1
|
Yang G, Chen Y, Ren Q, Liu Q, Ren M, Zheng J, Zhang R, Xia Z, Zhang L, Wan C, Luo X. Remote sensing ecological index (RSEI) affects microbial community diversity in ecosystems of different qualities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176489. [PMID: 39322083 DOI: 10.1016/j.scitotenv.2024.176489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Soil microorganisms are key to ecological environment stability, but climate change and human activities exacerbate ecological environment changes. Therefore, assessment of ecological environment quality impacts on microbial diversity is needed. The Tarim River is the largest inland river in China and plays a crucial role in supporting regional biodiversity, maintaining ecological balance, and preventing desertification. In this study, we used the Remote Sensing-based Ecological Index (RSEI) to assess the ecological quality of habitats in the Tarim River Basin and explore the effects of habitat quality (extreme, semi-extreme, and general) on the structural diversity of microbial (bacterial and fungal) communities, biogeographic patterns, co-occurrence networks, and community assembly processes. Study results show that soil physicochemical characteristics varied significantly with habitat quality; highly resilient microorganisms are more abundant in habitats with low ecological quality. RSEI affects changes in microbial communities, and the positive correlation ratio of the network is inversely proportional to RSEI. The interspecific relationships of microbial communities in the Tarim River Basin are dominated by positive correlations, and community assembly is strongly influenced by stochastic processes. RSEI directly affects soil microbial diversity, with its contribution to both bacterial and fungal diversity being 0.27. Total nitrogen (TN) also directly affects microbial diversity, with effects of 0.11 on bacteria and 0.07 on fungi, respectively. This study provides scientific evidence and technical support for understanding microbial diversity in environments and for the development of regional sustainable development policies.
Collapse
Affiliation(s)
- Guo Yang
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Yihuang Chen
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Qiang Ren
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Qin Liu
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Min Ren
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jinshui Zheng
- School of Computer Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ruili Zhang
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China
| | - Zhanfeng Xia
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Lili Zhang
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Chuanxing Wan
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xiaoxia Luo
- Key Laboratory of Conservation and Utilization of Biological Resources in the Tarim Basin, Alar, Xinjiang 843300, China; College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
2
|
Liao X, Hou L, Zhang L, Grossart HP, Liu K, Liu J, Chen Y, Liu Y, Hu A. Distinct influences of altitude on microbiome and antibiotic resistome assembly in a glacial river ecosystem of Mount Everest. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135675. [PMID: 39216241 DOI: 10.1016/j.jhazmat.2024.135675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The profound influences of altitude on aquatic microbiome were well documented. However, differences in the responses of different life domains (bacteria, microeukaryotes, viruses) and antibiotics resistance genes (ARGs) in glacier river ecosystems to altitude remain unknown. Here, we employed shotgun metagenomic and amplicon sequencing to characterize the altitudinal variations of microbiome and ARGs in the Rongbu River, Mount Everest. Our results indicated the relative influences of stochastic processes on microbiome and ARGs assembly in water and sediment were in the following order: microeukaryotes < ARGs < viruses < bacteria. Moreover, distinct assembly patterns of the microbiome and ARGs were found in response to differences in altitude, the latter of which shift from deterministic to stochastic processes with increasing differences in altitude. Partial least squares path modeling revealed that mobile genetic elements (MGEs) and viral β-diversity were the major factors influencing the ARG abundances. Taken together, our work revealed that altitude-caused environmental changes led to significant changes in the composition and assembly processes of the microbiome and ARGs, while ARGs had a unique response pattern to altitude. Our findings provide novel insights into the impacts of altitude on the biogeographic distribution of microbiome and ARGs, and the associated driving forces in glacier river ecosystems.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322, United States; Utah Water Research Laboratory, 1600 Canyon Road, Logan, UT 84321, United States
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junzhi Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Yuying Chen
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wen Z, Han PJ, Han DY, Song L, Wei YH, Zhu HY, Chen J, Guo ZX, Bai FY. Microbial community assembly patterns at the species level in different parts of the medium temperature Daqu during fermentation. Curr Res Food Sci 2024; 9:100883. [PMID: 39493699 PMCID: PMC11530605 DOI: 10.1016/j.crfs.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Medium-temperature Daqu (MT-Daqu) serves as a crucial saccharifying and fermentation agent in the production of strong-flavor Baijiu. Due to the spatial heterogeneity of solid fermentation, significant differences occurred in the fermentation state and appearance features in different parts of Daqu during fermentation. Currently, the understanding of the underlying mechanism behind this phenomenon remains limited. Here, we analyzed the microbial succession and assembly models and driving factors in different parts of MT-Daqu at the species level based on the PacBio single-molecule real-time sequencing technology. The results showed significantly different bacterial and fungal community compositions, successions, and interaction patterns in different parts of MT-Daqu. The bacterial community composition and succession model in the middle layer were similar to those in the core layer, whereas the fungal community composition and succession model in the surface layer were similar to those in the middle layer. The co-occurrence network analysis showed that microbial interaction is stronger in the middle and core layers than in the surface layer. Analyses based on both niche theory and neutral theory models indicated that deterministic processes predominantly governed the microbial community assembly and these processes played an increasingly important role from the surface to the core layer. Random forest analysis revealed that temperature was the primary endogenous factor driving the bacterial and fungal community assembly. The results of this study contribute to a better understanding of the microbial community in MT-Daqu and are helpful for the quality control of MT-Daqu fermentation.
