1
|
Liu J, Wang C, Zhou J, Dong K, Elsamadony M, Xu Y, Fujii M, Wei Y, Wang D. Thermodynamics and explainable machine learning assist in interpreting biodegradability of dissolved organic matter in sludge anaerobic digestion with thermal hydrolysis. BIORESOURCE TECHNOLOGY 2024; 412:131382. [PMID: 39214181 DOI: 10.1016/j.biortech.2024.131382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Dissolved organic matter (DOM) is essential in biological treatment, yet its specific roles remain incompletely understood. This study introduces a machine learning (ML) framework to interpret DOM biodegradability in the anaerobic digestion (AD) of sludge, incorporating a thermodynamic indicator (λ). Ensemble models such as Xgboost and LightGBM achieved high accuracy (training: 0.90-0.98; testing: 0.75-0.85). The explainability of the ML models revealed that the features λ, measured m/z, nitrogen to carbon ratio (N/C), hydrogen to carbon ratio (H/C), and nominal oxidation state of carbon (NOSC) were significant formula features determining biodegradability. Shapley values further indicated that the biodegradable DOM were mostly formulas with λ lower than 0.03, measured m/z value higher than 600 Da, and N/C ratios higher than 0.2. This study suggests that a strategy based on ML and its explainability, considering formula features, particularly thermodynamic indicators, provides a novel approach for understanding and estimating the biodegradation of DOM.
Collapse
Affiliation(s)
- Jibao Liu
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1-M1-22 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Chenlu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiahui Zhou
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1-M1-22 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Kun Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China
| | - Mohamed Elsamadony
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1-M1-22 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuansong Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
2
|
Wang H, Zhang QW, Chen G, Li X, Wang QL, Gao L, Wang J, He D, Li M. The loss of dissolved organic matter from biological soil crust at various successional stages under rainfall of different intensities: Insights into the changes of molecular components at different rainfall stages. WATER RESEARCH 2024; 257:121719. [PMID: 38728783 DOI: 10.1016/j.watres.2024.121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Biological soil crusts (BSCs) are typical covers in arid and semiarid regions. The dissolved organic matter (DOM) of BSCs can be transported to various aquatic ecosystems by rainfall-runoff processes. However, the spatiotemporal variation in quality and quantity of DOM in runoff remains unclear. Herein, four kinds of runoff plots covered by four successional stages of BSCs were set up on slopes, including bare runoff plot (BR), cyanobacteria crust covered runoff plot (CR), mixed crust covered runoff plot (MIR), and moss crust covered runoff plot (MOR). The quantity and quality of DOM in runoff during rainfall was investigated based on the stimulated rainfall experiments combined with optical spectroscopy and ultra-high resolution mass spectrometry analyses. The results showed that the DOM concentrations (i.e., 0.30 to 45.25 mg L-1) in runoff followed the pattern of MOR>MIR>CR>BR, and they were exponentially decreased with rainfall duration. The DOM loss rate of BR (8.26 to 11.64 %) was significantly greater than those of CR, MIR, and MOR (0.84 to 3.22 %). Highly unsaturated compounds (HUCs), unsaturated aliphatic compounds (UACs), saturated compounds (SCs), and peptide-like compounds (PLCs) were the dominated compounds of the water extractable DOM from the original soils. Thereinto, PLCs and UACs were more easily leached into runoff during rainfall. The relatively intensity of HUCs in runoff generally decreased with rainfall duration, while the relatively intensities of UACs, PLCs, and SCs slightly increased with rainfall duration. These findings suggested that the DOM loss rate was effectively decreased with the successional of BSCs during rainfall; meanwhile, some labile compounds (e.g., PLCs and UACs) were transported into various aquatic ecosystems by rainfall-runoff processes.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, Shaanxi, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Qing-Wei Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, Shaanxi, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Guo Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, Shaanxi, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Qi-Lin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Victoria, Melbourne, 8001, Australia
| | - Jian Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, 712100, Shaanxi, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, 712100, Shaanxi, China
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Rodrigues Matos R, Jennings EK, Kaesler J, Reemtsma T, Koch BP, Lechtenfeld OJ. Post column infusion of an internal standard into LC-FT-ICR MS enables semi-quantitative comparison of dissolved organic matter in original samples. Analyst 2024; 149:3468-3478. [PMID: 38742449 DOI: 10.1039/d4an00119b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ultrahigh resolution mass spectrometry hyphenated with liquid chromatography (LC) is an emerging tool to explore the isomeric composition of dissolved organic matter (DOM). However, matrix effects limit the potential for semi-quantitative comparison of DOM molecule abundances across samples. We introduce a post-column infused internal standard (PCI-IS) for reversed-phase LC-FT-ICR MS measurements of DOM and systematically evaluate matrix effects, detector linearity and the precision of mass peak intensities. Matrix effects for model compounds spiked into freshwater DOM samples ranging from a headwater stream to a major river were reduced by 5-10% for PCI-IS corrected mass peak intensities as compared to raw (i.e., untransformed) intensities. A linear regression of PCI-IS corrected DOM mass peak intensities across a typical DOM concentration range (2-15 mg dissolved organic carbon L-1) in original, non-extracted freshwater samples demonstrates excellent linearity of the detector response (r2 > 0.9 for 98% of detected molecular formulas across retention times). Importantly, PCI-IS could compensate for 80% of matrix effects across an environmental gradient of DOM composition from groundwater to surface water. This enabled studying the ionization efficiency of DOM isomers and linking the observed differences to the biogeochemical sources. With PCI-IS original, non-extracted DOM samples can be analysed by LC-FT-ICR MS without carbon load adjustment, and mass peak intensities can be reliably used to semi-quantitatively compare isomer abundances between compositionally similar DOM samples.
