1
|
Nakagami H, Hayashi H, Morishita R. Therapeutic Vaccines and Nucleic Acid Drugs for Cardiovascular Disease. J Lipid Atheroscler 2024; 13:328-337. [PMID: 39355408 PMCID: PMC11439748 DOI: 10.12997/jla.2024.13.3.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 03/10/2024] [Indexed: 10/03/2024] Open
Abstract
To combat the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), novel vaccine modalities, such as messenger RNA vaccines, were rapidly developed and have shown high efficacy. This new vaccine technology, underpinned by intensive immunological analysis, is now being applied to the production of other vaccines. For over 10 years, we have been developing therapeutic vaccines for non-infectious diseases. The epitope vaccine approach, which combines a B-cell epitope with exogenous T-cell epitopes presented through major histocompatibility complex molecules, has been proposed to induce antibody production. This vaccine type is designed to efficiently induce a blocking antibody response against the self-antigen without activating cytotoxic T cells. If therapeutic vaccines become established as treatment options for conditions such as hypertension or dyslipidemia, their administration-potentially only a few times per year-could replace the need for daily medication. Nucleic acid drugs, including small interfering RNA and antisense oligonucleotides, have recently received attention as long-term agonists, similar to vaccines. Therefore, therapeutic vaccines or nucleic acid drugs could represent a novel strategy for controlling the progression of cardiovascular diseases. It is hoped that the accumulation of immunological findings and advances in vaccine technology will provide valuable insights into the development of vaccines for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
2
|
Katoh M, Nomura S, Yamada S, Ito M, Hayashi H, Katagiri M, Heryed T, Fujiwara T, Takeda N, Nishida M, Sugaya M, Kato M, Osawa T, Abe H, Sakurai Y, Ko T, Fujita K, Zhang B, Hatsuse S, Yamada T, Inoue S, Dai Z, Kubota M, Sawami K, Ono M, Morita H, Kubota Y, Mizuno S, Takahashi S, Nakanishi M, Ushiku T, Nakagami H, Aburatani H, Komuro I. Vaccine Therapy for Heart Failure Targeting the Inflammatory Cytokine Igfbp7. Circulation 2024; 150:374-389. [PMID: 38991046 DOI: 10.1161/circulationaha.123.064719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.
Collapse
Affiliation(s)
- Manami Katoh
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Seitaro Nomura
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Shintaro Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masamichi Ito
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Japan (H.H., H.N.)
| | - Mikako Katagiri
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Tuolisi Heryed
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takayuki Fujiwara
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Norifumi Takeda
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Miyuki Nishida
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Maki Sugaya
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Miki Kato
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Hiroyuki Abe
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Yoshitaka Sakurai
- Diabetes and Metabolic Diseases, Graduate School of Medicine (Y.S.), The University of Tokyo, Japan
| | - Toshiyuki Ko
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Kanna Fujita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Bo Zhang
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Satoshi Hatsuse
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takanobu Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Shunsuke Inoue
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Zhehao Dai
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masayuki Kubota
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Kousuke Sawami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Minoru Ono
- Cardiothoracic Surgery (M.O.), The University of Tokyo, Japan
| | - Hiroyuki Morita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan (Y.K.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science (M. Nakanishi), The University of Tokyo, Japan
| | - Tetsuo Ushiku
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Hironori Nakagami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Issei Komuro
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| |
Collapse
|
3
|
Nakashima Y, Tanabe K, Mifune T, Nakadoi T, Hayashi H, Nakagami H, Sato Y, Wada J. Preventive effects of vasohibin-2-targeting peptide vaccine for diabetic nephropathy. Am J Physiol Renal Physiol 2024; 326:F1054-F1065. [PMID: 38695075 DOI: 10.1152/ajprenal.00341.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.NEW & NOTEWORTHY This study demonstrated preventive effects of VASH2-targeting peptide vaccine therapy on albuminuria and glomerular microinflammation in STZ-induced diabetic mouse model by inhibiting renal Angpt2 expression. The vaccination was also effective in db/db mice. The results highlight the importance of VASH2 in the pathogenesis of early-stage diabetic nephropathy and the practicability of anti-VASH2 strategy as a vaccine therapy.