Collapse
Affiliation(s)
- Zhang Wen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Chen
- Yibin Nanxi Liquor Co., Ltd., Yibin, 644000, PR China
| | | | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
4
|
Xiong X, Feng L, Huang J, Wan W, Yang Y, Liu W. Species pool and local assembly processes drive β diversity of ammonia-oxidizing and denitrifying microbial communities in rivers along a latitudinal gradient. Mol Ecol 2024; 33:e17516. [PMID: 39188110 DOI: 10.1111/mec.17516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Both regional species pool and local community assembly mechanism drive the microbial diversity patterns across geographical gradients. However, little has been done to separate their effects on the β diversity patterns of microbial communities involved in nitrogen (N) cycling in river ecosystems. Here, we use high-throughput sequencing of the archaeal amoA, bacterial amoA, nirK, and nirS genes, null model, and neutral community model to distinguish the relative importance of species pool and local assembly processes for ammonia-oxidizing and denitrifying communities in river wetlands along a latitudinal gradient in eastern China. Results indicated that the β diversity of the nirS-type denitrifying community co-varied with γ diversity and environmental heterogeneity, implying that regional species pool and heterogeneous selection explained variation in β diversity. However, the β diversity of ammonia-oxidizing and nirK-type denitrifying communities did not correlate with γ diversity and environmental heterogeneity. The continuous hump distribution of β deviation along the latitudinal gradient and the lower species dispersal rate indicated that the dispersal limitation shaped the variation in β diversity of ammonia-oxidizing and nirK-type denitrifying communities. Additionally, biotic interactions drove ammonia-oxidizing and nirS-type denitrifying communities by influencing species co-occurrence patterns. Our study highlights the importance of regional species pool and local community assembly processes in shaping geographical patterns of N-cycling microorganisms and extends knowledge of their adaptability to a continuously changing environment on a large scale.
Collapse
Affiliation(s)
- Xiang Xiong
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences and Hubei Province, Wuhan, China
| | - Lian Feng
- College of Science, Tibet University, Lhasa, China
| | - Jieya Huang
- College of Science, Tibet University, Lhasa, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences and Hubei Province, Wuhan, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences and Hubei Province, Wuhan, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences and Hubei Province, Wuhan, China
| |
Collapse
|
5
|
Xiao P, Wu Y, Zuo J, Grossart HP, Sun R, Li G, Jiang H, Cheng Y, Wang Z, Geng R, Zhang H, Ma Z, Yan A, Li R. Differential microbiome features in lake-river systems of Taihu basin in response to water flow disturbance. Front Microbiol 2024; 15:1479158. [PMID: 39411429 PMCID: PMC11475019 DOI: 10.3389/fmicb.2024.1479158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction In riverine ecosystems, dynamic interplay between hydrological conditions, such as flow rate, water level, and rainfall, significantly shape the structure and function of bacterial and microeukaryotic communities, with consequences for biogeochemical cycles and ecological stability. Lake Taihu, one of China's largest freshwater lakes, frequently experiences cyanobacterial blooms primarily driven by nutrient over-enrichment and hydrological changes, posing severe threats to water quality, aquatic life, and surrounding human populations. This study explored how varying water flow disturbances influence microbial diversity and community assembly within the interconnected river-lake systems of the East and South of Lake Taihu (ET&ST). The Taipu River in the ET region accounts for nearly one-third of Lake Taihu's outflow, while the ST region includes the Changdougang and Xiaomeigang rivers, which act as inflow rivers. These two rivers not only channel water into Lake Taihu but can also cause the backflow of lake water into the rivers, creating distinct river-lake systems subjected to different intensities of water flow disturbances. Methods Utilizing high-throughput sequencing, we selected 22 sampling sites in the ET and ST interconnected river-lake systems and conducted seasonally assessments of bacterial and microeukaryotic community dynamics. We then compared differences in microbial diversity, community assembly, and co-occurrence networks between the two regions under varying hydrological regimes. Results and discussion This study demonstrated that water flow intensity and temperature disturbances significantly influenced diversity, community structure, community assembly, ecological niches, and coexistence networks of bacterial and eukaryotic microbes. In the ET region, where water flow disturbances were stronger, microbial richness significantly increased, and phylogenetic relationships were closer, yet variations in community structure were greater than in the ST region, which experienced milder water flow disturbances. Additionally, migration and dispersal rates of microbes in the ET region, along with the impact of dispersal limitations, were significantly higher than in the ST region. High flow disturbances notably reduced microbial niche width and overlap, decreasing the complexity and stability of microbial coexistence networks. Moreover, path analysis indicated that microeukaryotic communities exhibited a stronger response to water flow disturbances than bacterial communities. Our findings underscore the critical need to consider the effects of hydrological disturbance on microbial diversity, community assembly, and coexistence networks when developing strategies to manage and protect river-lake ecosystems, particularly in efforts to control cyanobacterial blooms in Lake Taihu.
