1
|
Fu Y, Hu X, Wang P, Li Q, Wang L, Chen J, Wang Z. Photic versus aphotic production of organohalogens from native versus invasive wetland plants-derived dissolved organic matter. WATER RESEARCH 2025; 274:123103. [PMID: 39793157 DOI: 10.1016/j.watres.2025.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
The aphotic formation of natural organohalogens (NOHs) remains inadequately understood, in contrast to the well-documented photo-halogenation process of dissolved organic matter (DOM), despite the significant biogeochemical implications associated with NOHs. This study investigates the differences in the formation of chlorinated and brominated compounds from the photochemical and aphotic reactions of native Phragmites australis (PA-DOM) and invasive Spartina alterniflora (SA-DOM). The findings indicate that SA-DOM exhibits a greater potential for photochemical halogenation, attributed to its higher aromatic content and enhanced photostability. Utilizing advanced mass spectrometry, the study identifies nitrogen-containing and free saturated compounds as primary precursors for both types of DOM during photochemical halogenation. Notably, significant disparities in the halogenation processes of lignin/CRAM, nitrogen-containing/free saturated compounds, and amino sugars between SA-DOM and PA-DOM are observed, leading to a higher production of NOHs in PA-DOM during aphotic reactions compared to photic reactions, even in artificial seawater. Furthermore, the study emphasizes the critical role of dissolved oxygen in the formation of NOHs from PA-DOM under aphotic conditions. Given the rapid fluctuations in oxygen levels, salinity, and solar intensity, alongside tidal and diurnal cycles, the significance of both photic and aphotic pathways for NOHs formation should not be overlooked.
Collapse
Affiliation(s)
- Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqi Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Pu Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jialin Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China.
| |
Collapse
|
2
|
Pan Y, Garg S, Peng J, Yang X, Waite TD. Use of Copper in Evaluating the Role of Phenolic Moieties in the Photooxidation of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3067-3076. [PMID: 39927797 DOI: 10.1021/acs.est.4c13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
In a recent study, copper was shown to act as a novel quencher for investigating the mechanism of the photooxidation and photobleaching of dissolved organic matter (DOM) by selectively quenching the one-electron oxidizing intermediates of DOM (DOMD•+). However, the capture of DOMD•+ by Cu is possibly partially due to strong competition from phenolic antioxidant moieties intrinsically present in DOM for DOMD•+ quenching. In this study, the extent of interaction between DOMD•+ and phenolic antioxidant moieties is quantified by measuring the inhibitory effect of Cu on DOM photooxidation and photobleaching under varying pH (5.2-10.0) conditions. The increase in pH facilitates formation of deprotonated phenolic moieties (pKa ∼ 9-10), increasing their quenching capacity of DOMD•+. Accordingly, our results indicate that the inhibitory effect of Cu on the DOM photobleaching and the loss of electron-donating moieties of DOM significantly decreased with an increase in pH, suggesting more pronounced competition for DOMD•+ from antioxidant phenolic moieties within DOM. Considering the precursors of DOMD•+ also originate from phenolic moieties of DOM, the findings of this study provide important insights into the long-distance charge transfer reactions occurring at different phenolic moiety sites during DOM photooxidation.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Zhu S, Yang P, Yin Y, Zhang S, Lv J, Tian S, Jiang T, Wang D. Influences of wildfire on the soil dissolved organic matter characteristics and its electron-donating capacity. WATER RESEARCH 2024; 266:122382. [PMID: 39298894 DOI: 10.1016/j.watres.2024.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Global increases in the intensity and frequency of wildfires are driving major changes in soil organic matter (SOM) characteristics, including soil dissolved organic matter (DOM). As the most crucial component of SOM, soil DOM plays a pivotal role in the carbon cycle and regulates the environmental fate of contaminants through its versatile reactivities, including electron-donating capacity (EDC). However, it is still being determined how wildfire influences key characteristics of soil DOM and subsequent effects on EDC in forest soils. Thus, we conducted our study to fill this gap with the forest soils of Jinyun Mountain Nature Reserve of China, which experienced an unprecedented wildfire event in 2022. The results from optical characterization, high-performance size-exclusion chromatography (HPSEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed decreasing molecular weight but elevating nitrogen-containing molecular formulas of soil DOM in the burned soils. This could be attributed to the Maillard reaction and microbial re-colonies. Additionally, wildfires increased the condensed aromatics and lignin components in soil DOM. In the burned soils, we observed increasing EDC of soil DOM, which accounts for an increase in lignin-derived phenolic components. Overall, the findings of this study demonstrate that eco-disturbances, such as wildfires, induce alterations in the properties of DOM, leading to variations in its reactivity and potentially influencing the fate of environmental pollutants beyond carbon dynamics alone. Thus, incorporating the dynamic properties of soil DOM, particularly in the context of climate change, can enhance the assessment of risks associated with contaminants in soil and water, providing valuable insights.