Collapse
Affiliation(s)
- Yuri Nakashima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyo Mifune
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takato Nakadoi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasufumi Sato
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
4
|
Namitokov A, Karabakhtsieva K. Circumventing Cardiovascular Calamities: The Dawn of ANGPTL3 Blockade in Severe Dyslipidemia Management. Cardiovasc Hematol Disord Drug Targets 2024; 24:59-64. [PMID: 39039670 DOI: 10.2174/011871529x305291240715112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
The landscape of severe dyslipidemia treatment is undergoing a remarkable transformation with the advent of angiopoietin-like 3 (ANGPTL3) inhibitors. ANGPTL3, a pivotal regulator of lipoprotein lipase and endothelial lipase, orchestrates the catabolism of triglyceride-rich and high-density lipoproteins, thus playing a critical role in lipid homeostasis. This review article examines the therapeutic potential of ANGPTL3 blockade and its implications for patients with severe dyslipidemias, particularly those unresponsive to traditional lipid-lowering regimens. We delve into the molecular mechanisms by which ANGPTL3 influences lipid metabolism and appraise the clinical utility of emerging therapeutics, such as monoclonal antibodies and antisense oligonucleotides. Moreover, we discuss the impact of ANGPTL3 inhibition on cardiovascular risk factors and project its promising role in reducing cardiovascular morbidity and mortality. The narrative synthesizes data from recent clinical trials, including the efficacy and safety profiles of ANGPTL3 inhibitors, and forecasts the potential of these agents to revolutionize the management of dyslipidemic conditions. The advent of ANGPTL3-targeted therapies signifies a potential breakthrough in the therapeutic armamentarium against complex lipid disorders, heralding a new era of precision medicine in cardiovascular risk mitigation.
Collapse
Affiliation(s)
- Alim Namitokov
- Department of Therapy, Kuban State Medical University, Krasnodar, Russia
- Scientific Research Institute - Regional Clinical Hospital #1 NA Prof. S.V. Ochapovsky, Krasnodar, Russia
| | - Karina Karabakhtsieva
- Scientific Research Institute - Regional Clinical Hospital #1 NA Prof. S.V. Ochapovsky, Krasnodar, Russia
| |
Collapse
|
5
|
Tomlinson B, Wu QY, Zhong YM, Li YH. Advances in Dyslipidaemia Treatments: Focusing on ApoC3 and ANGPTL3 Inhibitors. J Lipid Atheroscler 2024; 13:2-20. [PMID: 38299167 PMCID: PMC10825570 DOI: 10.12997/jla.2024.13.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024] Open
Abstract
Apolipoprotein C3 (apoC3) and angiopoietin-like protein 3 (ANGPTL3) inhibit lipolysis by lipoprotein lipase and may influence the secretion and uptake of various lipoproteins. Genetic studies show that depletion of these proteins is associated with improved lipid profiles and reduced cardiovascular events so it was anticipated that drugs which mimic the effects of loss-of-function mutations would be useful lipid treatments. ANGPTL3 inhibitors were initially developed as a treatment for severe hypertriglyceridaemia including familial chylomicronaemia syndrome (FCS), which is usually not adequately controlled with currently available drugs. However, it was found ANGPTL3 inhibitors were also effective in reducing low-density lipoprotein cholesterol (LDL-C) and they were studied in patients with homozygous familial hypercholesterolaemia (FH). Evinacumab targets ANGPTL3 and reduced LDL-C by about 50% in patients with homozygous FH and it has been approved for that indication. The antisense oligonucleotide (ASO) vupanorsen targeting ANGPTL3 was less effective in reducing LDL-C in patients with moderate hypertriglyceridaemia and its development has been discontinued but the small interfering RNA (siRNA) ARO-ANG3 is being investigated in Phase 2 studies. ApoC3 can be inhibited by the ASO volanesorsen, which reduced triglycerides by >70% in patients with FCS and it was approved for FCS in Europe but not in the United States because of concerns about thrombocytopaenia. Olezarsen is an N-acetylgalactosamine-conjugated ASO targeting apoC3 which appears as effective as volanesorsen without the risk of thrombocytopaenia and is undergoing Phase 3 trials. ARO-APOC3 is an siRNA targeting apoC3 that is currently being investigated in Phase 3 studies.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Qian-yan Wu
