1
|
Shrewsbury JV, Vitus ES, Koziol AL, Nenarokova A, Jess T, Elmahdi R. Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease. J Virol 2024; 98:e0110224. [PMID: 39431820 PMCID: PMC11575288 DOI: 10.1128/jvi.01102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.
Collapse
Affiliation(s)
- Jed Valentiner Shrewsbury
- Faculty of Medicine, Imperial College London, London, United Kingdom
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Evangelin Shaloom Vitus
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Adam Leslie Koziol
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Tine Jess
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Rahma Elmahdi
- Centre for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
2
|
Rabin RL. The Potential of Human Monoclonal IgE Antibodies to Establish Biological Potency and Stability of Allergen Extracts. Curr Allergy Asthma Rep 2024; 24:471-475. [PMID: 39046600 PMCID: PMC11364621 DOI: 10.1007/s11882-024-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE OF REVIEW Allergenic extracts are often standardized to control for potency, either by measuring concentrations of major allergens or "overall allergenicity" by competition for IgE in pooled sera from highly allergic subjects with a reference extract. Recent developments present an opportunity to use human mAb cloned from highly allergic subjects to define potency of allergenic extracts. RECENT FINDINGS Two recent developments present an opportunity for revising potency measurements of allergen extracts: cloning allergen specific IgE from allergic subjects and extensive epitope mapping of major allergenic proteins. Because human IgE mAb recognize biologically relevant epitopes, they present a novel opportunity to determine the potencies of allergenic extracts and may contribute to the science base for allergen standardization.
Collapse
Affiliation(s)
- Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10309 New Hampshire Avenue Building 52, Room 3332, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Furiness KN, El Ansari YS, Oettgen HC, Kanagaratham C. Allergen-specific IgA and IgG antibodies as inhibitors of mast cell function in food allergy. FRONTIERS IN ALLERGY 2024; 5:1389669. [PMID: 38919913 PMCID: PMC11196826 DOI: 10.3389/falgy.2024.1389669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.
Collapse
Affiliation(s)
- Kameryn N. Furiness
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Marini-Rapoport O, Fernández-Quintero ML, Keswani T, Zong G, Shim J, Pedersen LC, Mueller GA, Patil SU. Defining the cross-reactivity between peanut allergens Ara h 2 and Ara h 6 using monoclonal antibodies. Clin Exp Immunol 2024; 216:25-35. [PMID: 38346116 PMCID: PMC10929694 DOI: 10.1093/cei/uxae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.
Collapse
Affiliation(s)
- Orlee Marini-Rapoport
- Harvard University, Cambridge, MA, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tarun Keswani
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Guangning Zong
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jane Shim
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Lars C Pedersen
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sarita U Patil
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Cossette BJ, Shetty S, Issah LA, Collier JH. Self-Assembling Allergen Vaccine Platform Raises Therapeutic Allergen-Specific IgG Responses without Induction of Systemic Allergic Responses. ACS Biomater Sci Eng 2024; 10:1819-1829. [PMID: 38366973 PMCID: PMC11382287 DOI: 10.1021/acsbiomaterials.3c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Allergen immunotherapies are often successful at desensitizing allergic patients but can require life-long dosing and suffer from frequent adverse events including instances of systemic anaphylaxis, leading to poor patient compliance and high cost. Allergen vaccines, in turn, can generate more durable immunological allergen desensitization with far fewer doses. However, like immunotherapies, allergen vaccines are often highly reactogenic in allergic patients, hampering their use in therapeutic settings. In this work, we utilize a peptide-based self-assembling nanofiber platform to design allergen vaccines against allergen B-cell epitopes that do not elicit systemic anaphylaxis when administered subcutaneously to allergic mice. We show that, in contrast to protein vaccines, nanofiber vaccines prevent leakage of allergen material into the vascular compartment, a feature that likely underpins their reduced systemic reactogenicity. Further, we show that our allergen vaccine platform elicits therapeutic IgG antibody responses capable of desensitizing allergic mice to allergen-induced Type I hypersensitivity reactions. Finally, we have demonstrated a proof-of-concept for the therapeutic potential of nanofiber-based peanut allergen vaccines directed against peanut allergen-derived epitopes.