Collapse
Affiliation(s)
- Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yao Wu
- CCCC Shanghai Waterway Engineering Design and Consulting Co., Ltd, Shanghai, China
| | - Jun Zuo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Rui Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Guoyou Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Haoran Jiang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yao Cheng
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Zeshuang Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ruozhen Geng
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment of the People’ s Republic of China, Shanghai, China
| | - He Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ailing Yan
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Renhui Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
6
|
Wu Z, Xiong X, Liu G, Zhu H. The enhanced neutral process with decreasing cell size: a study on phytoplankton metacommunities from the glacier-fed river of Qinghai-Xizang Plateau. Appl Environ Microbiol 2024; 90:e0045724. [PMID: 39150266 PMCID: PMC11409636 DOI: 10.1128/aem.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
The cell size of phytoplankton is an important defining functional trait that can serve as a driver and sentinel of phytoplankton community structure and function. However, the study of the assembly patterns and drivers of phytoplankton metacommunities with different cell sizes has not been widely carried out. In this study, we systematically investigated the biodiversity patterns, drivers, and assembly processes of the three phytoplankton cell sizes (micro: 20-200 μm; nano: 2-20 μm; pico: 0.2-2 μm) in the Za'gya Zangbo River from the source to the estuary using 18S rDNA amplicon sequencing. The results demonstrated that the alpha diversity and co-occurrence network complexity for all three sizes of phytoplankton increased to a peak downstream of the glacier sources and then decreased to the estuary. The nanophytoplankton subcommunity consistently had the highest alpha diversity and co-occurrence network complexity. On the other hand, total beta diversity followed a unimodal trend of decreasing and then increasing from source to estuary, and was dominated by species replacement components. In addition, deterministic processes driven mainly by physiochemical indices (PCIs) and biogenic elements (BGEs) dominated the assembly of micro- and nanophytoplankton subcommunities, whereas stochastic processes driven by geographical factors (GGFs) dominated the assembly of picophytoplankton subcommunities. The results explained the contradictions in previous studies of phytoplankton community assembly processes in highland aquatic ecosystems, elucidating the different contributions of deterministic and stochastic processes, and the complexity of compositional mechanisms in shaping the assembly of micro-, nano-, and picophytoplankton in this highland glacial river. IMPORTANCE The cell size of phytoplankton is a key life-history trait and key determinant, and phytoplankton of different cell sizes are differentially affected by ecological processes. However, the study of the assembly patterns and drivers of phytoplankton metacommunities with different cell sizes has not been widely carried out. We provide an in-depth analysis of phytoplankton community diversity across three cell sizes in the glacier-fed river, describing how the pattern of phytoplankton communities differs across cell sizes in response to geochemical gradients. The results show that the smaller phytoplankton (picophytoplankton) are relatively more influenced by dispersal-based stochastic processes, whereas larger ones (microphytoplankton and nanophytoplankton) are more structured by selection-based deterministic processes.
