13 hydrological events, alongside monthly monitoring over an entire hydrological year were monitored in a small karst catchment, SW China. The concurrent analyses of power-law model and hysteresis patterns reveal that DOC behavior is generally transport-limited due to flushing effects of increased discharge but highly variable at both intra- and inter-event scales. The initial discharge at event onset and discharge-weighted mean concentration of DOC ([DOC]DW) of individual events can explain 37.7 % and 19.9 % of the variance of DOC behavior among events, respectively. The sustained dry-cold antecedent conditions make DOC hysteresis behavior during the earliest event complex and different from subsequent events. At event scale, the variability in DOC export is primarily controlled by [DOC]DW (explaining 64.3 %) and the yield of total dissolved solutes (YTDS, explaining 30.4 %), reflecting the impacts of variable hydrological connectivity and intense soil-water-rock interactions in this karst catchment. On an annual scale, DOC yield (YDOC, 222.86 kg C km-2) was mostly derived during the wet season (98.19 %) under the hydrological driving force. The difference in annual YDOC between this karst catchment and other regions can be well explained by annual water yield (Ywater, explaining 24.2 %) and [DOC] (explaining 35.4 %), whereas the variance in DOC export efficiency among catchments is almost exclusively controlled by [DOC] alone, independent of drainage area and annual Ywater. This study highlights the necessity of high-frequency sampling for modeling carbon biogeochemical processes and the particularity of the earliest hydrological events occurred after a long cold-dry period in karst catchments. Under the changing climate, whether DOC dynamics in karst catchments will present source-limited patterns during more extreme hydrological events merits further study.
Collapse
Affiliation(s)
- Caiqing Qin
- Department of Earth & Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Yiping Wu
- Department of Earth & Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Adrian M Bass
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Weijun Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hu Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pan Zhang
- Department of Earth & Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Chen Z, Guo M, Zhou P, Wang L, Liu X, Wan Z, Zhang X. Gully regulates snowmelt runoff, sediment and nutrient loss processes in Mollisols region of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173614. [PMID: 38823708 DOI: 10.1016/j.scitotenv.2024.173614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Gully is a prominent indicator of land degradation in agroecosystems, functioning as a crucial pathway connecting upslopes to downstream channels. However, little is known about how gully regulates runoff, sediment, and nutrient loss processes in the catchment during snowmelt. In this study, we monitored these processes in situ at both the gully head (the upslope accumulated catchment of the gully head, CGH) and outlet of two representative and typical gully-dominated catchments (F1 and F2) during snowmelt in Mollisols region of Northeast China. Our results showed that runoff discharge of CGH and outlet exhibited a multi-peak trend during snowmelt, driven by the transition from snow melting to soil thawing. This transition resulted in distinct runoff patterns in both CGH and outlet, with significant differences in their response to air temperature. The total runoff yield of CGH accounted for 57.8 % in F1 and 40.6 % in F2 of the total runoff yield of the outlet. Notably, the peak sediment concentration displayed a marked lag compared to the peak runoff discharge, primarily dominated by the increased sensitivity of gully erosion after the thawing of gully slopes. Gully erosion was the main source of sediment yield in the catchment, contributing 98.2 % in F1 and 96.6 % in F2. Furthermore, nutrient concentrations exhibited a decreasing trend during snowmelt. The comparison of high nutrient concentrations in CGH and relatively low nutrient concentrations in outlet highlighted the gully's role in intercepting and diluting runoff nutrients. Hysteresis analysis confirmed the differential contribution of CGH and gully to nutrient sources. CGH accounting for 50.9 % and 93.3 % of runoff TN and runoff TP loss, while contributing only 8.3 % and 5.8 % to sediment TN and sediment TP loss, respectively. These findings offer valuable insights for effective erosion control and nonpoint source pollution management in gully-dominated agroecosystems during snowmelt.