Collapse
Affiliation(s)
- Rebecca Rodrigues Matos
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Elaine K Jennings
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Jan Kaesler
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Thorsten Reemtsma
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
- Institute of Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Boris P Koch
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Ecological Chemistry, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Hochschule Bremerhaven, University of Applied Sciences, An der Karlstadt 8, 27568 Bremerhaven, Germany
| | - Oliver J Lechtenfeld
- Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
- ProVIS-Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
4
|
Cui Y, Wen S, Stegen JC, Hu A, Wang J. Chemodiversity of riverine dissolved organic matter: Effects of local environments and watershed characteristics. WATER RESEARCH 2024; 250:121054. [PMID: 38183798 DOI: 10.1016/j.watres.2023.121054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Riverine dissolved organic matter (DOM) is crucial to global carbon cycling and aquatic ecosystems. However, the geographical patterns and environmental drivers of DOM chemodiversity remain elusive especially in the waters and sediments of continental rivers. Here, we systematically analyzed DOM molecular diversity and composition in surface waters and sediments across 97 broadly distributed rivers using data from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium. We further examined the associations of molecular richness and composition with geographical, climatic, physicochemical variables, as well as the watershed characteristics. We found that molecular richness significantly decreased toward higher latitudes, but only in sediments (r = -0.24, p < 0.001). The environmental variables like precipitation and non-purgeable organic carbon showed strong associations with DOM molecular richness and composition. Interestingly, we identified that less-documented factors like watershed characteristics were also related to DOM molecular richness and composition. For instance, DOM molecular richness was positively correlated with the soil sand fraction for waters, while with the percentage of forest for sediments. Importantly, the effects of watershed characteristics on DOM molecular richness and composition were generally stronger in waters than sediments. This phenomenon was further supported by the fact that 11 out of 13 watershed characteristics (e.g., the percentages of impervious area and cropland) showed more positive than negative correlations with molecular abundance especially in waters. As the percentage of forest increased, there was a continuous accumulation of the compounds with higher molecular weight, aromaticity, and degree of unsaturation. In contrast, human activities accumulated the compounds with lower molecular weight and oxygenation, and higher bioavailability. Our findings imply that it may be possible to use a small set of broadly available data types to predict DOM molecular richness and composition across diverse river systems. Elucidation of mechanisms underlying these relationships will provide further enhancements to such predictions, especially when extrapolating to unsampled systems.
Collapse
Affiliation(s)
- Yifan Cui
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shuailong Wen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - James C Stegen
- Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Han B, Chen L, Xiao K, Chen R, Cao D, Yu L, Li Y, Tao S, Liu W. Characteristics of dissolved organic matter (DOM) in Chinese farmland soils under different climate zone types: A molecular perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119695. [PMID: 38035506 DOI: 10.1016/j.jenvman.2023.119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Interactions between dissolved organic matter (DOM) and surrounding environments are highly complex. Understanding DOM at the molecular level can contribute to the management of soil pollution and safeguarding agricultural fields. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has enabled a molecular-level understanding of DOM. Accordingly, in this study, we investigated soil samples from 27 different regions of mainland China with various soil types and climatic characteristics. Based on the geographical features of the four typical climatic zones in mainland China (temperate monsoon, temperate continental, subtropical monsoon, and Qinghai-Tibet Plateau climates), we employed high-resolution mass spectrometry to determine the molecular diversity of DOM under different climatic conditions. The results indicated that lignin and tannin-like substances were the most active categories of DOM in the soils. Collectively, the composition and unsaturation of DOM molecules are influenced by sunlight, precipitation, temperature, and human activity. All climatic regions contained a substantial number of characteristic molecules, with CHO and CHON constituting over 80%, and DOM containing nitrogen and sulfur was relatively more abundant in the monsoon regions. The complex composition of DOM incorporates various active functional groups, such as -NO2 and -ONO2. Furthermore, soil DOM in the monsoon regions showed higher unsaturation and facilitated various (bio) biochemical reactions in the soil.
