1
|
Uddin MG, Diganta MTM, Sajib AM, Rahman A, Nash S, Dabrowski T, Ahmadian R, Hartnett M, Olbert AI. Assessing the impact of COVID-19 lockdown on surface water quality in Ireland using advanced Irish water quality index (IEWQI) model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122456. [PMID: 37673321 DOI: 10.1016/j.envpol.2023.122456] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The COVID-19 pandemic has significantly impacted various aspects of life, including environmental conditions. Surface water quality (WQ) is one area affected by lockdowns imposed to control the virus's spread. Numerous recent studies have revealed the considerable impact of COVID-19 lockdowns on surface WQ. In response, this research aimed to assess the impact of COVID-19 lockdowns on surface water quality in Ireland using an advanced WQ model. To achieve this goal, six years of water quality monitoring data from 2017 to 2022 were collected for nine water quality indicators in Cork Harbour, Ireland, before, during, and after the lockdowns. These indicators include pH, water temperature (TEMP), salinity (SAL), biological oxygen demand (BOD5), dissolved oxygen (DOX), transparency (TRAN), and three nutrient enrichment indicators-dissolved inorganic nitrogen (DIN), molybdate reactive phosphorus (MRP), and total oxidized nitrogen (TON). The results showed that the lockdown had a significant impact on various WQ indicators, particularly pH, TEMP, TON, and BOD5. Over the study period, most indicators were within the permissible limit except for MRP, with the exception of during COVID-19. During the pandemic, TON and DIN decreased, while water transparency significantly improved. In contrast, after COVID-19, WQ at 7% of monitoring sites significantly deteriorated. Overall, WQ in Cork Harbour was categorized as "good," "fair," and "marginal" classes over the study period. Compared to temporal variation, WQ improved at 17% of monitoring sites during the lockdown period in Cork Harbour. However, no significant trend in WQ was observed. Furthermore, the study analyzed the advanced model's performance in assessing the impact of COVID-19 on WQ. The results indicate that the advanced WQ model could be an effective tool for monitoring and evaluating lockdowns' impact on surface water quality. The model can provide valuable information for decision-making and planning to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Md Galal Uddin
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland.
| | - Mir Talas Mahammad Diganta
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| | - Abdul Majed Sajib
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| | - Azizur Rahman
- School of Computing, Mathematics and Engineering, Charles Sturt University, Wagga Wagga, Australia; The Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, Australia
| | - Stephen Nash
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland
| | | | - Reza Ahmadian
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AQ, UK
| | - Michael Hartnett
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Agnieszka I Olbert
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| |
Collapse
|
2
|
Raza T, Shehzad M, Abbas M, Eash NS, Jatav HS, Sillanpaa M, Flynn T. Impact assessment of COVID-19 global pandemic on water, environment, and humans. ENVIRONMENTAL ADVANCES 2023; 11:100328. [PMID: 36532331 PMCID: PMC9741497 DOI: 10.1016/j.envadv.2022.100328] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
One of the most significant threats to global health since the Second World War is the COVID-19 pandemic. Due to COVID-19 widespread social, environmental, economic, and health concerns. Other unfavourable factors also emerged, including increased trash brought on by high consumption of packaged foods, takeout meals, packaging from online shopping, and the one-time use of plastic products. Due to labour shortages and residents staying at home during mandatory lockdowns, city municipal administrations' collection and recycling capacities have decreased, frequently damaging the environment (air, water, and soil) and ecological and human systems. The COVID-19 challenges are more pronounced in unofficial settlements of developing nations, particularly for developing nations of the world, as their fundamental necessities, such as air quality, water quality, trash collection, sanitation, and home security, are either non-existent or difficult to obtain. According to reports, during the pandemic's peak days (20 August 2021 (741 K cases), 8 million tonnes of plastic garbage were created globally, and 25 thousand tonnes of this waste found its way into the ocean. This thorough analysis attempts to assess the indirect effects of COVID-19 on the environment, human systems, and water quality that pose dangers to people and potential remedies. Strong national initiatives could facilitate international efforts to attain environmental sustainability goals. Significant policies should be formulated like good quality air, pollution reduction, waste management, better sanitation system, and personal hygiene. This review paper also elaborated that further investigations are needed to investigate the magnitude of impact and other related factors for enhancement of human understanding of ecosystem to manage the water, environment and human encounter problems during epidemics/pandemics in near future.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, USA
| | | | - Mazahir Abbas
- Department of Bioscience, University of Wah Cantt, Quaid Avenue, Wah Cantt 47040, Pakistan
| | - Neal S Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, USA
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Rajasthan 303329, India
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Trevan Flynn
- Department of Horticulture and Natural Resources, University of Bonn, Germany
| |
Collapse
|