1
|
K R A, Suresh A, Soman V, Rahman K H. Metal contamination in the Ashtamudi Wetland ecosystem: Source identification, toxicological risk assessment of Ni, Cd, Cr, and Pb and remediation strategies. MARINE POLLUTION BULLETIN 2025; 212:117534. [PMID: 39817960 DOI: 10.1016/j.marpolbul.2025.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
This study examines the presence of potentially toxic elements (PTEs) in the surface sediments and water of the Ashtamudi wetland, a Ramsar site on India's southwest coast. The average concentration of PTEs in water(μg/L) and in sediments (mg/kg) follows the order Fe(147.89) > Zn(107.53) > Cu(5.73) > Pb(4.57) > Mn(4.41) > Ni(3.07) > Cr(2.98) > Cd(0.32) > Co(0.14) and Fe (37,311.91) > Mn (341.59) > Zn (147.97) > Cr (88.07) > Ni (74.24) > Cu (42.23) > Pb (30.84) > Co (15.61) > Cd (1.85) respectively. Contamination and ecological risk indices (e.g., EF, CF, Igeo, mCd, EI, RI, mHQ, TRI, PLI) reveal moderate to considerable ecological hazards and contamination. Health risk assessments identify elevated cancer risks associated with Ni, Cd, Pb, and Cr in high-contamination zones. Statistical tools (PCC, PCA, and HCA) elucidate pollution sources and sediment dynamics, showing that urban runoff and industrial discharge are the major contributors. In contrast to previous studies, this work integrates seasonal variations, advanced risk indices health risk assessments and remediation techniques, which are critical for sustainable management. The findings thus call for targeted remediation strategies to mitigate heavy metal contamination and safeguard the ecological integrity and public health of Ashtamudi Wetland.
Collapse
Affiliation(s)
- Anjana K R
- Department of Chemical Oceanography, Cochin University of Science and Technology, Cochin 682016, India
| | - Anju Suresh
- Department of Chemical Oceanography, Cochin University of Science and Technology, Cochin 682016, India
| | - Vishnuja Soman
- Department of Chemical Oceanography, Cochin University of Science and Technology, Cochin 682016, India
| | - Habeeb Rahman K
- Department of Chemical Oceanography, Cochin University of Science and Technology, Cochin 682016, India.
| |
Collapse
|
2
|
Meng F, Liu D, Bu T, Zhang M, Peng J, Ma J. Assessment of pollution and health risks from exposure to heavy metals in soil, wheat grains, drinking water, and atmospheric particulate matter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124448. [PMID: 39923617 DOI: 10.1016/j.jenvman.2025.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Heavy metal pollution is a global environmental issue that poses serious threats to human health. In the Bian East Industrial Cluster Zone of Kaifeng City, prolonged sewage irrigation and industrial activities have led to severe heavy metal contamination in various environmental media and crops. However, the health risks posed by heavy metals in different environmental media in this area are yet to be assessed. Thus, we measured the concentrations of multiple heavy metals in samples from different environmental media (soil, drinking water, and atmospheric particulate matter) and crops (wheat grains). A health risk assessment model was used to evaluate the health risks posed by heavy metals through different exposure pathways and estimate the contribution of each medium and heavy metal to multi-media comprehensive health risks. The results indicated that in most sample sites within the study area, the soil was contaminated with Cu, Zn, Cd, Pb, As, and Hg, whereas atmospheric particulate matter contained elevated levels of Cr and Cd. However, the heavy metal contents in the wheat grains and drinking water did not exceed national standards. Health risk assessment revealed high levels of non-carcinogenic and carcinogenic risks (multi-media total hazard index, MTHI >1; multi-media total carcinogenic risk, MTCR >10⁻⁴) in the study area. The primary sources of these risks were atmospheric particulate matter and wheat grains. Among the heavy metals, Cr, Cu, and Zn mainly posed non-carcinogenic risks, while Cr and Cd primarily posed carcinogenic risks. These findings highlight the need for focused attention in controlling heavy metal pollution in atmospheric particulate matter and wheat grains. This study provides a theoretical basis for managing and preventing heavy metal pollution in various environmental media to ensure food production safety and protect public health in the study area.