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi-ming Zhong
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan-hong Li
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Fukami H, Morinaga J, Nakagami H, Hayashi H, Okadome Y, Matsunaga E, Kadomatsu T, Horiguchi H, Sato M, Sugizaki T, Miyata K, Torigoe D, Mukoyama M, Morishita R, Oike Y. Efficacy and safety in mice of repeated, lifelong administration of an ANGPTL3 vaccine. NPJ Vaccines 2023; 8:168. [PMID: 37914738 PMCID: PMC10620388 DOI: 10.1038/s41541-023-00770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Previously, we reported that an ANGPTL3 vaccine is a hopeful therapeutic option against dyslipidemia. In our current study, we assess durability and booster effects of that vaccine over a period representing a mouse's lifespan. The vaccine remained effective for over one year, and booster vaccination maintained suppression of circulating triglyceride levels thereafter without major adverse effects on lungs, kidneys, or liver, suggesting vaccine efficacy and safety.
Collapse
Affiliation(s)
- Hirotaka Fukami
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan.
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan.
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, 565-0871, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, 565-0871, Japan
| | - Yusuke Okadome
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Eiji Matsunaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Daisuke Torigoe
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
- Institute of Resource Development and Analysis (IRDA), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto-shi, 860-0811, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, 565-0871, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, 860-8556, Japan.
- Institute of Resource Development and Analysis (IRDA), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto-shi, 860-0811, Japan.
| |
Collapse
|
7
|
Sato A, Tsukiyama T, Komeno M, Iwatani C, Tsuchiya H, Kawamoto I, Murase M, Nakagawa T, Itagaki I, Seita Y, Matsumoto S, Nakaya M, Shimizu A, Yamada A, Ema M, Ogita H. Generation of a familial hypercholesterolemia model in non-human primate. Sci Rep 2023; 13:15649. [PMID: 37730951 PMCID: PMC10511719 DOI: 10.1038/s41598-023-42763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited autosomal dominant disorder that is associated with a high plasma level of low-density lipoprotein (LDL) cholesterol, leading to an increased risk of cardiovascular diseases. To develop basic and translational research on FH, we here generated an FH model in a non-human primate (cynomolgus monkeys) by deleting the LDL receptor (LDLR) gene using the genome editing technique. Six LDLR knockout (KO) monkeys were produced, all of which were confirmed to have mutations in the LDLR gene by sequence analysis. The levels of plasma cholesterol and triglyceride were quite high in the monkeys, and were similar to those in FH patients with homozygous mutations in the LDLR gene. In addition, periocular xanthoma was observed only 1 year after birth. Lipoprotein profile analysis showed that the plasma very low-density lipoprotein and LDL were elevated, while the plasma high density lipoprotein was decreased in LDLR KO monkeys. The LDLR KO monkeys were also strongly resistant to medications for hypercholesterolemia. Taken together, we successfully generated a non-human primate model of hypercholesterolemia in which the phenotype is similar to that of homozygous FH patients.