Collapse
Affiliation(s)
- Zhuoxin Chen
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingming Guo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| | - Pengchong Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Lixin Wang
- College of Resources and Environment, Northeast Agriculture University, Harbin 150030, PR China
| | - Xin Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Zhaokai Wan
- College of Resources and Environment, Jilin Agricultural University, 130118 Changchun, Jilin, PR China
| | - Xingyi Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| |
Collapse
|
3
|
Wang J, Li X, Li Y, Shi Y, Xiao H, Wang L, Yin W, Zhu Z, Bian H, Li H, Shi Z, Seybold H, Kirchner JW. Transport Pathways of Nitrate in Stormwater Runoff Inferred from High-Frequency Sampling and Stable Water Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39152914 DOI: 10.1021/acs.est.4c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Storm events can mobilize nitrogen species from landscapes into streams, exacerbating eutrophication and threatening aquatic ecosystems as well as human health. However, the transport pathways and storm responses of different nitrogen forms remain elusive. We used high-frequency chemical and isotopic sampling to partition sources of stormwater runoff and determine transport pathways of multiple nitrogen forms in an agricultural catchment. Bayesian mixing modeling reveals shallow subsurface water as the dominant source of stormwater runoff, contributing 74% of the water flux and 72, 71, and 79% of total nitrogen (TN), total dissolved nitrogen (TDN), and nitrate (NO3-N), respectively. Groundwater, by contrast, contributed 11% of stormwater runoff and 21, 22, and 17% of TN, TDN, and NO3-N, respectively. The remaining 14% of stormwater runoff can be attributed to rainwater, which contains much less TN, TDN, and NO3-N. Surprisingly, during storm events, the dominant nitrogen form was NO3-N rather than dissolved organic nitrogen. Antecedent conditions and runoff characteristics have an important influence on nitrogen loads during storm events. Our results provide insight into hydrological mechanisms driving nitrogen transport during storm events and may help in developing catchment management practices for reducing nitrogen pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Jian Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
- Department of Environmental System Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - Xiao Li
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- Hubei Provincial Water Saving Research Center, Hubei Water Resources Research Institute, Wuhan 430070, China
| | - Yongyong Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Haibing Xiao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yin
- Changjiang Water Resources Protection Institute, Wuhan 430051, China
| | - Zhenya Zhu
- Changjiang Water Resources Protection Institute, Wuhan 430051, China
| | - Haixia Bian
- Soil and Water Conservation Monitoring Center, Danjiangkou 442700, China
| | - Haiyan Li
- Soil and Water Conservation Monitoring Center, Danjiangkou 442700, China
| | - Zhihua Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Hansjörg Seybold
- Department of Environmental System Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - James W Kirchner
- Department of Environmental System Sciences, ETH Zürich, Zürich 8092, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Hu XD, Deng YW, Zhou C, Shu HJ, Wang J, Wang Z, Wang YB, Zhao JS, Huang WY, Xiao HB, Shi ZH. Chemodiversity of dissolved organic matter exports from subtropical humid catchment driven by hydrological connectivity. WATER RESEARCH 2024; 260:121902. [PMID: 38901314 DOI: 10.1016/j.watres.2024.121902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
The quantity and quality of dissolved organic matter (DOM) exported from source areas are closely related to hydrological linkage between source areas and streams, that is hydrological connectivity. However, understanding of how hydrological connectivity regulates the export of catchment DOM components remains inadequate. In this study, high-frequency monitoring of groundwater and runoff from subtropical humid catchment was conducted for 20 months, and hydrological connectivity was quantitatively characterized by considering both surface and subsurface hydrological processes. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was utilized to investigate the DOM molecular composition. Results showed that over half of the areas in the catchment could not persistently establish hydrological connectivity with the stream during the rainfall. The average proportion of lignin was the highest in DOM components, followed by tannin and proteins. Additionally, both modified aromaticity index and double bond equivalence reached maximums at peak discharge, reflecting terrestrial materials could increase DOM aromaticity and unsaturated degree. Partial least square-structural equation modeling revealed significantly direct effects of rainfall, antecedent conditions, and hydrological connectivity on dissolved organic carbon (DOC) export. Furthermore, nonlinear relationships were observed between hydrological connectivity and DOC, tannin, and condensed aromatics. Specifically, the instantaneous DOC flux increased dramatically when the hydrological connectivity strength exceeded 0.14; tannin and condensed aromatics exhibited a rapid increase with rising connectivity strength, but remained stable at connectivity strength above 0.25. However, hydrological connectivity showed no significant correlation with unstable components (such as lipids, protein, amino sugars, and carbohydrates). These results provide new insights into hydrological controls on the quantity and quality of DOM export and contribute to developing appropriate catchment management strategies for carbon storage.