Collapse
Affiliation(s)
| | - Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Luqman A. Issah
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joel H. Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Ma D, Zhu R. Low-dose oral immunotherapy in immunoglobulin E-mediated food allergies. Front Immunol 2024; 15:1321863. [PMID: 38361918 PMCID: PMC10867954 DOI: 10.3389/fimmu.2024.1321863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Nowadays, the management of food allergies has increasingly moved from conventional oral immunotherapy (OIT) to low-dose OIT or low-dose OIT utilizing hypoallergenic foods. This shift is largely because the latter appears to induce oral tolerance with fewer adverse effects than the former. However, the mechanisms underpinning such differences remain unclear. To better understand these mechanisms, we conducted a comparative study scrutinizing the mechanisms of OIT, especially those of low-dose desensitization. We also summarized articles on low-dose OIT and low-dose OIT using hypoallergenic foods. We examined the efficacy, safety, and immunological parameters of low-dose OIT and those of low-dose OIT with hypoallergenic foods with the aim of shedding some light on low-dose OIT and its therapeutic application in inducing oral tolerance for individuals with food allergies.
Collapse
Affiliation(s)
- Dongxia Ma
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Filimonova I, Innocenti G, Vogl T. Phage Immunoprecipitation Sequencing (PhIP-Seq) for Analyzing Antibody Epitope Repertoires Against Food Antigens. Methods Mol Biol 2024; 2717:101-122. [PMID: 37737980 DOI: 10.1007/978-1-0716-3453-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
While thousands of food and environmental allergens have been reported, conventional methods for allergy testing typically rely on measuring immunoglobulin E (IgE) binding against panels of dozens to hundreds of antigens. Beyond IgE, also the specificity of other Ig (sub-)classes such as IgG4, has gained interest because of a potential protective role toward allergy.Phage immunoprecipitation sequencing (PhIP-Seq) allows to study hundreds of thousands of rationally selected peptide antigens and to resolve binding specificities of different Ig classes. This technology combines synthetic DNA libraries encoding antigens, with the display on the surface of T7 bacteriophages and next-generation sequencing (NGS) for quantitative readouts. Thereby binding of entire Ig repertoires can be measured to detect the exact epitopes of food allergens and to study potential cross-reactivity.In this chapter, we provide a summary of both the key experimental steps and various strategies for analyzing PhIP-Seq datasets, as well as comparing the advantages and disadvantages of this methodology for measuring antibody responses against food antigens.
Collapse
Affiliation(s)
- Ioanna Filimonova
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
| | - Gabriel Innocenti
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria
| | - Thomas Vogl
- Medical University of Vienna, Center for Cancer Research, Vienna, Austria.
