1
|
He G, Zhao J, Liu Y, Wang D, Sheng Z, Zhou Q, Pan Y, Yang M. Advances in environmental analysis of high molecular weight disinfection byproducts. Anal Bioanal Chem 2025; 417:513-534. [PMID: 39527292 DOI: 10.1007/s00216-024-05627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The disinfection of drinking water, while critical for public health, leads to the formation of disinfection byproducts (DBPs). Toxicological and epidemiological studies have demonstrated that exposure to disinfected water samples may pose adverse effects on human health. Recent research highlights the potential greater toxicity contribution of DBP fractions with high molecular weight (MW) (with more than two carbon atoms) compared to regulated low MW DBPs, emphasizing the need for advanced analytical techniques to identify and characterize these fractions. In this review, we summarize different analytical techniques for indirectly assessing DBP precursors and directly analyzing DBPs, discussing their advantages and limitations. Additionally, since identifying DBP toxicity agents in complex water mixtures is crucial for further optimizing water disinfection and controlling DBP formation, key DBP identification methods based on both chemical and bioassay metrics are also included and discussed. Finally, we highlight three important aspects for the future development of analytical methods to enhance the understanding of high MW DBP formation.
Collapse
Affiliation(s)
- Guiying He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiayan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dongxiao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zan Sheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Chen X, Zhu Y, Zhang Y. Effects of polystyrene microplastics on the extracellular and intracellular dissolved organic matter released by Skeletonema costatum using a novel in situ method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124604. [PMID: 39053803 DOI: 10.1016/j.envpol.2024.124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) affect the physicochemical algal-dissolved organic matter properties, indirectly influencing the environmental behavior of contaminants including persistent organic pollutants and heavy metals. Limited research is available on the roles played by intracellular- and extracellular-dissolved organic matter (I-DOM and E-DOM) in the processes that affect the environmental behavior of contaminants. Furthermore, the effects of MPs on the production of I-DOM and E-DOM, as well as their environmental behaviors, remain uncertain. A critical issue lies in the challenge of quantitatively identifying I-DOM and E-DOM in situ. In this work, a new fluorescence ratio method was developed and applied to in situ examine the impacts of polystyrene (PS) MPs (50, 500 nm, and 5 μm) on the I-DOM and E-DOM released by Skeletonema costatum (S. costatum). The experimental results indicated that the detection limits were 0.06 mg L-1, with the respective minimum detectable proportions being 2% for both E-DOM and I-DOM. The suppressive effects of 10-50 mg L-1 of 50 and 500 nm PS MPs on the cell proliferation of S. costatum and the E-DOM secretion were most pronounced on day 6. And the rates of suppression of E-DOM secretion were 10.1%-18.2% and 4.2%-13.9%, respectively. The exposure of algal cells to 50 mg L-1 of 50 and 500 nm PS MPs led to cell rupture and the leakage of I-DOM on day 6. This suggests that the developed method in the laboratory could offer a promising approach for studying the generation of E-DOM and I-DOM in situ, as well as their environmental behaviors affected by MPs.
Collapse
Affiliation(s)
- Xixue Chen
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Shen Q, Zhao T, Wawryk NJP, Chau KNM, Zhang D, Carroll K, Chu W, Huan T, Li XF. Nontargeted Analysis of Reactive Nitrogenous Compounds in Suwannee River Standard Reference Materials and Authentic River Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15807-15815. [PMID: 39163399 PMCID: PMC11375767 DOI: 10.1021/acs.est.4c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Concerns over toxic nitrogenous disinfection byproducts (N-DBPs) necessitate identifying their precursors in source water. Natural organic amino compounds are known precursors to N-DBPs. Three Suwannee River (SR) standard reference materials (SRMs), humic acids (HA), fulvic acids (FA), and natural organic matter (NOM), are commonly used to study DBP formation, but the chemical makeup of amino compounds in SRSRMs remains largely unknown. To address this, we combined stable hydrogen/deuterium isotope labeling, HDPairFinder bioinformatics, and nontargeted high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) to characterize these compounds in SRSRMs. This method classifies reactive amines, provides accurate masses and MS/MS spectra, and quantifies intensities. We identified 2707 high-quality features with primary and/or secondary amines in SRSRMs and 75% of them having an m/z < 300. Across all three SRSRMs, 327 amino features were detected, while 856, 794, and 200 unique features were found in SRNOM, SRHA, and SRFA, respectively. In North Saskatchewan River (NSR) samples, a total of 6449 amino features were detected, 818 of them matched those in SRSRMs, and 87% of them were different between the two rivers. Using chemical standards, we confirmed 10 compounds and tentatively identified 5 more. This study highlights similarities and differences in reactive N-precursors in SRSRMs and local river water, enhancing the understanding of geo-differences in reactive N-precursors in different source waters.