Collapse
Affiliation(s)
- X D Hu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Y W Deng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - C Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - H J Shu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - J Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Z Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Y B Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - J S Zhao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - W Y Huang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - H B Xiao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China; Jiangxi Academy of Water Science and Engineering, Nanchang 330029, Jiangxi, PR China.
| | - Z H Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China; Jiangxi Academy of Water Science and Engineering, Nanchang 330029, Jiangxi, PR China.
| |
Collapse
|
5
|
Ge J, Wu S, Wu H, Lin J, Cai Y, Zhou D, Gu X. Prediction of As and Cd dissolution in various soils under flooding condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174853. [PMID: 39038669 DOI: 10.1016/j.scitotenv.2024.174853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Although the mobility of arsenic (As) and cadmium (Cd) in soils during the flooding-drainage process has been intensively studied, predicting their dissolution among various soils still remains a challenge. After comprehensively monitoring multiple parameters related to As and Cd dissolution in 8 soils for a 60-day anaerobic incubation, the redundancy analysis (RDA) and structural equation model (SEM) were employed to identify the key factors and influencing pathways controlling the dynamic release of As and Cd. Results showed that pH alone explained 90.5 % Cd dissolution, while the dissolved-Fe(II) and 5 M-HCl extractable Fe(II) jointly only explained 50.6 % As dissolution. After data normalization, the ratio of Fe(II) to 5 M-HCl extracted total Fe (i.e. FetotII/Fetot) significantly improved the correlation to R2 = 0.824 (p < 0.001) with a fixed slope of 0.393 among the 8 soils. Our results highlight the crucial role played by the reduction degree of total iron contents in determining both the reduction and dissolution of As during flooding. In contrast, dissolved-Fe(II) was too vulnerable to soil properties to be a stable indicator of As dissolution. Therefore, we propose to replace the dissolved-Fe(II) with this novel ratio as the key index to quantitatively assess the kinetic change of As solubility potential across various soils under flooding conditions.
Collapse
Affiliation(s)
- Jingwen Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Song Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Jianyu Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Yijun Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Huang X, Zhu Y, Lin H, She D, Li P, Lang M, Xia Y. High-frequency monitoring during rainstorm events reveals nitrogen sources and transport in a rural catchment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121308. [PMID: 38823301 DOI: 10.1016/j.jenvman.2024.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Rural areas lacking essential sewage treatment facilities and collection systems often experience eutrophication due to elevated nutrient loads. Understanding nitrogen (N) sources and transport mechanisms in rural catchments is crucial for improving water quality and mitigating downstream export loads, particularly during storm events. To further elucidate the sources, pathways, and transport mechanisms of N from a rural catchment with intensive agricultural activities during storm events, we conducted an analysis of 21 events through continuous sampling over two rainy seasons in a small rural catchment from the lower reaches of the Yangtze River. The results revealed that ammonia-N (NH4+-N) and nitrate-N (NO3--N) exhibited distinct behaviors during rainstorm events, with NO3--N accounting for the primary nitrogen loss, its load being approximately forty times greater than that of NH4+-N. Through examinations of the concentration-discharge (c-Q) relationships, the findings revealed that, particularly in prolonged rainstorms, NH4+-N exhibited source limited pattern (b = -0.13, P < 0.01), while NO3--N displayed transport limited pattern (b = -0.21, P < 0.01). The figure-eight hysteresis pattern was prevalent for both NH4+-N and NO3--N (38.1% and 52.0%, respectively), arising from intricate interactions among diverse sources and pathways. For NO3--N, the hysteresis pattern shifted from clockwise under short-duration rainstorms to counter-clockwise under long-duration rainstorms, whereas hysteresis remained consistently clockwise for NH4+-N. The hysteresis analysis further suggests that the duration of rainstorms modifies hydrological connectivity, thereby influencing the transport processes of N. These insights provide valuable information for the development of targeted management strategies to reduce storm nutrient export in rural catchments.