| |
Collapse
|
9
|
Nilsson C, Vereda A, Borres MP, Andersson M, Södergren E, Rudengren M, Smith A, Simon RJ, Ryan R, Fernández‐Rivas M, Adelman D, Vickery BP. Exploratory immunogenicity outcomes of peanut oral immunotherapy: Findings from the PALISADE trial. Clin Transl Allergy 2024; 14:e12326. [PMID: 38282192 PMCID: PMC10793676 DOI: 10.1002/clt2.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Immunoglobulin E (IgE) and immunoglobulin G4 (IgG4) to peanut and its components may influence the clinical reactivity to peanut. Allergen-specific immunotherapy is known for modifying both IgE and IgG4. Peanut oral immunotherapy may influence these serological parameters. METHODS Exploratory analyses of serological data from participants receiving peanut (Arachis hypogaea) allergen powder-dnfp (PTAH) and placebo in the double-blind, randomized, phase 3 PALISADE trial were conducted to evaluate potential relationships between peanut-specific and peanut component-specific (Ara h 1, Ara h 2, Ara h 3, Ara h 6, Ara h 8, and Ara h 9) IgE and IgG4 levels and clinical outcomes. RESULTS A total of 269 participants (PTAH, n = 202; placebo, n = 67) were analyzed. No relationship was observed between specific IgE and IgG4 levels at screening and maximum tolerated peanut protein dose during screening or response status during exit double-blind placebo-controlled food challenge (DBPCFC). In PTAH-treated participants, no relationship was observed between IgE and IgG4 levels at screening and maximum symptom severity during exit DBPCFC. Postscreening ratios (ie, postscreening/screening) in the PTAH group were significant at the end of updosing and exit visit for most components. Postscreening changes in specific IgE levels were more pronounced with PTAH versus placebo for most components. CONCLUSIONS Specific IgE and IgG4 levels at screening are not correlated with screening or exit DBPCFC results, and are not predictive of clinical response to PTAH. Peanut (Arachis hypogaea) allergen powder-dnfp contains the relevant and immunodominant allergens, inducing immunological changes with the treatment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02635776.
Collapse
Affiliation(s)
- Caroline Nilsson
- Clinical Research and EducationKarolinska InstitutetSachs' Children and Youth HospitalStockholmSweden
| | - Andrea Vereda
- Aimmune Therapeutics, a Nestlé Health Science CompanyLondonUK
| | - Magnus P. Borres
- Karolinska University HospitalStockholmSweden
- Thermo Fisher ScientificUppsalaSweden
| | | | | | | | - Alex Smith
- Aimmune Therapeutics, a Nestlé Health Science CompanyBrisbaneCaliforniaUSA
| | | | - Robert Ryan
- Aimmune Therapeutics, a Nestlé Health Science CompanyLondonUK
| | | | - Daniel Adelman
- Aimmune Therapeutics, a Nestlé Health Science CompanyBrisbaneCaliforniaUSA
- Department of MedicineUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
10
|
Ding Z, Mulder J, Robinson MJ. The origins and longevity of IgE responses as indicated by serological and cellular studies in mice and humans. Allergy 2023; 78:3103-3117. [PMID: 37417548 PMCID: PMC10952832 DOI: 10.1111/all.15799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
The existence of long-lived IgE antibody-secreting cells (ASC) is contentious, with the maintenance of sensitization by the continuous differentiation of short-lived IgE+ ASC a possibility. Here, we review the epidemiological profile of IgE production, and give an overview of recent discoveries made on the mechanisms regulating IgE production from mouse models. Together, these data suggest that for most individuals, in most IgE-associated diseases, IgE+ ASC are largely short-lived cells. A subpopulation of IgE+ ASC in humans is likely to survive for tens of months, although due to autonomous IgE B cell receptor (BCR) signaling and antigen-driven IgE+ ASC apoptosis, in general IgE+ ASC probably do not persist for the decades that other ASC are inferred to do. We also report on recently identified memory B cell transcriptional subtypes that are the likely source of IgE in ongoing responses, highlighting the probable importance of IL-4Rα in their regulation. We suggest the field should look at dupilumab and other drugs that prohibit IgE+ ASC production as being effective treatments for IgE-mediated aspects of disease in most individuals.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | - Jesse Mulder
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
11
|
Ruhs EC, Chia WN, Foo R, Peel AJ, Li Y, Larman HB, Irving AT, Wang L, Brook CE. Applications of VirScan to broad serological profiling of bat reservoirs for emerging zoonoses. Front Public Health 2023; 11:1212018. [PMID: 37808979 PMCID: PMC10559906 DOI: 10.3389/fpubh.2023.1212018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.