Collapse
Affiliation(s)
- Fanlei Meng
- College of Geographical Science, Faculty of Geographical Science and Engineering, Henan University, 450046, Zhengzhou, China
| | - Dexin Liu
- College of Geographical Science, Faculty of Geographical Science and Engineering, Henan University, 450046, Zhengzhou, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, 475004, Kaifeng, China.
| | - Tengxiao Bu
- College of Geographical Science, Faculty of Geographical Science and Engineering, Henan University, 450046, Zhengzhou, China
| | - Mingyu Zhang
- College of Geographical Science, Faculty of Geographical Science and Engineering, Henan University, 450046, Zhengzhou, China
| | - Jianbiao Peng
- College of South to North Water Diversion / College of Water Resources and Modern Agriculture, Nanyang Normal University, 473061, Nanyang, China.
| | - Jianhua Ma
- College of Geographical Science, Faculty of Geographical Science and Engineering, Henan University, 450046, Zhengzhou, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, 475004, Kaifeng, China
| |
Collapse
|
3
|
Wang J, Zhang H, Liu Y, Zhang Y, Wang H. Identifying the pollution risk pattern from industrial production to rural settlements and its countermeasures in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175442. [PMID: 39134271 DOI: 10.1016/j.scitotenv.2024.175442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Impacted by large-scale and rapid rural industrialization in the past few decades, China's rural settlements are confronted with the risk of heavy metal pollution stemming from industrial production, which might pose a significant threat to the rural habitat and the well-beings. This study devised a relative risk model for industrial heavy metal pollution to the rural settlements based on the source-pathway-receptor risk theory. Using this model, we assessed the risk magnitudes of heavy metal pollution from industrial production at a 10 km × 10 km grid scale and identified the characteristics of the risk pattern in China. Our finding reveals: (1) the relative risk values of wastewater, waste gas and total heavy metal pollution are notably concentrated within a confined spectrum, with only a small number of units are characterized by high-risk level; (2) Approximately 21.57 % of China's rural settlements contend with heavy metal pollution, with 4.17 %, 9.84 % and 7.55 % being subjected to high, medium and low risks, respectively; (3) The high-risk units mainly is concentrated in the developed areas such as Yangtze River Delta, Pearl River Delta, and the Beijing-Tianjin metropolitan area, also dispersed in the plain areas with high rural population density. Guided by these insights, this study puts forth regionally tailored prevention and control strategies, as well as distinct process prevention and control strategies.
Collapse
Affiliation(s)
- Jieyong Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Haonan Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqun Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingwen Zhang
- Capital City Environmental Construction Research Base, Beijing City University, Beijing 100083, China
| | - Haitao Wang
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Yao R, Zhang Y, Yan Y, Wu X, Uddin MG, Wei D, Huang X, Tang L. Natural background level, source apportionment and health risk assessment of potentially toxic elements in multi-layer aquifers of arid area in Northwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135663. [PMID: 39217931 DOI: 10.1016/j.jhazmat.2024.135663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Groundwater contaminated by potentially toxic elements has become an increasing global concern for human health. Therefore, it is crucial to identify the sources and health risks of potentially toxic elements, especially in arid areas. Despite the necessity, there is a notable research gap concerning the sources and risks of these elements within multi-layer aquifers in such regions. To address this gap, 54 phreatic and 24 confined groundwater samples were collected from an arid area in Northwest China. This study aimed to trace the sources and evaluate the human health risks of potentially toxic elements by natural background level (NBL), positive matrix factorization (PMF) model, and health risk model. Findings revealed exceeding levels of potentially toxic elements existed in phreatic and confined aquifers. Source apportionment and NBL results indicated that mineral dissolution, evaporation, redox reactions, and human activities were the main factors for elevated concentrations of potentially toxic elements. High Fe and Mn concentrations were attributed to reduction environments, while F accumulation resulted from slow runoff, and irrigation from the Yellow River. Due to high F levels, more than one-third of groundwater samples (phreatic: 33.14 %, confined: 56.22 %) posed non-carcinogenic health risks to population groups. Adults displayed higher carcinogenic risks (phreatic: 19.47 %, confined: 34.16 %) than infants (phreatic: 0 %, confined: 0 %) and children (phreatic: 1.26 %, confined: 7.97 %) owing to the toxic elements of Cr. The confined aquifer presented greater health risks than the phreatic aquifer. Consequently, controlling the levels of F and Cr in multi-layered aquifers is key to reducing health risks. These findings provide valuable insights into protecting groundwater from contamination by potentially toxic elements in multi-layered aquifers worldwide.