Collapse
Affiliation(s)
- Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Tomoyuki Tsukiyama
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Kawamoto
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Mitsuru Murase
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Takahiro Nakagawa
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Iori Itagaki
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masataka Nakaya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Atsushi Yamada
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Masatsugu Ema
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
8
|
Mohamed F, Mansfield B, Raal FJ. Targeting PCSK9 and Beyond for the Management of Low-Density Lipoprotein Cholesterol. J Clin Med 2023; 12:5082. [PMID: 37568484 PMCID: PMC10419884 DOI: 10.3390/jcm12155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Reducing low-density lipoprotein cholesterol (LDL-C) levels is crucial to the prevention of atherosclerotic cardiovascular disease (ASCVD). However, many patients, especially those at very high ASCVD risk or with familial hypercholesterolemia (FH), do not achieve target LDL-C levels with statin monotherapy. The underutilization of novel lipid-lowering therapies (LLT) globally may be due to cost concerns or therapeutic inertia. Emerging approaches have the potential to lower LDL-C and reduce ASCVD risk further, in addition to offering alternatives for statin-intolerant patients. Shifting the treatment paradigm towards initial combination therapy and utilizing novel LLT strategies can complement existing treatments. This review discusses innovative approaches including combination therapies involving statins and agents like ezetimibe, bempedoic acid, cholesterol ester transfer protein (CETP) inhibitors as well as strategies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) and angiopoietin-like protein 3 (ANGPTL3) inhibition. Advances in nucleic acid-based therapies and gene editing are innovative approaches that will improve patient compliance and adherence. These strategies demonstrate significant LDL-C reductions and improved cardiovascular outcomes, offering potential for optimal LDL-C control and reduced ASCVD risk. By addressing the limitations of statin monotherapy, these approaches provide new management options for elevated LDL-C levels.
Collapse
Affiliation(s)
| | | | - Frederick J. Raal
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (F.M.); (B.M.)
| |
Collapse
|
9
|
Morinaga J, Kashiwabara K, Torigoe D, Okadome Y, Aizawa K, Uemura K, Kurashima A, Matsunaga E, Fukami H, Horiguchi H, Sato M, Sugizaki T, Miyata K, Kadomatsu T, Mukoyama M, Miyauchi K, Hokimoto S, Fukumoto Y, Hiro T, Hibi K, Nakagawa Y, Sakuma I, Ozaki Y, Iwata H, Iimuro S, Daida H, Shimokawa H, Kimura T, Matsuzaki M, Saito Y, Matsuyama Y, Nagai R, Oike Y. Plasma ANGPTL8 Levels and Risk for Secondary Cardiovascular Events in Japanese Patients With Stable Coronary Artery Disease Receiving Statin Therapy. Arterioscler Thromb Vasc Biol 2023; 43:1549-1559. [PMID: 37259862 DOI: 10.1161/atvbaha.122.318880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The ability to predict secondary cardiovascular events could improve health of patients undergoing statin treatment. Circulating ANGPTL8 (angiopoietin-like protein 8) levels, which positively correlate with proatherosclerotic lipid profiles, activate the pivotal proatherosclerotic factor ANGPTL3. Here, we assessed potential association between circulating ANGPTL8 levels and risk of secondary cardiovascular events in statin-treated patients. METHODS We conducted a biomarker study with a case-cohort design, using samples from a 2018 randomized control trial known as randomized evaluation of high-dose (4 mg/day) or low-dose (1 mg/day) lipid-lowering therapy with pitavastatin in coronary artery disease (REAL-CAD [Randomized Evaluation of Aggressive or Moderate Lipid-Lowering Therapy With Pitavastatin in Coronary Artery Disease])." From that study's full analysis set (n=12 413), we selected 2250 patients with stable coronary artery disease (582 with the primary outcome, 1745 randomly chosen, and 77 overlapping subjects). A composite end point including cardiovascular-related death, nonfatal myocardial infarction, nonfatal ischemic stroke, or unstable angina requiring emergent admission was set as a primary end point. Circulating ANGPTL8 levels were measured at baseline and 6 months after randomization. RESULTS Over a 6-month period, ANGPTL8 level changes significantly decreased in the high-dose pitavastatin group, which showed 19% risk reduction of secondary cardiovascular events compared with the low-dose group in the REAL-CAD [Randomized Evaluation of Aggressive or Moderate Lipid-Lowering Therapy With Pitavastatin in Coronary Artery Disease] study. In the highest quartiles, relative increases in ANGPTL8 levels were significantly associated with increased risk for secondary cardiovascular events, after adjustment for several cardiovascular disease risk factors and pitavastatin treatment (hazard ratio in Q4, 1.67 [95% CI, 1.17-2.39). Subgroup analyses showed relatively strong relationships between relative ANGPTL8 increases and secondary cardiovascular events in the high-dose pitavastatin group (hazard ratio in Q4, 2.07 [95% CI, 1.21-3.55]) and in the low ANGPTL8 group at baseline (166 CONCLUSIONS Monitoring ANGPTL8 levels over time might be useful to assess residual risk of cardiovascular secondary events in patients with cardiovascular disease undergoing statin therapy.