Collapse
Affiliation(s)
- Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Yi Zhu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Han Lin
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Ping Li
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Man Lang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
7
|
Xiao HB, Zhou C, Hu XD, Wang J, Wang L, Huang JQ, Yang FT, Zhao JS, Shi ZH. Subsurface hydrological connectivity controls nitrate export flux in a hilly catchment. WATER RESEARCH 2024; 253:121308. [PMID: 38377925 DOI: 10.1016/j.watres.2024.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Subsurface runoff represents the main pathway of nitrate transport in hilly catchments. The magnitude of nitrate export from a source area is closely related to subsurface hydrological connectivity, which refers to the linkage of separate regions of a catchment via subsurface runoff. However, understanding of how subsurface hydrological connectivity regulates catchment nitrate export remains insufficient. This study conducted high-frequency monitoring of shallow groundwater in a hilly catchment over 17 months. Subsurface hydrological connectivity of the catchment over 38 rainfall events was analyzed by combining topography-based upscaling of shallow groundwater and graph theory. Moreover, cross-correlation analysis was used to evaluate the time-series similarity between subsurface hydrological connectivity and nitrate flux during rainfall events. The results showed that the maximum subsurface hydrological connectivity during 32 out of 38 rainfall events was below 0.5. Although subsurface flow paths (i.e., the pathways of lateral subsurface runoff) exhibited clear dynamic extension and contraction during rainfall events, most areas in the catchment did not establish subsurface hydrological connectivity with the stream. The primary pattern of nitrate export was flushing (44.7%), followed by dilution (34.2%), and chemostatic behavior (21.1%). A threshold relationship between subsurface hydrological connectivity and nitrate flux was identified, with nitrate flux rapidly increasing after the subsurface connectivity strength exceeded 0.121. Moreover, the median value of cross-correlation coefficients reached 0.67, which indicated subsurface hydrological connectivity exerts a strong control on nitrate flux. However, this control effect is not constant and it increases with rainfall amount and intensity as a power function. The results of this study provide comprehensive insights into the subsurface hydrological control of catchment nitrate export.
Collapse
Affiliation(s)
- H B Xiao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, PR China; Jiangxi Academy of Water Science and Engineering, Nanchang, Jiangxi 330029, PR China
| | - C Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - X D Hu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - J Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - L Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - J Q Huang
- Yangtze River Scientific Research Institute of Yangtze River Water Resources Commission, Wuhan 430010, PR China
| | - F T Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - J S Zhao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Z H Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, PR China; Jiangxi Academy of Water Science and Engineering, Nanchang, Jiangxi 330029, PR China.
| |
Collapse
|
8
|
Wang L, Tang X, Liu X, Xue R, Zhang J. Mineral solubilizing microorganisms and their combination with plants enhance slope stability by regulating soil aggregate structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1303102. [PMID: 38223289 PMCID: PMC10786348 DOI: 10.3389/fpls.2023.1303102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 01/16/2024]
Abstract
Introduction The stability of exposed slopes is prone to natural disasters, seriously threatening socio-economic and human security. Through years of exploration and research, we proposed an active permanent greening (APG) method based on patented mineral solubilizing microorganisms (MSMs) as an improvement over the traditional greening method. Methods In this study, we selected two MSMs (Bacillus thuringiensis and Gongronella butleri) and a plant species (Lolium perenne L.) set up six treatments (T1, T2, T3, T4, T5, and T6) to investigate the effectiveness of the MSMs and their combinations with the plant species on the soil stability using APG method. Results We noted that both MSMs and the plant species significantly improved soil aggregate stability and organic matter content. Of all the treatments, the T1 treatment exhibited better results, with soil aggregate stability and organic matter content increased to 45.63% and 137.57%, respectively, compared to the control. Soil stability was significant positively correlated with macroaggregate content and negatively with microaggregates. Using structural equation modeling analysis, we further evaluated the mechanism underpinning the influence of organic matter content and fractions on the content of each graded agglomerates. The analysis showed that the macroaggregate content was influenced by the presence of the plant species, primarily realized by altering the content of organic matter and aromatic and amide compounds in the agglomerates, whereas the microaggregate content was influenced by the addition of MSMs, primarily realized by the content of organic matter and polysaccharide compounds. Overall, we observed that the effect of the co-action of MSMs and the plant species was significantly better than that of using MSMs or the plant species alone. Discussion The findings of this study provide reliable data and theoretical support for the development and practical application of the APG method to gradually develop and improve the new greening approach.