Collapse
Affiliation(s)
- Zhihua Wu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guoxiang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Rao G, Song WL, Yan SZ, Chen SL. Unraveling the distribution pattern and driving forces of soil microorganisms under geographic barriers. Appl Environ Microbiol 2024; 90:e0135924. [PMID: 39171904 PMCID: PMC11409670 DOI: 10.1128/aem.01359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The Altai Mountains (ALE) and the Greater Khingan Mountains (GKM) in northern China are forest regions dominated by coniferous trees. These geographically isolated regions provide an ideal setting for studying microbial biogeographic patterns. In this study, we employed high-throughput techniques to obtain DNA sequences of soil myxomycetes, bacteria, and fungi and explored the mechanisms underlying the assembly of both local and cross-regional microbial communities in relation to environmental factors. Our investigation revealed that the environmental heterogeneity in ALE and GKM significantly affected the succession and assembly of soil bacterial communities at cross-regional scales. Specifically, the optimal environmental factors affecting bacterial Bray-Curtis similarity were elevation and temperature seasonality. The spatial factors and climate change impact on bacterial communities under the geographical barriers surpassed that of local soil microenvironments. The assembly pattern of bacterial communities transitions from local drift to cross-regional heterogeneous selection. Environmental factors had a relatively weak influence on myxomycetes and fungi. Both soil myxomycetes and fungi faced considerable dispersal limitation at local and cross-regional scales, ultimately leading to weak geographical distribution patterns.IMPORTANCEThe impact of environmental selection and dispersal on the soil microbial spatial distribution is a key concern in microbial biogeography, particularly in large-scale geographical patterns. However, our current understanding remains limited. Our study found that soil bacteria displayed a distinct cross-regional geographical distribution pattern, primarily influenced by environmental selection. Conversely, the cross-regional geographical distribution patterns of soil myxomycetes and fungi were relatively weak. Their composition exhibited a weak association with the environment at local and cross-regional scales, with assembly primarily driven by dispersal limitation.
Collapse
Affiliation(s)
- Gu Rao
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wen-Long Song
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shu-Zhen Yan
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuang-Lin Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Jiao Y, Yang S, Bao W. Biogeographic patterns and community assembly mechanisms of bacterial community in the upper seawater of seamounts and non-seamounts in the Eastern Indian Ocean. Appl Environ Microbiol 2024; 90:e0142424. [PMID: 39150264 PMCID: PMC11409715 DOI: 10.1128/aem.01424-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Seamounts are widespread underwater topographic features in the ocean that exert an influential role in shaping the microbial biogeographic distribution. Nevertheless, research on the differences in microbial biogeographic distribution between seamount and non-seamount upper water column is still lacking, particularly in the Indian Ocean where studies are limited. In the present study, a total of 45 seawater samples were collected from the water column (5-200 m) of seamounts (HS) and non-seamounts (E87 transect) regions in the Eastern Indian Ocean (EIO) for the analysis of microbial biogeographic patterns and community assembly processes. The results indicated that bacterial community diversity did not differ significantly between the HS and E87 transect regions; however, the community composition was significantly different. Additionally, bacterial community diversity, composition, as well as structure were more affected by depth than by region. Community diversity tended to increase with depth in E87 transect region, while it tended to decrease in HS region. A distance decay analysis also demonstrated that bacterial communities were more influenced by environmental and depth distances than geographic distances. In the assembly of bacterial communities on HS and E87 transect regions, as well as at different depths, stochastic processes, particularly dispersal limitation, were found to be predominant. These findings enhance our comprehension of bacterial community characteristics in the upper seawater of seamounts and non-seamounts regions in the EIO and offer insights into the assembly processes shaping microbial communities at varying depths. IMPORTANCE By comparing the bacterial diversity, composition, and structure in the upper seawater of seamount and non-seamount areas, we provide valuable insights into the influential role of seamounts in shaping microbial biogeography. The finding that the depth had a more significant impact on bacterial community characteristics than region underscores the importance of considering vertical stratification when examining microbial distributions. Moreover, the dominance of stochastic processes, particularly dispersal limitation, in governing community assembly across both seamount and non-seamount areas offers critical implications for the mechanisms underlying microbial biogeographic patterns in these dynamic ocean environments. This study expands the current knowledge and lays the groundwork for further investigations into the complex interactions between oceanographic features, environmental gradients, and microbial community dynamics in the Indian Ocean.