Collapse
Affiliation(s)
- Jun Morinaga
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
- Department of Nephrology (J.M., A.K., E.M., H.F., M.M.), Graduate School of Medical Sciences, Kumamoto University, Japan
- Department of Clinical Investigation, Kumamoto University Hospital, Japan (J.M.)
| | - Kosuke Kashiwabara
- Data Science Office, Clinical Research Promotion Center, The University of Tokyo Hospital, Japan (K.K.)
| | - Daisuke Torigoe
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Yusuke Okadome
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan (K.A.)
| | - Kohei Uemura
- Department of Biostatistics and Bioinformatics, Interfaculty Initiative in Information Studies (K.U.), The University of Tokyo, Japan
| | - Ai Kurashima
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
- Department of Nephrology (J.M., A.K., E.M., H.F., M.M.), Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Eiji Matsunaga
- Department of Nephrology (J.M., A.K., E.M., H.F., M.M.), Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Hirotaka Fukami
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
- Department of Nephrology (J.M., A.K., E.M., H.F., M.M.), Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Michio Sato
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Keishi Miyata
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masashi Mukoyama
- Department of Nephrology (J.M., A.K., E.M., H.F., M.M.), Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (K.M., H.I., H.D.)
| | | | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Japan (Y.F.)
| | - Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan (T.H.)
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center, Japan (K.H.)
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (Y.N.)
| | | | - Yukio Ozaki
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.)
| | - Hiroshi Iwata
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (K.M., H.I., H.D.)
| | - Satoshi Iimuro
- Innovation and Research Support Center, International University of Health and Welfare, Tokyo, Japan (S.I.)
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan (K.M., H.I., H.D.)
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (H.S.)
- International University of Health and Welfare, Narita, Japan (H.S.)
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan (T.K.)
| | | | | | - Yutaka Matsuyama
- Department of Biostatistics, School of Public Health, Graduate School of Medicine (Y.M.), The University of Tokyo, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke, Japan (R.N.)
| | - Yuichi Oike
- Department of Molecular Genetics (J.M., D.T., Y. Okadome., A.K., E.M., H.F., H.H., M.S., T.S., K.M., T.K. Y. Oike),, Graduate School of Medical Sciences, Kumamoto University, Japan
| |
Collapse
|
10
|
Xu F, Shen L, Yang Y, Kong L, Zu W, Tian D, Cao X, Huang G. Association Between Plasma Levels of ANGPTL3, 4, 8 and the Most Common Additional Cardiovascular Risk Factors in Patients with Hypertension. Diabetes Metab Syndr Obes 2023; 16:1647-1655. [PMID: 37309506 PMCID: PMC10257919 DOI: 10.2147/dmso.s411483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Background ANGPTL3, 4 and 8 have been reported to be involved in the regulation of lipid and glucose metabolism. The aim of this study was to investigate the expression of ANGPTL3, 4, 8 in hypertensive patients with or without overweight/obesity, T2D, and hyperlipidemia, and the possible association between their expression and the status of the aforementioned comorbidities. Methods Plasma levels of ANGPTL3, 4, and 8 in 87 hospitalized patients with hypertension were measured using ELISA kits. Associations between circulating ANGPTLs levels and the most common additional cardiovascular risk factors were assessed using multivariate linear regression analyses. Pearson's correlation analysis was used to examine the association between ANGPTLs and clinical parameters. Results In the context of hypertension, (1) although not statistically significant, circulating ANGPTL3 levels were higher in the overweight/obese group than in the normal weight group; (2) circulating levels of ANGPTL3 and ANGPTL8 were significantly lower in patients with T2D than in non-diabetic patients; (3) circulating ANGPTL3 levels were significantly higher in the hyperlipidemic group than in the non-hyperlipidemic group. ANGPTL3 was associated with T2D and hyperlipidemia status, whereas ANGPTL8 was independently associated with T2D status. In addition, circulating ANGPTL3 levels were positively correlated with TC, TG, LDL-C, HCY, and ANGPTL8, and circulating ANGPTL4 levels were positively correlated with UACR and BNP. Conclusion Changes in circulating ANGPTL3 and ANGPTL8 levels have been observed in hypertensive patients with the most common additional cardiovascular risk factors, suggesting a role in the common comorbidities of hypertension and cardiovascular disease. Hypertensive patients with overweight/obesity or hyperlipidemia may benefit from therapies targeting ANGPTL3.