Collapse
Affiliation(s)
- Lingjian Wang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xinggang Tang
- Jiangxi Institute of Land Space Survey and Planning, Nanchang, Jiangxi, China
- Technology Innovation Center for Land Spatial Eco-protection and Restoration in Great Lakes Basin, Ministry of Natural Resources (MNR), Nanchang, Jiangxi, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Rengui Xue
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jinchi Zhang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Wang J, Li X, Wang L, Zhang YP, Yin W, Bian HX, Xu JF, Hao R, Xiao HB, Shi YY, Jiang H, Shi ZH. Assessing hydrological connectivity for natural-artificial catchment with a new framework integrating graph theory and network analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119055. [PMID: 37741196 DOI: 10.1016/j.jenvman.2023.119055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Anthropogenic activities alter the underlying surface conditions and arrangements of landscape features in a drainage basin, interfering with the pollutant (e.g., dissolved nitrogen, phosphorus) transport network configuration and altering the hydrological response. Assessing the impact of anthropogenic activities on hydrological connectivity for natural-artificial catchment is critical to understand the hydrological-driven ecosystem processes, services and biodiversity. However, quantifying this impact at catchment scale remains challenging. In this study, a new framework was proposed to quantify the impact of anthropogenic activities on hydrological connectivity combined with graph theory and network analysis. This framework was exemplified in a natural-artificial catchment of the Yangtze River basin of China. Based on remote sensing and field-investigated data, three transport networks were constructed, including natural transport network (N1), ditch-road transport network (N2), and terrace-dominated transport network (N3), which reflected the different human intervention. The results showed that human intervention improved the connectivity of the nodes and enhanced the complexity of the catchment transport network structure. Anthropogenic activities significantly decreased the hydrological structural connectivity of the catchment. In particular, compared with the N1 network, the critical nodes for hydrological connectivity which were judged by connectivity indexes were reduced by 92.94% and 95.29% in the N2 and N3 network, respectively. Furthermore, the ditch-road construction had a greater impact than terraces in decreasing hydrological structural connectivity at catchment scale. This framework has proven effective in quantifying the hydrological connectivity analysis under different human intervention at the catchment scale and facilitates the improvement of catchment management strategies.
Collapse
Affiliation(s)
- J Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - X Li
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - L Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Y P Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - W Yin
- Changjiang Water Resources Protection Institute, Wuhan, 430051, China
| | - H X Bian
- Soil and Water Conservation Monitoring Center, Danjiangkou, 442700, China
| | - J F Xu
- Changjiang Water Resources Protection Institute, Wuhan, 430051, China
| | - R Hao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - H B Xiao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Y Y Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - H Jiang
- Soil and Water Conservation Monitoring Center, Danjiangkou, 442700, China
| | - Z H Shi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Peng K, Jiao Y, Gao J, Xiong W, Zhao Y, Yang S, Liao M. Viruses may facilitate the cyanobacterial blooming during summer bloom succession in Xiangxi Bay of Three Gorges Reservoir, China. Front Microbiol 2023; 14:1112590. [PMID: 36970686 PMCID: PMC10030618 DOI: 10.3389/fmicb.2023.1112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
The occurrence of cyanobacterial blooms in summer are frequently accompanied by the succession of phytoplankton communities in freshwater. However, little is known regarding the roles of viruses in the succession, such as in huge reservoirs. Here, we investigated the viral infection characteristics of phytoplankton and bacterioplankton during the summer bloom succession in Xiangxi Bay of Three Gorges Reservoir, China. The results indicated that three distinct bloom stages and two successions were observed. From cyanobacteria and diatom codominance to cyanobacteria dominance, the first succession involved different phyla and led to a Microcystis bloom. From Microcystis dominance to Microcystis and Anabaena codominance, the second succession was different Cyanophyta genera and resulted in the persistence of cyanobacterial bloom. The structural equation model (SEM) showed that the virus had positive influence on the phytoplankton community. Through the Spearman’s correlation and redundancy analysis (RDA), we speculated that both the increase of viral lysis in the eukaryotic community and the increase of lysogeny in cyanobacteria may contributed to the first succession and Microcystis blooms. In addition, the nutrients supplied by the lysis of bacterioplankton might benefit the second succession of different cyanobacterial genera and sustain the dominance of cyanobacteria. Based on hierarchical partitioning method, the viral variables still have a marked effect on the dynamics of phytoplankton community, although the environmental attributes were the major factors. Our findings suggested that viruses played multiple potential roles in summer bloom succession and may help the blooms success of cyanobacteria in Xiangxi Bay. Under the background of increasingly serious cyanobacterial blooms worldwide, our study may have great ecological and environmental significance for understanding the population succession in phytoplankton and controlling the cyanobacterial blooms.
Collapse
Affiliation(s)
- Kaida Peng
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Yiying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Jian Gao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Wen Xiong
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Yijun Zhao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Shao Yang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Mingjun Liao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, China
- *Correspondence: Mingjun Liao,
| |
Collapse
|