Collapse
Affiliation(s)
- BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - RuYa Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, Zhejiang Province, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Zhao C, Zhang H, Li P, Yi Y, Zhou Y, Wang Y, He C, Shi Q, He D. Dissolved organic matter cycling revealed from the molecular level in three coastal bays of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166843. [PMID: 37678524 DOI: 10.1016/j.scitotenv.2023.166843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
As the widespread distributed and critical zones connecting the land and ocean systems, coastal bays are special units with semi-enclosed landforms to accommodate and process dissolved organic matter (DOM) in the context of increasing anthropogenic effects globally. However, compared to other common systems that have been paid much attention to (e.g., large river estuaries, wetlands), the roles of the coastal bays in coastal carbon cycling are less explored. To fill this knowledge gap, here we combined optical techniques and ultra-high-resolution mass spectrometry to systematically investigate the DOM chemistry of the three typical coastal bays in different nutrient levels, Xiangshan Bay, Jiaozhou Bay, and Sishili Bay, in China. Results show that terrestrial signals and anthropogenic imprints were observed in these three bays to various extents. Besides, Xiangshan Bay with a higher nutrient level had the DOM characterized by lower humification and aromaticity degree than Jiaozhou Bay and Sishili Bay, which not likely mainly resulted from the differences in the primary production or photochemical processing. Further examination reveals that microbial processing likely contributes to the differences in DOM chemistry among the three bays, as indicated by different proportions of potentially transformed nitrogen-containing molecules and relative abundances of the island of stability molecules. Considering the nutrient levels in different bays, we speculate that the lower nutrient concentrations would promote the efficiency of the microbial carbon pump (MCP), which hypothesized that heterotrophic microorganisms might contribute to the formation of marine recalcitrant organic carbon. Additionally, the enrichment of oxygen-rich compounds in the unique carboxyl-rich alicyclic molecule pool of Jiaozhou Bay and Sishili Bay suggests that the efficient MCP might preferentially form them in these two bays. This study emphasizes the importance of coordinating the land and ocean systems and controlling the nutrient discharge to coastal bays, thus, to potentially promote long-term marine carbon sequestration.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China; School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Centre, Dalian 116023, China
| | - Penghui Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuanbi Yi
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yuping Zhou
- School of Earth Sciences, Zhejiang University, Hangzhou 310058, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China; School of Earth Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
7
|
Zhang H, Ni J, Wei R, Chen W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165180. [PMID: 37385508 DOI: 10.1016/j.scitotenv.2023.165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Vegetation fire frequently occurs globally and produces two types of water-soluble organic carbon (WSOC) including black carbon WSOC (BC-WSOC) and smoke-WSOC, they will eventually enter the surface environment (soil and water) and participate in the eco-environmental processes on the earth surface. Exploring the unique features of BC-WSOC and smoke-WSOC is critical and fundamental for understanding their eco-environmental effects. Presently, their differences from the natural WSOC of soil and water remain unknown. This study produced various BC-WSOC and smoke-WSOC by simulating vegetation fire and used UV-vis, fluorescent EEM-PARAFAC, and fluorescent EEM-SOM to analyze their different features from natural WSOC of soil and water. The results showed that the maximum yield of smoke-WSOC reached about 6600 folds that of BC-WSOC after a vegetation fire event. The increasing burning temperature decreased the yield, molecular weight, polarity, and protein-like matters abundance of BC-WSOC and increased the aromaticity of BC-WSOC, but presented a negligible effect on the features of smoke-WSOC. Furthermore, compared with natural WSOC, BC-WSOC had a greater aromaticity, smaller molecular weight, and more humic-like matters, while smoke-WSOC had a lower aromaticity, smaller molecular size, higher polarity, and more protein-like matters. EEM-SOM analysis indicated that the ratio between the fluorescence intensity at Ex/Em: 275 nm/320 nm and the sum fluorescence intensity at Ex/Em: 275 nm/412 nm and Ex/Em: 310 nm/420 nm could effectively differentiate WSOC of different sources, following the order of smoke-WSOC (0.64-11.38) > water-WSOC and soil-WSOC (0.06-0.76) > BC-WSOC (0.0016-0.04). Hence, BC-WSOC and smoke-WSOC possibly directly alter the quantity, properties, and organic compositions of WSOC in soil and water. Owing to smoke-WSOC having far greater yield and bigger difference from natural WSOC than BC-WSOC, the eco-environmental effect of smoke-WSOC deposition should be given more attention after a vegetation fire.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
8
|