Collapse
Affiliation(s)
- Emily Cornelius Ruhs
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL, United States
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- CoV Biotechnology Pte Ltd., Singapore, Singapore
| | - Randy Foo
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisband, QLD, Australia
| | - Yimei Li
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Quantitative and Computational Biology, Princeton University, Princeton, NJ, United States
| | - H. Benjamin Larman
- HBL – Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron T. Irving
- Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Haining, Zhejiang, China
- BIMET - Biomedical and Translational Research Centre of Zhejiang Province, Zhejiang Province, China
| | - Linfa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Kanagaratham C, Derakhshan T, El Ansari YS, Furiness KN, Hollers E, Keldsen M, Oettgen HC, Dwyer DF. IgG:FcγRIIb signals block effector programs of IgE:FcεRI-activated mast cells but spare survival pathways. J Allergy Clin Immunol 2023; 152:453-468. [PMID: 37030590 PMCID: PMC10524869 DOI: 10.1016/j.jaci.2023.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND IgE-induced mast cell (MC) degranulation can be inhibited by IgG antibodies, signaling via FcγRIIb, but the effects of IgG on IgE-induced MC transcription are unknown. OBJECTIVE We sought to assess inhibitory IgG:FcγRIIb effects on MC responses to IgE using complementary transcriptomic and functional approaches. METHODS RNA sequencing was performed on bone marrow-derived MCs from wild-type and FcγRIIb-deficient mice to identify genes activated following IgE receptor crosslinking that were further modulated in the presence of antigen-specific IgG in an FcγRIIb-dependent fashion. Parallel analyses of signaling pathways and allergic responses in vivo were performed to assess the impact of these changes in gene expression. RESULTS Rapid changes in the transcription of 879 genes occurred in MCs activated by IgE, peaking at 1 hour. Surprisingly, only 12% of these were altered by IgG signaling via FcγRIIb, including numerous transcripts involved in orchestrating type 2 responses linked to spleen tyrosine kinase signaling. Consistent with this finding, IgG suppressed IgE-induced phospho-intermediates in the spleen tyrosine kinase signaling pathway. In vivo studies confirmed that the IgG-mediated suppression of both systemic anaphylaxis and MC-driven tissue recruitment of inflammatory cells following allergen challenge was dependent on FcγRIIb. In contrast, genes in the STAT5a cell survival pathway were unaltered by IgG, and STAT5a phosphorylation increased after IgE-induced MC activation but was unaffected by IgG. CONCLUSIONS Our findings indicate that inhibitory IgG:FcγRIIb signals block an IgE-induced proallergic program but spare a prosurvival program.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Tahereh Derakhshan
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Yasmeen S El Ansari
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | | | - Eleanor Hollers
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass
| | - Mats Keldsen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
13
|
Dispenza MC, Metcalfe DD, Olivera A. Research Advances in Mast Cell Biology and Their Translation Into Novel Therapies for Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2032-2042. [PMID: 36958519 PMCID: PMC10330051 DOI: 10.1016/j.jaip.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Anaphylaxis is an acute, potentially life-threatening systemic allergic reaction for which there are no known reliable preventative therapies. Its primary cell mediator, the mast cell, has several pathophysiologic roles and functions in IgE-mediated reactions that continue to be poorly understood. Recent advances in the understanding of allergic mechanisms have identified novel targets for inhibiting mast cell function and activation. The prevention of anaphylaxis is within reach with new drugs that could modulate immune tolerance, mast cell proliferation and differentiation, and IgE regulation and production. Several US Food and Drug Administration-approved drugs for chronic urticaria, mastocytosis, and cancer are also being repurposed to prevent anaphylaxis. New therapeutics have not only shown promise in potential efficacy for preventing IgE-mediated reactions, but in some cases, they are able to inform us about mast cell mechanisms in vivo. This review summarizes the most recent advances in the treatment of anaphylaxis that have arisen from new pharmacologic tools and our current understanding of mast cell biology.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