Collapse
Affiliation(s)
- Yaqian Jiao
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| | - Shanshan Yang
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| | - Wenya Bao
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
9
|
Huang Z, Shu L, He Z, Yan Q. Community coalescence under variable hydrochemical conditions of the Chesapeake Bay shaped bacterial diversity and functional traits. ENVIRONMENTAL RESEARCH 2024; 257:119272. [PMID: 38823613 DOI: 10.1016/j.envres.2024.119272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Community coalescence related to bacterial mixing events regulates community characteristics and affects the health of estuary ecosystems. At present, bacterial coalescence and its driving factors are still unclear. The present study used a dataset from the Chesapeake Bay (2017) to address how bacterial community coalescence in response to variable hydrochemistry in estuarine ecosystems. We determined that variable hydrochemistry promoted the deterioration of water quality. Temperature, orthophosphate, dissolved oxygen, chlorophyll a, Secchi disk depth, and dissolved organic phosphorus were the key environmental factors driving community coalescence. Bacteria with high tolerance to environmental change were the primary taxa accumulated in community coalescence, and the significance of deterministic processes to communities was revealed. Community coalescence was significantly correlated with the pathways of metabolism and organismal systems, and promoted the co-occurrence of antibiotic resistance and virulence factor genes. Briefly, community coalescence under variable hydrochemical conditions shaped bacterial diversity and functional traits, to optimise strategies for energy acquisition and lay the foundation for alleviating environmental pressures. However, potential pathogenic bacteria in community coalescence may be harmful to human health and environmental safety. The present study provides a scientific reference for ecological management of estuaries.
Collapse
Affiliation(s)
- Zhenyu Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Yang Y, Ci F, Xu A, Zhang X, Ding N, Wan N, Lv Y, Song Z. Seasonal Dynamics of Eukaryotic Microbial Communities in the Water-Receiving Reservoir of the Long-Distance Water Diversion Project, China. Microorganisms 2024; 12:1873. [PMID: 39338548 PMCID: PMC11433762 DOI: 10.3390/microorganisms12091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Inter-basin water transfer projects, such as the Yellow River to Qingdao Water Diversion Project (YQWD), are essential for addressing water scarcity, but impact local aquatic ecosystems. This study investigates the seasonal characteristics of eukaryotic microbial communities in the Jihongtan Reservoir, the main water-receiving body of YQWD, over a one-year period using 18S rDNA amplicon sequencing. The results showed that the eukaryotic microbial diversity did not exhibit significant seasonal variation (p > 0.05), but there was a notable variance in the community structure (p < 0.05). Arthropoda and Paracyclopina, representing the most dominant phylum and the most dominant genus, respectively, both exhibited the lowest abundance during the winter. The Chlorophyta, as the second-dominant phylum, demonstrates its higher abundance in the spring and winter. The Mantel test and PLS-PM (Partial Least Squares Path Modeling) revealed that water temperature (WT), dissolved oxygen (DO), and pH influenced the seasonal dynamic of eukaryotic microbial communities significantly, of which WT was the primary driving factor. In addition to environmental factors, water diversion is likely to be an important influencing factor. The results of the co-occurrence network and robustness suggested that the spring network is the most complex and exhibits the highest stability. Moreover, keystone taxa within networks have been identified, revealing that these key groups encompass both abundant and rare species, with specificity to different seasons. These insights are vital for understanding the seasonal variation of microbial communities in the Jihongtan Reservoir during ongoing water diversions.
Collapse
Affiliation(s)
- Yingying Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Fangfang Ci
- Qingdao Branch of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266525, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xijian Zhang
- Binzhou Branch of Shandong Water Transfer Project Operation and Maintenance Center, Binzhou 256600, China
| | - Ning Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Nianxin Wan
- Qingdao Branch of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266525, China
| | - Yuanyuan Lv
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
11
|
Guo Y, Sun F, Wang J, Wang Z, Yang H, Wu F. Application of Synchronous Evaluation-Diagnosis Model with Quantitative Stressor-Response Analysis (SED-QSR) to Urban Lake Ecological Status: A Proposed Multiple-Level System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16028-16039. [PMID: 39207301 DOI: 10.1021/acs.est.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ecological integrity assessment and degradation diagnosis are used globally to evaluate the health of water bodies and pinpoint critical stressors. However, current studies mainly focus on separate evaluation or diagnosis, leading to an inadequate exploration of the relationship between stressors and responses. Here, based on multiple data sets in an urban lake system, a synchronous evaluation-diagnosis model with quantitative stressor-response analysis was advanced, aiming to improve the accuracy of evaluation and diagnosis. The weights for key physicochemical stressors were quantitatively determined in the sequence of NDAVIadj > CODMn > TP > NH4+-N by the combination of generalized additive model and structural equation modeling, clarifying the most significant effects of aquatic vegetation on the degradation of fish assemblages. Then, sensitive biological metrics were screened by considering the distinct contributions of four key stressors to alleviate the possible deviation caused by common methods. Finally, ecological integrity was evaluated by summing the key physicochemical stressors and sensitive biological metrics according to the model-deduced weights instead of empirical weights. Our system's diagnosis and evaluation results achieved an accuracy of over 80% when predicting anthropogenic stress and biological status, which highlights the great potential of our multiple-level system for ecosystem management.
