1
|
Roy M, Kraaijeveld E, Gude JCJ, van Genuchten CM, Rietveld LC, van Halem D. Embedding Fe(0) electrocoagulation in a biologically active As(III) oxidising filter bed. WATER RESEARCH 2024; 252:121233. [PMID: 38330719 DOI: 10.1016/j.watres.2024.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Long-term consumption of groundwater containing elevated levels of arsenic (As) can have severe health consequences, including cancer. To effectively remove As, conventional treatment technologies require expensive chemical oxidants to oxidise neutral arsenite (As(III)) in groundwater to negatively charged arsenate (As(V)), which is more easily removed. Rapid sand filter beds used in conventional aeration-filtration to treat anaerobic groundwater can naturally oxidise As(III) through biological processes but require an additional step to remove the generated As(V), adding complexity and cost. This study introduces a novel approach where As(V), produced through biological As(III) oxidation in a sand filter, is effectively removed within the same filter by embedding and operating an iron electrocoagulation (FeEC) system inside the filter. Operating FeEC within the biological filter achieved higher As(III) removal (81 %) compared to operating FeEC in the filter supernatant (67 %). This performance was similar to an analogous embedded-FeEC system treating As(V)-contaminated water (85 %), confirming the benefits of incorporating FeEC in a biological bed for comparable As(III) and As(V) removal. However, operating FeEC in the sand matrix consumed more energy (14 Wh/m3) compared to FeEC operated in a water matrix (7 Wh/m3). The efficiency of As removal increased and energy requirements decreased in such embedded-FeEC systems by deep-bed infiltration of Fe(III)-precipitates, which can be controlled by adjusting flow rate and pH. This study is one of the first to demonstrate the feasibility of embedding FeEC systems in sand filters for groundwater arsenic removal. Such systems capitalise on biological As(III) oxidation in aeration-filtration, effectively eliminating As(V) within the same setup without the need for chemicals or major modifications.
Collapse
Affiliation(s)
- Mrinal Roy
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands.
| | - Erik Kraaijeveld
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands
| | - Jink C J Gude
- NX Filtration BV, Josink Esweg 44, 7545PN Delft, the Netherlands
| | - Case M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen DK-1350, Denmark
| | - Luuk C Rietveld
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands
| | - Doris van Halem
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands
| |
Collapse
|
2
|
Wang K, Holm PE, Trettenes UB, Bandaru SRS, van Halem D, van Genuchten CM. Molecular-scale characterization of groundwater treatment sludge from around the world: Implications for potential arsenic recovery. WATER RESEARCH 2023; 245:120561. [PMID: 37688856 DOI: 10.1016/j.watres.2023.120561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Iron (Fe)-based treatment methods are widely applied to remove carcinogenic arsenic (As) from drinking water, but generate toxic As-laden Fe (oxyhydr)oxide waste that has traditionally been ignored for resource recovery by the water sector. However, the European Commission recently classified As as a Critical Raw Material (CRM), thus providing new incentives to re-think As-laden groundwater treatment sludge. Before As recovery techniques can be developed for groundwater treatment waste, detailed information on its structure and composition is essential. To this end, we comprehensively characterized sludge generated from a variety of As-rich groundwater treatment plants in different geographic regions by combining a suite of macroscopic measurements, such as total digestions, leaching tests and BET surface area with molecular-scale solid-phase analysis by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that the As mass fraction of all samples ranged from ∼200-1200 mg As/kg (dry weight) and the phosphorous (P) content reached ∼0.5-2 mass%. Notably, our results indicated that the influent As level was a poor predictor of the As sludge content, with the highest As mass fractions (940-1200 mg As/kg) measured in sludge generated from treating low groundwater As levels (1.1-22 µg/L). The Fe K-edge XAS data revealed that all samples consisted of nanoscale Fe(III) precipitates with less structural order than ferrihydrite, which is consistent with their high BET surface area (up to >250 m2/g) and large As and P mass fractions. The As K-edge XAS data indicated As was present in all samples predominantly as As(V) bound to Fe(III) precipitates in the binuclear-corner sharing (2C) geometry. Overall, the similar structure and composition of all samples implies that As recovery methods optimized for one type of Fe-based treatment sludge can be applied to many groundwater treatment sludges. Our work provides a critical foundation for further research to develop resource recovery methods for As-rich waste.