14
|
Shrock EL, Timms RT, Kula T, Mena EL, West AP, Guo R, Lee IH, Cohen AA, McKay LGA, Bi C, Keerti, Leng Y, Fujimura E, Horns F, Li M, Wesemann DR, Griffiths A, Gewurz BE, Bjorkman PJ, Elledge SJ. Germline-encoded amino acid-binding motifs drive immunodominant public antibody responses. Science 2023; 380:eadc9498. [PMID: 37023193 PMCID: PMC10273302 DOI: 10.1126/science.adc9498] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Despite the vast diversity of the antibody repertoire, infected individuals often mount antibody responses to precisely the same epitopes within antigens. The immunological mechanisms underpinning this phenomenon remain unknown. By mapping 376 immunodominant "public epitopes" at high resolution and characterizing several of their cognate antibodies, we concluded that germline-encoded sequences in antibodies drive recurrent recognition. Systematic analysis of antibody-antigen structures uncovered 18 human and 21 partially overlapping mouse germline-encoded amino acid-binding (GRAB) motifs within heavy and light V gene segments that in case studies proved critical for public epitope recognition. GRAB motifs represent a fundamental component of the immune system's architecture that promotes recognition of pathogens and leads to species-specific public antibody responses that can exert selective pressure on pathogens.
Collapse
Affiliation(s)
- Ellen L. Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA 02115, USA
| | - Richard T. Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA 02115, USA
- Present address: Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Elijah L. Mena
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rui Guo
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - I-Hsiu Lee
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lindsay G. A. McKay
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Caihong Bi
- Division of Allergy and Immunology, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Keerti
- Division of Allergy and Immunology, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric Fujimura
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Felix Horns
- Department of Bioengineering, Department of Applied Physics, Chan Zuckerberg Biohub and Stanford University, Stanford, CA 94305, USA
| | - Mamie Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Duane R. Wesemann
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Division of Allergy and Immunology, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139 USA
| | - Anthony Griffiths
- National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Boston, MA 02118, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Sindher SB, Chin AR, Aghaeepour N, Prince L, Maecker H, Shaw GM, Stevenson DK, Nadeau KC, Snyder M, Khatri P, Boyd SD, Winn VD, Angst MS, Chinthrajah RS. Advances and potential of omics studies for understanding the development of food allergy. FRONTIERS IN ALLERGY 2023; 4:1149008. [PMID: 37034151 PMCID: PMC10080041 DOI: 10.3389/falgy.2023.1149008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The prevalence of food allergy continues to rise globally, carrying with it substantial safety, economic, and emotional burdens. Although preventative strategies do exist, the heterogeneity of allergy trajectories and clinical phenotypes has made it difficult to identify patients who would benefit from these strategies. Therefore, further studies investigating the molecular mechanisms that differentiate these trajectories are needed. Large-scale omics studies have identified key insights into the molecular mechanisms for many different diseases, however the application of these technologies to uncover the drivers of food allergy development is in its infancy. Here we review the use of omics approaches in food allergy and highlight key gaps in knowledge for applying these technologies for the characterization of food allergy development.