Collapse
Affiliation(s)
- Rongwen Yao
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Yunhui Zhang
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China.
| | - Yuting Yan
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Xiangchuan Wu
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Md Galal Uddin
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, National University of Ireland Galway, Ireland
| | - Denghui Wei
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Xun Huang
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
| | - Lijun Tang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| |
Collapse
|
5
|
Liu J, Xu X, Qi Y, Lin N, Bian J, Wang S, Zhang K, Zhu Y, Liu R, Zou C. A Copula-based spatiotemporal probabilistic model for heavy metal pollution incidents in drinking water sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117110. [PMID: 39405977 DOI: 10.1016/j.ecoenv.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Water pollution incidents pose a significant threat to the safety of drinking water supplies and directly impact the quality of life of the residents when multiple pollutants contaminate drinking water sources. The majority of drinking water sources in China are derived from rivers and lakes that are often significantly impacted by water pollution incidents. To tackle the internal mechanisms between water quality and quantity, in this study, a Copula-based spatiotemporal probabilistic model for drinking water sources at the watershed scale is proposed. A spatiotemporal distribution simulation model was constructed to predict the spatiotemporal variations for water discharge and pollution to each drinking water source. This method was then applied to the joint probabilistic assessment for the entire Yangtze River downstream watershed in Nanjing City. The results demonstrated a significant negative correlation between water discharge and pollutant concentration following a water emergency. The water quantity-quality joint probability distribution reached the highest value (0.8523) after 14 hours of exposure during the flood season, much higher than it was (0.4460) during the dry season. As for the Yangtze River downstream watershed, five key risk sources (N1-N5) and two high-exposure drinking water sources (W3-W4; AEI=1) should be paid more attention. Overall, this research highlights a comprehensive mode between water quantity and quality for drinking water sources to cope with accidental water pollution.
Collapse
Affiliation(s)
- Jing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaojuan Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yushun Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Naifeng Lin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jinwei Bian
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Saige Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, China; Advancing Systems Analysis (ASA) Program International Institute for Applied Systems Analysis, Laxenburg 2361, Austria.
| | - Kun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yingying Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Renzhi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Changxin Zou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
6
|
Guan Y, Zhang N, Chu C, Xiao Y, Niu R, Shao C. Health impact assessment of the surface water pollution in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173040. [PMID: 38729374 DOI: 10.1016/j.scitotenv.2024.173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
China suffers from severe surface water pollution. Health impact assessment could provide a novel and quantifiable metric for the health burden attributed to surface water pollution. This study establishes a health impact assessment method for surface water pollution based on classic frameworks, integrating the multi-pollutant city water quality index (CWQI), informative epidemiological findings, and benchmark public health information. A relative risk level assignment approach is proposed based on the CWQI, innovatively addressing the challenge in surface water-human exposure risk assessment. A case study assesses the surface water pollution-related health impact in 336 Chinese cities. The results show (1) between 2015 and 2022, total health impact decreased from 3980.42 thousand disability-adjusted life years (DALYs) (95 % Confidence Interval: 3242.67-4339.29) to 3260.10 thousand DALYs (95 % CI: 2475.88-3641.35), measured by total cancer. (2) The annual average health impacts of oesophageal, stomach, colorectal, gallbladder, and pancreatic cancers added up to 2621.20 thousand DALYs (95 % CI: 2095.58-3091.10), revealing the significant health impact of surface water pollution on digestive cancer. (3) In 2022, health impacts in the Beijing-Tianjin-Hebei and surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River added up to 1893.06 thousand DALYs (95 % CI: 1471.82-2097.88), showing a regional aggregating trend. (4) Surface water pollution control has been the primary driving factor to health impact improvement, contributing -3.49 % to the health impact change from 2015 to 2022. It is the first city-level health impact map for China's surface water pollution. The methods and findings will support the water management policymaking in China and other countries suffering from water pollution.