Collapse
Affiliation(s)
- K Wang
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark
| | - P E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - S R S Bandaru
- University of California, Berkeley, Berkeley, California, USA
| | - D van Halem
- Technical University of Delft, Delft, The Netherlands
| | - C M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark.
| |
Collapse
|
3
|
Annaduzzaman M, Rietveld LC, Ghosh D, Hoque BA, van Halem D. Anoxic storage to promote arsenic removal with groundwater-native iron. WATER RESEARCH 2021; 202:117404. [PMID: 34271453 DOI: 10.1016/j.watres.2021.117404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Storage containers are usually used to provide a constant water head in decentralized, community groundwater treatment systems for the removal of iron (Fe) and arsenic (As). However, the commonly practiced aeration prior to storage assists in rapid and complete Fe2+ oxidation, resulting in poor As removal, despite sufficient native-Fe2+ in the source water. In this study, it was found that application of anoxic storage enhanced As removal from groundwater, containing ≥300 µg/L of As(III) and 2.33 mg/L of Fe2+ in an As affected village of Rajshahi district in Bangladesh. Although the oxidation of Fe2+ and As(III) during oxic storage was considerably faster, the As/Fe removal ratio was higher during anoxic storage (61-80±5 µgAs/mgFe) compared to the oxic storage (45±5 µgAs/mgFe). This higher As removal efficacy in anoxic storage containers could not be attributed to the speciation of As, since As(V) concentrations were higher during oxic storage due to more favorable abiotic (As(III) oxidation by O2 and Fenton-like intermediates) and biotic (As(III) oxidizing bacteria, e.g., Sideroxydans, Gallionella, Hydrogenophaga) conditions. The continuous, in-situ hydrous ferric oxide floc formation during flow-through operation, and the favorable lower pH aiding higher sorption capacities for the gradually formed As(V) likely contributed to the improved performance in the anoxic storage containers.
Collapse
Affiliation(s)
- Md Annaduzzaman
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands.
| | - Luuk C Rietveld
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands
| | - Devanita Ghosh
- Laboratory of Biogeochem-mystery, Centre for Earth Sciences, Indian Institute of Science, Bangalore, India
| | - Bilqis A Hoque
- Environment and Population Research Centre, Dhaka, Bangladesh
| | - Doris van Halem
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands
| |
Collapse
|
4
|
Lyonga FN, Hong SH, Cho EJ, Kang JK, Lee CG, Park SJ. As(III) adsorption onto Fe-impregnated food waste biochar: experimental investigation, modeling, and optimization using response surface methodology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3303-3321. [PMID: 33034807 DOI: 10.1007/s10653-020-00739-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Biochar derived from food waste was modified with Fe to enhance its adsorption capacity for As(III), which is the most toxic form of As. The synthesis of Fe-impregnated food waste biochar (Fe-FWB) was optimized using response surface methodology (RSM), and the pyrolysis time (1.0, 2.5, and 4.0 h), temperature (300, 450, and 600 °C), and Fe concentration (0.1, 0.3, and 0.5 M) were set as independent variables. The pyrolysis temperature and Fe concentration significantly influenced the As(III) removal, but the effect of pyrolysis time was insignificant. The optimum conditions for the synthesis of Fe-FWB were 1 h and 300 °C with a 0.42-M Fe concentration. Both physical and chemical properties of the optimized Fe-FWB were studied. They were also used for kinetic, equilibrium, thermodynamic, pH, and competing anion studies. Kinetic adsorption experiments demonstrated that the pseudo-second-order model had a superior fit for As(III) adsorption than the pseudo-first-order model. The maximum adsorption capacity derived from the Langmuir model was 119.5 mg/g, which surpassed that of other adsorbents published in the literature. Maximum As(III) adsorption occurred at an elevated pH in the range from 3 to 11 owing to the presence of As(III) as H2AsO3- above a pH of 9.2. A slight reduction in As(III) adsorption was observed in the existence of bicarbonate, hydrogen phosphate, nitrate, and sulfate even at a high concentration of 10 mM. This study demonstrates that aqueous solutions can be treated using Fe-FWB, which is an affordable and readily available resource for As(III) removal.
Collapse
Affiliation(s)
- Fritz Ndumbe Lyonga
- Department of Chemical Engineering, Hankyong National University, 327 Jungang-ro, Anseong, 17579, Republic of Korea
| | - Seung-Hee Hong
- Department of Integrated Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Eun-Ji Cho
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyu Kang
- Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Gwanak-gu, 08826, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon-si, 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
5
|
Di Marcantonio C, Bertelkamp C, van Bel N, Pronk TE, Timmers PHA, van der Wielen P, Brunner AM. Organic micropollutant removal in full-scale rapid sand filters used for drinking water treatment in The Netherlands and Belgium. CHEMOSPHERE 2020; 260:127630. [PMID: 32758778 DOI: 10.1016/j.chemosphere.2020.127630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Biological treatment processes have the potential to remove organic micropollutants (OMPs) during water treatment. The OMP removal capacity of conventional drinking water treatment processes such as rapid sand filters (RSFs), however, has not been studied in detail. We investigated OMP removal and transformation product (TP) formation in seven full-scale RSFs all treating surface water, using high-resolution mass spectrometry based quantitative suspect and non-target screening (NTS). Additionally, we studied the microbial communities with 16S rRNA gene amplicon sequencing (NGS) in both influent and effluent waters as well as the filter medium, and integrated these data to comprehensively assess the processes that affect OMP removal. In the RSF influent, 9 to 30 of the 127 target OMPs were detected. The removal efficiencies ranged from 0 to 93%. A data-driven workflow was established to monitor TPs, based on the combination of NTS feature intensity profiles between influent and effluent samples and the prediction of biotic TPs. The workflow identified 10 TPs, including molecular structure. Microbial community composition analysis showed similar community composition in the influent and effluent of most RSFs, but different from the filter medium, implying that specific microorganisms proliferate in the RSFs. Some of these are able to perform typical processes in water treatment such as nitrification and iron oxidation. However, there was no clear relationship between OMP removal efficiency and microbial community composition. The innovative combination of quantitative analyses, NTS and NGS allowed to characterize real scale biological water treatments, emphasizing the potential of bio-stimulation applications in drinking water treatment.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Rome, Italy
| | - Cheryl Bertelkamp
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Nikki van Bel
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Tessa E Pronk
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Peer H A Timmers
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Paul van der Wielen
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, the Netherlands
| | - Andrea M Brunner
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands.