Collapse
Affiliation(s)
- Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| | - Andrew R Chin
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Lawrence Prince
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Holden Maecker
- Department of Medicine, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| | - Michael Snyder
- Department of Genetics, Stanford University, Palo Alto, CA, United States
| | - Purvesh Khatri
- Department of Medicine, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
- Department of Pathology, Stanford University, Palo Alto, CA, United States
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - R Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, United States
| |
Collapse
|
16
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
LaHood NA, Min J, Keswani T, Richardson CM, Amoako K, Zhou J, Marini-Rapoport O, Bernard H, Hazebrouck S, Shreffler WG, Love JC, Pomes A, Pedersen LC, Mueller GA, Patil SU. Immunotherapy-induced neutralizing antibodies disrupt allergen binding and sustain allergen tolerance in peanut allergy. J Clin Invest 2023; 133:e164501. [PMID: 36647835 PMCID: PMC9843057 DOI: 10.1172/jci164501] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 01/18/2023] Open
Abstract
In IgE-mediated food allergies, exposure to the allergen activates systemic allergic responses. Oral immunotherapy (OIT) treats food allergies through incremental increases in oral allergen exposure. However, OIT only induces sustained clinical tolerance and decreased basophil sensitivity in a subset of individuals despite increases in circulating allergen-specific IgG in all treated individuals. Therefore, we examined the allergen-specific antibodies from 2 OIT cohorts of patients with sustained and transient responses. Here, we compared antibodies from individuals with sustained or transient responses and discovered specific tolerance-associated conformational epitopes of the immunodominant allergen Ara h 2 recognized by neutralizing antibodies. First, we identified what we believe to be previously unknown conformational, intrahelical epitopes using x-ray crystallography with recombinant antibodies. We then identified epitopes only recognized in sustained tolerance. Finally, antibodies recognizing tolerance-associated epitopes effectively neutralized allergen to suppress IgE-mediated effector cell activation. Our results demonstrate the molecular basis of antibody-mediated protection in IgE-mediated food allergy, by defining how these antibodies disrupt IgE-allergen interactions to prevent allergic reactions. Our approach to studying the structural and functional basis for neutralizing antibodies demonstrates the clinical relevance of specific antibody clones in antibody-mediated tolerance. We anticipate that our findings will form the foundation for treatments of peanut allergy using neutralizing antibodies and hypoallergens.
Collapse
Affiliation(s)
- Nicole A. LaHood
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jungki Min
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Tarun Keswani
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Kwasi Amoako
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jingjia Zhou
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Hervé Bernard
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Wayne G. Shreffler
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Lars C. Pedersen
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Geoffrey A. Mueller
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Sarita U. Patil
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Smith SA, Chruszcz M, Chapman MD, Pomés A. Human Monoclonal IgE Antibodies-a Major Milestone in Allergy. Curr Allergy Asthma Rep 2023; 23:53-65. [PMID: 36459330 PMCID: PMC9831959 DOI: 10.1007/s11882-022-01055-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE OF REVIEW Bound to its high affinity receptor on mast cells and basophils, the IgE antibody molecule plays an integral role in the allergic reaction. Through interactions with the allergen, it provides the sensitivity and specificity parameters for cell activation and mediator release that produce allergic symptoms. Advancements in human hybridoma technologies allow for the generation and molecular definition of naturally occurring allergen-specific human IgE monoclonal antibodies. RECENT FINDINGS A high-resolution structure of dust mite allergen Der p 2 in complex with Fab of the human IgE mAb 2F10 was recently determined using X-ray crystallography. The structure reveals the fine molecular details of IgE 2F10 binding its 750 Å2 conformational epitope on Der p 2. This review provides an overview of this major milestone in allergy, the first atomic resolution structure of an authentic human IgE epitope. The molecular insights that IgE epitopes provide will allow for structure-based design approaches to the development of novel diagnostics, antibody therapeutics, and immunotherapies.
Collapse
Affiliation(s)
- Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | | |
Collapse
|
19
|
Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity 2022; 55:2454-2469.e6. [PMID: 36473469 DOI: 10.1016/j.immuni.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.