Collapse
Affiliation(s)
- Yang Guan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Nannan Zhang
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chengjun Chu
- Center of Environmental Status and Plan Assessment, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Yang Xiao
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Ren Niu
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chaofeng Shao
- Department of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Ustaoğlu F, Yüksel B, Tepe Y, Aydın H, Topaldemir H. Metal pollution assessment in the surface sediments of a river system in Türkiye: Integrating toxicological risk assessment and source identification. MARINE POLLUTION BULLETIN 2024; 203:116514. [PMID: 38788275 DOI: 10.1016/j.marpolbul.2024.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
This study investigates potentially toxic elements (PTEs) in the surface sediments of the Abdal River system, a critical water source for Samsun province, Türkiye, due to the presence of the Çakmak Dam. PTE concentrations, measured in mg/kg, show significant variability: Hg (0.03) < Cd (0.26) < As (10.98) < Pb (13.88) < Cu (48.61) < Ni (62.45) < Zn (70.97) < Cr (96.28) < Mn (1015) < Fe (38357). Seasonal variations were observed, in particular increased concentrations of As, Cd and Pb in summer (p < 0.05). Contamination and ecological risk indices (mHQ, EF, Igeo, CF, PLI, Eri, mCd, NPI, PERI, MPI, and TRI) indicate moderate to low levels of contamination, suggesting potential ecological effects. Health risk assessments suggest minimal risks to human health from sediment PTEs. Statistical analyses (PCC, PCA and HCA) improve the understanding of the sediment environment and contamination sources, while the coefficient of variation assists in source identification.
Collapse
Affiliation(s)
- Fikret Ustaoğlu
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Bayram Yüksel
- Giresun University, Department of Property Protection and Security, Espiye, 28600 Giresun, Türkiye.
| | - Yalçın Tepe
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Handan Aydın
- Giresun University, Department of Property Protection and Security, Espiye, 28600 Giresun, Türkiye
| | - Halim Topaldemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Ordu, Türkiye
| |
Collapse
|
8
|
Zhang K, Chang S, Tu X, Wang E, Yu Y, Liu J, Wang L, Fu Q. Heavy metals in centralized drinking water sources of the Yangtze River: A comprehensive study from a basin-wide perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133936. [PMID: 38479139 DOI: 10.1016/j.jhazmat.2024.133936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Water quality in the Yangtze River Basin (YRB) has received considerable attention because it supplies water to 400 million people. However, the trends, sources, and risks associated with heavy metals (HMs) in water of centralized drinking water sources (CDWSs) in the YRB region are not well understood due to the lack of high-frequency, large-scale monitoring data. Moreover, research on the factors affecting the transportation of HMs in natural water are limited, all of which significantly reduce the effectiveness of CDWSs management. Therefore, this study utilized data on 11 HMs and water quality from 114 CDWSs, covering 71 prefecture-level cities (PLC) in 15 provinces (cities), to map unprecedented geospatial distribution of HMs in the YRB region and examine their concentrations in relation to water chemistry parameters. The findings revealed that the frequency of detection (FOD) of 11 HMs ranged from 28.59% (Hg) to 99.64% (Ba). The mean concentrations are ranked as follows: Ba (40.775 μg/L) > B (21.866 μg/L) > Zn (5.133 μg/L) > V (2.668 μg/L) > Cu (2.049 μg/L) > As (1.989 μg/L) > Mo (1.505 μg/L) > Ni (1.108 μg/L) > Sb (0.613 μg/L) > Pb (0.553 μg/L) > Hg (0.002 μg/L). Concentrations of Zn, As, Hg, Pb, Mo, Sb, Ni, and Ba exhibited decreasing trends from 2018 to 2022. Human activities, including industrial and agricultural production, have led to higher pollution levels in the midstream and downstream of the river than in its upstream. Additionally, the high concentrations of Ba and B are influenced by natural geological factors. Anion concentrations and nutrient levels, play a significant role in the transport of HMs in water. Probabilistic health risk assessment indicates that As, Ba, and Sb pose a potential carcinogenic risk. Additionally, non-carcinogenic risk to children under extreme conditions should also be considered.