Collapse
Affiliation(s)
- Fangfang Xu
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lijun Shen
- Department of Clinical Medical Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yongguang Yang
- Department of Clinical Medical Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Limin Kong
- Department of General Medicine, Xinxiang Medical University, the Sixth People’s Hospital of Zhengzhou, Zhengzhou, People’s Republic of China
| | - Wufan Zu
- Department of Immunology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xuanchao Cao
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Gairong Huang
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
11
|
Gill PK, Hegele RA. Low cholesterol states: clinical implications and management. Expert Rev Endocrinol Metab 2023; 18:241-253. [PMID: 37089071 DOI: 10.1080/17446651.2023.2204932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Hypocholesterolemia results from genetic - both monogenic and polygenic - and non-genetic causes and can sometimes be a source of clinical concern. We review etiologies and sequelae of hypocholesterolemia and therapeutics inspired from genetic hypocholesterolemia. AREAS COVERED Monogenic hypocholesterolemia disorders caused by the complete absence of apolipoprotein (apo) B-containing lipoproteins (abetalipoproteinemia and homozygous hypobetalipoproteinemia) or an isolated absence of apo B-48 lipoproteinemia (chylomicron retention disease) lead to clinical sequelae. These include gastrointestinal disturbances and severe vitamin deficiencies that affect multiple body systems, i.e. neurological, musculoskeletal, ophthalmological, and hematological. Monogenic hypocholesterolemia disorders with reduced but not absent levels of apo B lipoproteins have a milder clinical presentation and patients are protected against atherosclerotic cardiovascular disease. Patients with heterozygous hypobetalipoproteinemia have somewhat increased risk of hepatic disease, while patients with PCSK9 deficiency, ANGPTL3 deficiency, and polygenic hypocholesterolemia typically have anunremarkable clinical presentation. EXPERT OPINION In patients with severe monogenic hypocholesterolemia, early initiation of high-dose vitamin therapy and a low-fat diet are essential for optimal prognosis. The molecular basis of monogenic hypocholesterolemia has inspired novel therapeutics to help patients with the opposite phenotype - i.e. elevated apo B-containing lipoproteins. In particular, inhibitors of PCSK9 and ANGPTL3 show important clinical impact.