Collapse
|
20
|
Sánchez-Ruano L, Fernández-Lozano C, Ferrer M, Gómez F, de la Hoz B, Martínez-Botas J, Goikoetxea MJ. Differences in Linear Epitopes of Ara h 9 Recognition in Peanut Allergic and Tolerant, Peach Allergic Patients. FRONTIERS IN ALLERGY 2022; 3:896617. [PMID: 35935018 PMCID: PMC9352880 DOI: 10.3389/falgy.2022.896617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Peanut-allergic patients from the Mediterranean region are predominantly sensitized to the lipid transfer protein (LTP) Ara h 9, and the peach LTP Pru p 3 seems to be the primary sensitizer. However, LTP sensitization in peanut allergy is not a predictive marker for clinically relevant symptoms. Objective We aimed to identify sequential epitopes of IgE and IgG4 from Pru p 3 and Ara h 9 in peach-allergic patients sensitized to peanuts. We also sought to determine the differences in IgE and IgG4 binding between patients who had developed peanut allergy and those tolerating peanuts. Methods A total of 46 peach-allergic patients sensitized to peanuts were selected. A total of 35 patients were allergic to peanuts (peanut-allergic group) and 11 were tolerant to peanuts (peanut-tolerant group). We measured sIgE and sIgG4 in peanut, peach, and their recombinant allergen (Ara h 1, Ara h 2, Ara h 3, Ara h 8, and Ara h 9) with fluorescence enzyme immunoassay. We examined the IgE and IgG4 binding to sequential epitopes using a peptide microarray corresponding to linear sequences of the LTPs Ara h 9 and Pru p 3 with a library of overlapping peptides with a length of 20 amino acids (aa) and an offset of 3 aa. Results The frequency and the intensity of IgE recognition of Ara h 9 and Pru p 3 peptides were higher in the peanut-tolerant group than in the peanut-allergic group. We found four Ara h 9 peptides (p4, p14, p21, and p25) and four Pru p 3 peptides (p1, p3, p21, and p24) with a significantly elevated IgE recognition in peanut-tolerant patients. Only one peptide of Ara h 9 (p4) recognized by IgG4 was significantly elevated in the peanut-tolerant group. The IgG4/IgE ratio of Ara h 9 peptide 4 was significantly higher in peanut-tolerant patients than in peanut-allergic patients, while no significant differences were observed in the IgG4/IgE ratio of this peptide in Pru p 3. Conclusion Although we found significant differences in IgE and IgG4 recognition of Ara h 9 and Pru p 3 between peanut-tolerant and peanut-allergic patients (all of whom were allergic to peach), polyclonal IgE peptide recognition of both LTPs was observed in peach-allergic patients tolerating peanuts. However, the IgG4 blocking antibodies against Ara h 9 peptide 4 could provide an explanation for the absence of clinical reactivity in peanut-tolerant peach-allergic patients. Further studies are needed to validate the usefulness of IgG4 antibodies against Ara h 9 peptide 4 for peanut allergy diagnosis.
Collapse
Affiliation(s)
- L. Sánchez-Ruano
- Allergy Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - C. Fernández-Lozano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - M. Ferrer
- Department of Allergy and Clinical Immunology, Clínica Universidad de Navarra, Navarra Health Research Institute (IDISNA, Instituto de Investigacion Sanitaria de Navarra), Pamplona, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
| | - F. Gómez
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - B. de la Hoz
- Allergy Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
| | - J. Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)-Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: J. Martínez-Botas
| | - M. J. Goikoetxea
- Department of Allergy and Clinical Immunology, Clínica Universidad de Navarra, Navarra Health Research Institute (IDISNA, Instituto de Investigacion Sanitaria de Navarra), Pamplona, Spain
- Research Network on Asthma, Drug Adverse Reactions and Allergy (ARADyAL, Red de Investigacion en Asma, Reacciones Adversas a Farmacos y Alergia), Málaga, Spain
- M. J. Goikoetxea
| |
Collapse
|
21
|
Rasquinha MT, Lasrado N, Petro-Turnquist E, Weaver E, Venkataraman T, Anderson D, Laserson U, Larman HB, Reddy J. PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis. BIOLOGY 2022; 11:biology11071055. [PMID: 36101433 PMCID: PMC9312229 DOI: 10.3390/biology11071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Myocarditis is the inflammation of the heart muscle, and viral infections are a common cause of this disease. Myocarditis in some patients can progress to dilated cardiomyopathy (DCM). The mouse model of coxsackievirus B3 (CVB3) is commonly used to understand this disease progression in DCM patients. In this paper, we have attempted to analyze antibodies for heart antigens that could be produced as a result of heart damage in animals infected with CVB3 using a technique called Phage ImmunoPrecipitation Sequencing (PhIP-Seq). The analyses led us to identify antibodies for several proteins that were not previously reported that may have relevance to human disease. Abstract Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.