Zhao C, Hou Y, Wang Y, Li P, He C, Shi Q, Yi Y, He D. Unraveling the photochemical reactivity of dissolved organic matter in the Yangtze river estuary: Integrating incubations with field observations. WATER RESEARCH 2023; 245:120638. [PMID: 37742401 DOI: 10.1016/j.watres.2023.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Dissolved organic matter (DOM) sustains a substantial part of the organic matter transported seaward in large estuaries, where photochemical reactions significantly influence its transformation and fate. Irradiation experiments can provide valuable information on the photochemical reactivity (photo-labile, photo-resistant, and photo-product) of molecules. However, previous research paid less attention to exploring the controls of the initial DOM chemistry to irradiation experiments and examining the applicability of their further integration with field research. Here, we conducted irradiation experiments for samples from the freshwater and seawater endmember of the Yangtze River Estuary (YRE), which receives organic matter transport from the largest river in China, the Yangtze River. Molecules that occurred before and after irradiation experiments were characterized by the Fourier transform ion cyclotron resonance mass spectrometry. Results show that both post-irradiation samples have the lower aromaticity degree and reduced oxidation state, while the freshwater endmember sample exhibits more dramatic changes, indicating the controls of parent molecules to the effect of irradiation experiments. Integrating with the "molecular matching" approach, we compared the molecules occurring in field samples with the classified molecules (photo-resistant, photo-labile, and photo-product) acquired from performed irradiation experiments and correlated the relative intensity of photochemical reactivity types with salinity. When applying results from different experiments to conduct "molecular matching", the photo-resistant and photo-labile relative intensity possess consistently positive and negative trends with increasing salinity, respectively. This suggests their reliability for molecular matching applications, while the inconsistent trends for the photo-product relative intensity with salinity suggest its uncertainty in assessing the photo-induced effects. Moreover, the molecular composition within the photochemical reactivity types in field samples also evolved along the salinity gradient and showed similar trends with the DOM changes after experimental irradiation. Despite various factors influencing estimations, it is revealed that a fraction of aromatic molecules and majority of carboxyl-rich alicyclic molecules considered with biologically persistent nature in the YRE freshwater zone are simultaneously not susceptible to photochemical transformation to potentially constitute a long-term marine carbon sink. This study emphasizes the importance and limitations of the combination of field research and laboratory-controlled experiments to provide a better understanding of the crucial role of photochemical reactions in affecting carbon cycling in large estuaries.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yifu Hou
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Penghui Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Yuanbi Yi
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Chen X, Cai R, Zhuo X, Chen Q, He C, Sun J, Zhang Y, Zheng Q, Shi Q, Jiao N. Niche differentiation of microbial community shapes vertical distribution of recalcitrant dissolved organic matter in deep-sea sediments. ENVIRONMENT INTERNATIONAL 2023; 178:108080. [PMID: 37429058 DOI: 10.1016/j.envint.2023.108080] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Sedimentary organic matter provides carbon substrates and energy sources for microorganisms, which drive benthic biogeochemical processes and in turn modify the quantity and quality of dissolved organic matter (DOM). However, the molecular composition and distribution of DOM and its interactions with microbes in deep-sea sediments remain poorly understood. Here, molecular composition of DOM and its relationship with microbes were analyzed in samples collected from two sediment cores (∼40 cm below the sea floor), at depths of 1157 and 2253 m from the South China Sea. Results show that niche differentiation was observed on a fine scale in different sediment layers, with Proteobacteria and Nitrososphaeria dominating the shallow sediments (0-6 cm) and Chloroflexi and Bathyarchaeia prevailing in deeper sediments (6-40 cm), indicating correspondence of microbial community composition with both geographical isolation and the availability of organic matter. An intimate link between the DOM composition and microbial community further indicates that, microbial mineralization of fresh organic matter in the shallow layer potentially resulted in the accumulation of recalcitrant DOM (RDOM), while relatively low abundance of RDOM was linked to anaerobic microbial utilization in deeper sediment layers. In addition, higher RDOM abundance in the overlying water, as compared to that in the surface sediment, suggests that sediment might be a source of deep-sea RDOM. These results emphasize the close relation between the distribution of sediment DOM and different microbial community, laying a foundation for understanding the complex dynamics of RDOM in deep-sea sediment and water column.
Collapse
Affiliation(s)
- Xiaoxia Chen
- College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Ruanhong Cai
- College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China.
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, Research Centre for Geomicrobial Resources and Application, China University of Petroleum, Beijing 102249, China
| | - Quanrui Chen
- College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, Research Centre for Geomicrobial Resources and Application, China University of Petroleum, Beijing 102249, China
| | - Jia Sun
- College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Yao Zhang
- College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Qiang Zheng
- College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, Research Centre for Geomicrobial Resources and Application, China University of Petroleum, Beijing 102249, China
| | - Nianzhi Jiao
- College of Ocean and Earth Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China; Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China.
| |
Collapse
|