| |
Collapse
|
6
|
Mechanisms of arsenate removal and membrane fouling in ferric based coprecipitation–low pressure membrane filtration systems. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Ahmad A, Rutten S, Eikelboom M, de Waal L, Bruning H, Bhattacharya P, van der Wal A. Impact of phosphate, silicate and natural organic matter on the size of Fe(III) precipitates and arsenate co-precipitation efficiency in calcium containing water. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ahmad A, van der Wens P, Baken K, de Waal L, Bhattacharya P, Stuyfzand P. Arsenic reduction to <1 µg/L in Dutch drinking water. ENVIRONMENT INTERNATIONAL 2020; 134:105253. [PMID: 31810053 DOI: 10.1016/j.envint.2019.105253] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 05/12/2023]
Abstract
Arsenic (As) is a highly toxic element which naturally occurs in drinking water. In spite of substantial evidence on the association between many illnesses and chronic consumption of As, there is still a considerable uncertainty about the health risks due to low As concentrations in drinking water. In the Netherlands, drinking water companies aim to supply water with As concentration of <1 μg/L - a water quality goal which is tenfold more stringent than the current WHO guideline. This paper provides (i) an account on the assessed lung cancer risk for the Dutch population due to pertinent low-level As in drinking water and cost-comparison between health care provision and As removal from water, (ii) an overview of As occurrence and mobility in drinking water sources and water treatment systems in the Netherlands and (iii) insights into As removal methods that have been employed or under investigation to achieve As reduction to <1 µg/L at Dutch water treatment plants. Lowering of the average As concentration to <1μg/L in the Netherlands is shown to result in an annual benefit of 7.2-14 M€. This study has a global significance for setting drinking water As limits and provision of safe drinking water.
Collapse
Affiliation(s)
- Arslan Ahmad
- KWR Water Cycle Research Institute, Nieuwegein, the Netherlands; KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Environmental Technology, Wageningen University and Research (WUR), Wageningen, the Netherlands; Evides Water Company N.V. Rotterdam, the Netherlands.
| | | | - Kirsten Baken
- KWR Water Cycle Research Institute, Nieuwegein, the Netherlands
| | - Luuk de Waal
- KWR Water Cycle Research Institute, Nieuwegein, the Netherlands
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Pieter Stuyfzand
- KWR Water Cycle Research Institute, Nieuwegein, the Netherlands; Department of Geoscience and Engineering, Technical University Delft, the Netherlands
| |
Collapse
|
9
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
10
|
Treatment of Post-Hydrothermal Liquefaction Wastewater (PHWW) for Heavy Metals, Nutrients, and Indicator Pathogens. WATER 2019. [DOI: 10.3390/w11040854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recycling post-hydrothermal liquefaction wastewater (PHWW) may allow the use of nutrients in the aqueous phase that may otherwise go unused. PHWW is an attractive option for use as fertilizer in systems like crop production. However, there are potential contaminants in the PHWW that may inhibit crop growth or pose a food safety risk. This study investigated the concentrations of heavy metals and nutrients in the PHWW, as well as the presence of indicator pathogens. In addition, four different water treatment methods were used: (1) dilution of raw PHWW, (2) sand filtration after dilution, (3) sand and carbon filtration after dilution, and (4) reverse osmosis after dilution. Our results indicate that the concentrations of cadmium, lead, and arsenic in raw PHWW were well below the maximum recommended concentrations set by the US Environmental Protection Agency (US EPA) for Water Reuse. In addition, the treatment methods in this study achieved percent removals ranging from 82–100% for cadmium, 99–100% for mercury, 75–99.5% for lead, and 71–99% for arsenic. Nitrogen in raw PHWW was predominantly in the total N form, preventing it from being accessible to plants. After nitrification was induced, the concentration of NO3 + NO2 increased by 1.75 mg/L in the untreated 5% PHWW mixture, but remained unchanged or decreased for all other treatments and mixtures. There were no E. coli or coliform colonies detected in the raw PHWW, or in any PHWW mixtures. All PHWW mixtures with and without treatment are within US EPA guidelines for metals for irrigation water reuse. However, fertilizer supplementation may be required for PHWW to be suitable for crop production, as the low concentrations of NO3 + NO2 may prove challenging for growing crops.
Collapse
|