Collapse
Affiliation(s)
- Yiding Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ziteng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
12
|
Liu S, Zhang Z, Zhao C, Zhang M, Han F, Hao J, Wang X, Shan X, Zhou W. Nonlinear responses of biofilm bacteria to alkyl-chain length of parabens by DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134460. [PMID: 38718505 DOI: 10.1016/j.jhazmat.2024.134460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Parabens can particularly raise significant concerns regarding the disruption of microbial ecology due to their antimicrobial properties. However, the responses of biofilm bacteria to diverse parabens with different alkyl-chain length remains unclear. Here, theoretical calculations and bioinformatic analysis were performed to decipher the influence of parabens varying alkyl-chain lengths on the biofilm bacteria. Our results showed that the disturbances in bacterial community did not linearly response to the alkyl-chain length of parabens, and propylparaben (PrP), with median chain length, had more severe impact on bacterial community. Despite the fact that paraben lethality linearly increased with chain length, the PrP had a higher chemical reactions potential than parabens with shorter or longer alkyl-chain. The chemical reactions potential was critical in the nonlinear responses of bacterial community to alkyl-chain length of parabens. PrP could impose selective pressure to disturb the bacterial community, because it had a more profound contribution to deterministic assembly process. Furthermore, N-acyl-homoserine lactones was also significantly promoted under PrP exposure, confirming that PrP could affect the bacterial community by influencing the quorum-sensing system. Overall, our study reveals the nonlinear responses of bacterial communities to the alkyl-chain lengths of parabens and provides insightful perspectives for the better regulation of parabens. ENVIRONMENTAL IMPLICATION: Parabens are recognized as emerging organic pollutants, which specially raise great concerns due to their antimicrobial properties disturbing microbial ecology. However, few study have addressed the relationship between bacterial community responses and the molecular structural features of parabens with different alkyl-chain length. This investigation revealed nonlinear responses of the bacterial community to the alkyl-chain length of parabens through DFT calculation and bioinformatic analysis and identified the critical roles of chemical reactions potential in nonlinear responses of bacterial community. Our results benefit the precise evaluation of ecological hazards posed by parabens and provide useful insights for better regulation of parabens.
Collapse
Affiliation(s)
- Sheng Liu
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zixuan Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jie Hao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaorong Shan
- Sid and Reva Dewberry Dept. of Civil, Environmental, & Infrastructure Engineering, George Mason University, Fairfax, Virginia, USA
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
13
|
Wei M, Feng T, Lin Y, He S, Yan H, Qiao R, Chen Q. Elevation-associated pathways mediate aquatic biodiversity at multi-trophic levels along a plateau inland river. WATER RESEARCH 2024; 258:121779. [PMID: 38772321 DOI: 10.1016/j.watres.2024.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Aquatic biodiversity plays a significant role in maintaining the ecological balance and the overall health of riverine ecosystems. Elevation is an important factor influencing biodiversity patterns. However, it is still unclear through which pathway elevation influences riverine biodiversity at different trophic levels. In this study, the elevation-associated pathways affecting aquatic biodiversity at different trophic levels were explored using structural equation modeling (SEM) and taking the Bayin River, China as the case. The results showed that the elevational patterns were different among aquatic organisms at different trophic levels. For macroinvertebrates and bacteria, the pattern was hump-shaped; while for phytoplankton and zooplankton, it was U-shaped. Building upon these observed elevational patterns, our investigation delved into the direct and indirect pathways through which elevation influences aquatic biodiversity. We found that elevation exerts an impact on aquatic biodiversity via indirect pathways. For all aquatic organisms investigated, the major pathway through which elevation influences biodiversity is mediated by water temperature and water quality. For aquatic organisms at higher trophic levels, like macroinvertebrates and zooplankton, the crucial pathway is also mediated by the landscape. The results of this study contributed to understanding the effects of elevation on aquatic organisms at different trophic levels and provided an important basis for the assessment of riverine biodiversity at large scales.
Collapse
Affiliation(s)
- Mengru Wei
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Tao Feng
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Yuqing Lin
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Shufeng He
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Hanlu Yan
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Ruxia Qiao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Qiuwen Chen
- Yangtze Institute for Conservation and Development, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
14
|
Shi J, Zhang B, Tang Y, Kong F. Undisclosed contribution of microbial assemblages selectively enriched by microplastics to the sulfur cycle in the large deep-water reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134342. [PMID: 38678705 DOI: 10.1016/j.jhazmat.2024.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.