Collapse
Affiliation(s)
- Kunfeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Sheng Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Enrui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanling Yu
- Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Jianli Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Creța C, Horga C, Vlad M, Pănescu VA, Bocoș-Bințințan V, Coman MV, Herghelegiu MC, Berg V, Lyche JL, Beldean-Galea MS. Water Quality and Associated Human Health Risk Assessment Related to Some Ions and Trace Elements in a Series of Rural Roma Communities in Transylvania, Romania. Foods 2024; 13:496. [PMID: 38338631 PMCID: PMC10855629 DOI: 10.3390/foods13030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
This research aims to assess the content of some ions and trace elements in water sources in 24 rural Roma communities in Transylvania in order to assess the human health risk associated with exposure to such elements and ions. To this end, eight ions (F-, Cl-, Br-, NO2-, NO3-, SO42-, PO43-, NH4+) and ten trace elements (Cr, Ni, As, Pb, Cd, Mn, Cu, Zn, Fe, and Hg) were determined in 71 water samples by ion chromatography coupled with a conductivity detector for ions and atomic absorption spectrophotometry for all trace elements. General parameters were also determined. Non-conformity (as number of samples), according to the EU Drinking Water Directive, was observed as follows: pH (7), EC (7), hardness (1), oxidizability (15), Cl- (4), NO3- (30), SO42- (6), Fe (16), Mn (14), As (3), and Ni (1 sample). The incidence of ions was Cl- (71), SO42- (70), F- (67), NO3- (65), NH4+ (21), Br- (10), PO43-, and NO2- (1 sample) and for trace elements, Mn (59), Fe (50), As (38), Ni (32), Cu (29), Zn (28), Cd (12), Cr (11), and Pb (3 samples). Hg was not detected. Non-carcinogenic (HI) values exceeded one for As in 13 Roma communities, with higher values for children than for adults. For NO3-, the HI values were >1 in 12 for adults and 14 communities for children. The carcinogenic risk (CR) for As through ingestion ranged from 0.795 to 3.50 × 10-4 for adults and from 1.215 to 5.30 × 10-4 for children. CR by dermal contact was in the range of ×10-6 both for adults and children.
Collapse
Affiliation(s)
- Călina Creța
- Cluj Public Health Regional Centre, National Institute of Public Health, 6 Pasteur Str., RO-400349 Cluj-Napoca, Romania
| | - Cristina Horga
- Cluj Public Health Regional Centre, National Institute of Public Health, 6 Pasteur Str., RO-400349 Cluj-Napoca, Romania
| | - Mariana Vlad
- Cluj Public Health Regional Centre, National Institute of Public Health, 6 Pasteur Str., RO-400349 Cluj-Napoca, Romania
| | - Vlad-Alexandru Pănescu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania
| | - Victor Bocoș-Bințințan
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania
| | - Maria-Virginia Coman
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania
| | - Mihaela Cătălina Herghelegiu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania
| | - Vidar Berg
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås-Oslo, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås-Oslo, Norway
| | - Mihail Simion Beldean-Galea
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania
| |
Collapse
|