Collapse
Affiliation(s)
- Qiming Shen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - K N Minh Chau
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Di Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kristin Carroll
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
4
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
5
|
Bai Y, Li K, Cao R, Xu H, Wang J, Huang T, Wen G. Changes of characteristics and disinfection by-products formation potential of intracellular organic matter with different molecular weight in metalimnetic oxygen minimum. CHEMOSPHERE 2024; 354:141718. [PMID: 38490607 DOI: 10.1016/j.chemosphere.2024.141718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Metalimnetic oxygen minimum (MOM) occurs in reservoirs or lakes due to stratification and algal blooms, which has low dissolved oxygen (DO) levels and leads to the deterioration of water quality. The transformation mechanism and the impact on the water quality of intracellular organic matter (IOM) derived from algae are poorly understood under MOM conditions. In this study, IOM extracted by Microcystis aeruginosa was divided into five components according to molecular weight (MW), and the changes of characteristics and correlated disinfection by-products formation potential (DBPFP) were analyzed and compared under MOM conditions. The removal efficiency of dissolved organic carbon (DOC) in the <5 kDa fraction (66.6%) was higher than that in the >100 kDa fraction (41.8%) after a 14-day incubation under MOM conditions. The same tendency also occurred in Fmax and DBPFP. The decrease in Fmax was mainly due to the decline in tryptophan-like and tyrosine-like for all IOM fractions. The diversity of microorganisms degrading the MW > 100 kDa fraction was lower than others. Besides low MW fractions, these findings indicated that more attention should be paid to high MW fractions which were resistant to biodegradation under MOM conditions during water treatment.
Collapse
Affiliation(s)
- Yuannan Bai
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
6
|
Wang Z, Yu S, Nie Y, Liu R, Zhu W, Zhou Z, Ma Y, Diao J. Effect of acetochlor on the symbiotic relationship between microalgae and bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132848. [PMID: 37924702 DOI: 10.1016/j.jhazmat.2023.132848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
In this study, two strains of symbiotic bacteria (SOB-1 and SOB-2) were isolated from Scenedesmus obliquus, and various algal-bacterial mutualistic systems were established under acetochlor (ACT) stress conditions. Following exposure to varying ACT concentrations from 2.0 to 25.0 μg/L, the capacity for co-cultured bacteria to degrade ACT was enhanced in 7 days by up to 226.9% (SOB-1) and 193.0% (SOB-2), compared with axenic algae, although bacteria exposed to higher ACT concentrations exacerbated algal metabolic stress, oxidative states, apoptosis and cellular lysis. ACT reduced carbohydrates in the phycosphere by up to 31.5%; compensatory nutrient plunder and structural damage by bacteria were the potential exploitation pathways determined based on the inhibition of bacterial infection using a glucanase inhibitor. The ACT-induced reduction in algal antimicrobial substances, including fatty acids and phenolics (by up to 58.1% and 56.6%, respectively), also facilitated bacterial exploitation of algae. ACT-dependent interspecific interaction coefficients between algae and bacteria generated from long-term symbiosis cultures implied that bacteria moved from mutualism (0 and 2.0 μg/L ACT) to exploitation (7.9 and 25.0 μg/L ACT). The population dynamic model under incremental ACT-concentration scenarios inferred that theoretical systematic extinction may occur in algal-bacterial systems earlier than in axenic algae. These outcomes provide interspecific insights into the distortion of algal-bacterial reciprocity due to the ecotoxicological effects of ACT.
Collapse
Affiliation(s)
- Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Ran Liu
- Beijing Institute of Food Inspection and Research (Beijing Municipal Center for Food Safety Monitoring and Risk Assessment), Beijing, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|