Collapse
Affiliation(s)
- Jiaxin Shi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Yang Tang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China
| |
Collapse
|
15
|
Liu M, Su X, Yuan J, Chen Y, Huang X, Yang X, Zheng J, Li Q, Xu J, He Y. Residual effects of chlorinated organic pollutants on microbial community and natural redox processes in coastal wetlands. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133364. [PMID: 38176260 DOI: 10.1016/j.jhazmat.2023.133364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Chlorinated organic pollutants (COPs) are common in flooded environments. To examine the residual status and effects of COPs on flooded environments, a survey of 7 coastal wetlands in Zhejiang, East China was conducted. Total COP concentrations detected from 95.69 to 412.76 ng g-1 dw. Gamma-HCH and o,p'-DDT posed the greatest risk with exceedance rates of 100% according to sediment quality guidelines. Samples with higher COP pollution had higher microbial diversity, more complex microbial networks, more deterministic community assembly processes and lower microbiome stability, indicating an improved soil function for balance cycle of substances, especially for COP degradation. Further analysis using quantitative real-time PCR suggested COP-dechlorination interacted with natural redox processes, especially sulfate reduction and methanogenesis. The positive correlation between CH4 and pentachlorobenzene indicated a potential increase in greenhouse gas emissions caused by COP pollution. Correlation between dsr gene and COPs demonstrated the ability of sulfate-reducing bacteria to degrade COPs. Particularly, facultative OHRB such as sulfate-reducing bacteria hold significant importance in the process of COP-dechlorination. This finding provides a reference for COP pollution remediation. Collectively, our study offers new insight into the residual effect of COPs in coastal wetlands and contributes to an improved understanding of bioremediation strategies for COP pollution.
Collapse
Affiliation(s)
- Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Yuan
- Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuxuan Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowei Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueling Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Zheng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
16
|
Li X, Ye F, Xiang H, Hong Y, Wu J, Deng M, Wang Y. Stochastic processes drive the diversity and composition of methanogenic community in a natural mangrove ecosystem. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106373. [PMID: 38266547 DOI: 10.1016/j.marenvres.2024.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Methanogens are considered to be crucial components of mangrove ecosystems with ecological significance. However, understanding the assembly processes of methanogenic communities in mangrove ecosystems is relatively insufficient. In the current study, a natural mangrove in a protection zone was employed to investigate the diversity and assembly processes of methanogenic community by using amplicon high-throughput sequencing, a null model as well as a neutral community model. The results showed that methanogenic community in mangrove sediments were highly diverse, with the predominance of methylotrophic Methanolobus, and hydrogenotrophic Methanogenium, Methanospirillum. The diversity, composition, and gene abundance varied obviously across the mangrove sampling sites, whereas the measured environmental variables exhibited a negligible effect. Null model showed that the values of beta nearest-taxon index were mostly between -2 and 2, indicating that stochastic processes contributed more than deterministic processes driving the methanogenic community assembly in mangrove sediments. Neutral community model revealed a high estimated migration rate of methanogenic community, further substantiating the significance of stochastic processes. Among the keystone species identified in network analysis, methanogens affiliated to hydrogenotrophic Methanospirillum may have a crucial role in maintaining the structure and function of methanogenic community. Notably, these keystone species were almost unaffected by measured environmental factors, indicating that the methanogenic community in mangrove sediments is more likely to be affected by stochastic processes. This study deepens the understanding of the diversity and assembly of methanogenic community in mangrove sediments, and provides clues to maintain mangrove ecosystem functioning.