Collapse
Affiliation(s)
- Sihua Zhu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Peijie Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanyi Tian
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Chen L, Zhang Z, Yang R, Wang X, Yu J, Jiang H, Zhang W, Xi B, Sun X, Li N. Nano Fe 3O 4 improved the electron donating capacity of dissolved organic matter during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122354. [PMID: 39226814 DOI: 10.1016/j.jenvman.2024.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The effect of Fe3O4 nanoparticles (Fe3O4 NPs) on the electron transfer process in aerobic composting systems remains unexplored. In this study, we compared the electron transfer characteristics of DOM in sludge composting without additives (group CK) and with the addition of 50 mg/kg Fe3O4 NPs additive (group Fe). It was demonstrated that the electron transfer capacity (ETC) and electron donating capacity (EDC) of compost-derived DOM increased by 13%-29% and 40%-47%, respectively, with the addition of Fe3O4 NPs during sludge composting. Analyzing the composition and structure of DOM revealed that Fe3O4 NPs promoted the formation of humic acid-like substances and enhanced the aromatic condensation degree of DOM. Correlation analysis indicated that the increase in EDC of DOM was closely associated with the phenolic group in DOM and influenced by quinone groups and the degree of aromatization of DOM. The higher EDC and the structural evolution of DOM in group Fe reduced the bioaccessibility of Cu, Cr, Ni, Zn. This study contributes to a deeper understanding of the redox evolutionary mechanism of DOM in sludge composting and broadens the application of iron oxides additives.
Collapse
Affiliation(s)
- Liu Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Zeyu Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Rui Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaojie Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jieyu Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Beidou Xi
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Ningjie Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
5
|
Yang X, Ye L, Zhou Y, Peng J, Kong Q. Effects of pH on the triplet state dissolved organic matter induced free available chlorine decay and radical formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133268. [PMID: 38113730 DOI: 10.1016/j.jhazmat.2023.133268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Triplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based advanced oxidation processes. However, the effects of pH still need investigation. This work quantitatively analyzed the pH-dependent free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•) induced by 3DOM* or triplet state photosensitizer (3PS*). Upon UV irradiation at 254 nm, the decay rate of FAC by 3DOM* or 3PS* was the highest at neutral pH, while those by dark reaction of DOM and the direct photolysis of FAC were the highest at acidic conditions. This is attributed to the variation of FAC species, 3DOM* or 3PS* formation, and the reaction rate constants of FAC with 3DOM* or 3PS* at pH 5.0-10.0. 3DOM* and 3PS* formed increasingly with pH varying from 5.0 to 10.0, while their reactivity with FAC decreased due to the speciation from HOCl to OCl-. Radical formation (i.e., HO• and Cl•) from FAC reaction with 3DOM* or 3PS* occurred at all the testing pH range (5.0-10.0). This work highlighted the pH-dependent role of 3DOM* in oxidant decay and radical formation in treating DOM containing waters through oxidant photolysis. ENVIRONMENTAL IMPLICATIONS: Triplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based AOPs. This study revealed the effects of pH in 3DOM* induced free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•). With DOM at 3 mgC L-1, FAC decayed fastest under neutral conditions and radical formation (i.e., HO• and Cl•) was enhanced at 5.0-10.0 due to 3DOM* reaction with FAC. These results highlighted the pH-dependent role of 3DOM* in oxidant transformation and radical formation in treating DOM containing waters by AOPs based on oxidant photolysis.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianglin Peng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|