Collapse
Affiliation(s)
- Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Thiagarajan Venkataraman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| |
Collapse
|
22
|
Shrock EL, Shrock CL, Elledge SJ. VirScan: High-throughput Profiling of Antiviral Antibody Epitopes. Bio Protoc 2022; 12:e4464. [PMID: 35937932 PMCID: PMC9303818 DOI: 10.21769/bioprotoc.4464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/03/2020] [Accepted: 06/08/2022] [Indexed: 12/29/2022] Open
Abstract
Profiling the specificities of antibodies can reveal a wealth of information about humoral immune responses and the antigens they target. Here, we present a protocol for VirScan, an application of the phage immunoprecipitation sequencing (PhIP-Seq) method for profiling the specificities of human antiviral antibodies. Accompanying this protocol is a video of the experimental procedure. VirScan and, more generally, PhIP-Seq are techniques that enable high-throughput antibody profiling by combining high-throughput DNA oligo synthesis and bacteriophage display with next-generation sequencing. In the VirScan method, human sera samples are screened against a library of peptides spanning the entire human viral proteome. Bound phage are immunoprecipitated and sequenced, identifying the viral peptides recognized by the antibodies. VirScan Is a powerful tool for uncovering individual viral exposure histories, mapping the epitope landscape of viruses of interest, and studying fundamental mechanisms of viral immunity. Graphical abstract.
Collapse
Affiliation(s)
- Ellen L. Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
,
Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
,
Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
,
*For correspondence:
| |
Collapse
|
23
|
Tiu CK, Zhu F, Wang LF, de Alwis R. Phage ImmunoPrecipitation Sequencing (PhIP-Seq): The Promise of High Throughput Serology. Pathogens 2022; 11:pathogens11050568. [PMID: 35631089 PMCID: PMC9143919 DOI: 10.3390/pathogens11050568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Determining the exposure or infection history of a person to a multitude of viruses is not an easy task. Typically, antibody tests detect antibodies against proteins (antigens) to only one or a few viruses. Here, we review an emerging technology called Phage ImmunoPrecipitation Sequencing (PhIP-Seq), that allows us to study the infection history of individuals to large numbers of viruses simultaneously. This technology uses bacteriophages to express and display viral antigens of choice, which are then bound by antigen-specific antibodies in patient samples. Antibody-bound bacteriophages are pulled down and identified through molecular techniques. This technology has been used in various infectious disease scenarios, including assessing exposure to different viruses, studying vaccine responses, and identifying viral cause of diseases. Despite inherent limitations in presenting only peptides, this technology holds great promise for future application in identifying novel pathogens, one health and pandemic preparedness. Abstract Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 bacteriophages and detection using next-generation sequencing (NGS), PhIP-Seq allows the determination of antibody repertoires against peptide targets from hundreds of proteins and pathogens. It differs from conventional serological techniques in that PhIP-Seq does not require protein expression and purification. It also allows for the testing of many samples against the whole virome. PhIP-Seq has been successfully applied in many infectious disease investigations concerning seroprevalence, risk factors, time trends, etiology of disease, vaccinology, and emerging pathogens. Despite the inherent limitations of this technology, we foresee the future expansion of PhIP-Seq in both investigative studies and tracking of current, emerging, and novel viruses. Following the review of PhIP-Seq technology, its limitations, and applications, we recommend that PhIP-Seq be integrated into national surveillance programs and be used in conjunction with molecular techniques to support both One Health and pandemic preparedness efforts.
Collapse
Affiliation(s)
- Charles Kevin Tiu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|