Collapse
Affiliation(s)
- Xindi Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Hua Xiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Minshi Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Zhang Y, Xu Z, Chu W, Zhang J, Jin W, Ye C. Tracking the source of antibiotic resistome in the stormwater network drainage in the presence of sewage illicit connections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168989. [PMID: 38036118 DOI: 10.1016/j.scitotenv.2023.168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Stormwater pipes are illicitly connected with sewage in many countries, which means that sewage enters stormwater pipes and the drainage is discharged to surface water without any treatment. Sewage contains more pathogens and highly risky antibiotic resistance genes (ARGs) than surface runoff. Therefore, sewage may alter the microbial and ARG compositions in stormwater pipe drainage, which in turn leads to an increased risk of resistance in surface water. However, the effects of sewage on ARGs in the drainage of stormwater networks have not been systematically studied. This study characterized the microbial and ARG composition of several environmental compartments of a typical stormwater network and quantified their contributions to those in the drainage. This network transported ARGs and microorganisms from sewage, sediments in stormwater pipes, and surface runoff into the drainage and thus into the river. According to metagenomic analysis, multidrug resistance genes were most abundant in all samples and the numbers and relative abundance of ARGs in the drainage collected during wet weather were comparable to that of sewage. The results of SourceTracker showed that the relative contribution of sewage was double that of rainwater and surface runoff in the drainage during wet weather for both microorganisms and ARGs. Desulfovibrio, Azoarcus, and Sulfuritalea were connected with the greatest number of ARGs and were most abundant in the sediments of stormwater pipes. Furthermore, stochastic processes were found to dominate ARG and microbial assembly, as the effects of high hydrodynamic intensity outweighed the effects of environmental filtration and species interactions. The findings of this study can increase our understanding of ARGs in stormwater pipe drainage, a crucial medium linking ARGs in sewage to environmental ARGs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Wenhai Chu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Jingyi Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Cheng Ye
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Xia J, Yu K, Yao Z, Sheng H, Mao L, Lu D, Gan H, Zhang S, Zhu DZ. Toward an intensive understanding of sewer sediment prokaryotic community assembly and function. Front Microbiol 2023; 14:1327523. [PMID: 38173681 PMCID: PMC10761402 DOI: 10.3389/fmicb.2023.1327523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Prokaryotic communities play important roles in sewer sediment ecosystems, but the community composition, functional potential, and assembly mechanisms of sewer sediment prokaryotic communities are still poorly understood. Here, we studied the sediment prokaryotic communities in different urban functional areas (multifunctional, commercial, and residential areas) through 16S rRNA gene amplicon sequencing. Our results suggested that the compositions of prokaryotic communities varied significantly among functional areas. Desulfomicrobium, Desulfovibrio, and Desulfobacter involved in the sulfur cycle and some hydrolytic fermentation bacteria were enriched in multifunctional area, while Methanospirillum and Methanoregulaceae, which were related to methane metabolism were significantly discriminant taxa in the commercial area. Physicochemical properties were closely related to overall community changes (p < 0.001), especially the nutrient levels of sediments (i.e., total nitrogen and total phosphorus) and sediment pH. Network analysis revealed that the prokaryotic community network of the residential area sediment was more complex than the other functional areas, suggesting higher stability of the prokaryotic community in the residential area. Stochastic processes dominated the construction of the prokaryotic community. These results expand our understanding of the characteristics of prokaryotic communities in sewer sediment, providing a new perspective for studying sewer sediment prokaryotic community structure.
Collapse
Affiliation(s)
- Jingjing Xia
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lijuan Mao
- Zhenhai Urban Planning and Survey Research Institute of Ningbo, Ningbo, China
| | - Dingnan Lu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - HuiHui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Shulin Zhang
- Zhenhai Urban Planning and Survey Research Institute of Ningbo, Ningbo, China
| | - David Z. Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Lian K, Liu F, Li Y, Wang C, Zhang C, McMinn A, Wang M, Wang H. Environmental gradients shape microbiome assembly and stability in the East China sea. ENVIRONMENTAL RESEARCH 2023; 238:117197. [PMID: 37783325 DOI: 10.1016/j.envres.2023.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Microbiomes play a key role in marine ecosystem functioning and sustainability. Their organization and stability in coastal areas, particularly in anthropogenic-influenced regions, however, remains unclear compared with an understanding of how microbial community shifts respond to marine environmental gradients. Here, the assembly and community associations across vertical and horizontal gradients in the East China Sea are systematically researched. The seawater microbial communities possessed higher robustness and lower fragmentation and vulnerability compared to the sediment microbiomes. Spatial gradients act as a deterministic filtering factor for microbiome organization. Microbial communities had lower phylogenetic distance and higher niche breadth in the nearshore and offshore areas compared to intermediate areas. The phylogenetic distance of microbiomes decreased from the surface to the bottom but the niche breadth was enhanced in surface and bottom environments. Vertical gradients destabilized microbial associations, while the community diversity was enhanced. Multivariate regression tree analysis and canonical correspondence analysis indicated that depth, distance from shore, nutrient availability, temperature, salinity, and chlorophyll a, affected the distribution and co-occurrence of microbial groups. Our results highlight the crucial roles of environmental gradients in determining microbiome association and stability. These results improve our understanding of the survival strategies/adaptive mechanisms of microbial communities in response to environmental variation and provide new insights for protecting the ecosystems and maintaining the sustainability of ecological functions.
Collapse
Affiliation(s)
- Kaiyue Lian
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao, 266003, China
| | - Feilong Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao, 266003, China
| | - Yi Li
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao, 266003, China
| | - Can Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao, 266003, China
| | - Chuyu Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao, 266003, China
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao, 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Center for Marine Studies, Qingdao, 266003, China.
| |
Collapse
|