Collapse
Affiliation(s)
- Praneet K Gill
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
12
|
Polychronopoulos G, Kostourou DT, Tziomalos K. Lipid metabolism and the targeting of angiopoietin-like 3: Experimental drugs under development. Expert Opin Investig Drugs 2023; 32:177-180. [PMID: 36757398 DOI: 10.1080/13543784.2023.2179480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Georgios Polychronopoulos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Danai-Thomais Kostourou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review aims to summarize the most recently published literature highlighting the potential of pharmacological inhibition of ANGPTL3 in treating patients suffering from dyslipidemias. The rational for this strategy will be discussed considering evidence describing the role of ANGPTL3 in lipid metabolism and the consequences of its deficiency in humans. RECENT FINDINGS Recent trials have demonstrated the efficacy and safety of ANGPTL3 inhibition in treating homozygous familial hypercholesterolemia even in those patients carrying biallelic null/null variants, thus supporting the notion that the LDL-lowering effect of ANGPLT3 inhibition is LDLR-independent. The use of ANGPTL3 inhibition strategies has expanded its indications in hypertrygliceridemic patients with functional lipoprotein lipase activity. Contemporarily, the pharmacological research is exploring novel approaches to ANGPTL3 inhibition such as the use of a small interfering RNA targeting the ANGPTL3 transcript in the liver, a protein-based vaccine against ANGPTL3, and a CRISP-Cas-9 method for a liver-selective knock-out of ANGPTL3 gene. First, we will describe the molecular function of ANGPTL3 in lipoprotein metabolism. Then, we will revise the clinical characteristics of individuals carrying loss-of-function mutations of ANGPTL3, a rare condition known as familial hypobetalipoproteinemia type 2 (FHBL2) that represents a unique human model of ANGPTL3 deficiency. Finally, we will examine the lipid-lowering potential of pharmacological inhibition of ANGPTL3 based on the results of clinical trials employing Evinacumab, the first approved fully humanized monoclonal antibody against ANGPTL3. The future perspectives for ANGPTL3 inhibition will also be revised.
Collapse
|
14
|
Current progress in the development of prophylactic and therapeutic vaccines. SCIENCE CHINA. LIFE SCIENCES 2022; 66:679-710. [PMID: 36469218 PMCID: PMC9734355 DOI: 10.1007/s11427-022-2230-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.
Collapse
|
15
|
Novel Pharmaceutical and Nutraceutical-Based Approaches for Cardiovascular Diseases Prevention Targeting Atherogenic Small Dense LDL. Pharmaceutics 2022; 14:pharmaceutics14040825. [PMID: 35456658 PMCID: PMC9027611 DOI: 10.3390/pharmaceutics14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Compelling evidence supports the causative link between increased levels of low-density lipoprotein cholesterol (LDL-C) and atherosclerotic cardiovascular disease (CVD) development. For that reason, the principal aim of primary and secondary cardiovascular prevention is to reach and sustain recommended LDL-C goals. Although there is a considerable body of evidence that shows that lowering LDL-C levels is directly associated with CVD risk reduction, recent data shows that the majority of patients across Europe cannot achieve their LDL-C targets. In attempting to address this matter, a new overarching concept of a lipid-lowering approach, comprising of even more intensive, much earlier and longer intervention to reduce LDL-C level, was recently proposed for high-risk patients. Another important concern is the residual risk for recurrent cardiovascular events despite optimal LDL-C reduction, suggesting that novel lipid biomarkers should also be considered as potential therapeutic targets. Among them, small dense LDL particles (sdLDL) seem to have the most significant potential for therapeutic modulation. This paper discusses the potential of traditional and emerging lipid-lowering approaches for cardiovascular prevention by targeting sdLDL particles.
Collapse
|
16
|
Mohamed F, Mansfield BS, Raal FJ. ANGPTL3 as a Drug Target in Hyperlipidemia and Atherosclerosis. Curr Atheroscler Rep 2022; 24:959-967. [PMID: 36367663 PMCID: PMC9650658 DOI: 10.1007/s11883-022-01071-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE OF REVIEW Elevated low-density lipoprotein cholesterol (LDL-C) and triglyceride-rich lipoproteins (TRLs) or remnants are important risk factors for the development of atherosclerotic cardiovascular disease (ASCVD). The ongoing challenge of not being able to achieve recommended LDL-C targets despite maximally tolerated lipid-lowering therapy (LLT) has led to the development of novel therapeutic agents including angiopoietin-like 3 (ANGPTL3) inhibitors. RECENT FINDINGS ANGPTL3 is a glycoprotein produced by the liver that inhibits lipoprotein lipase and endothelial lipase. Data from genetic and clinical studies have shown that a lower ANGPTL3 level is associated with lower plasma LDL-C, triglyceride (TG), and other lipoproteins. Pharmacological inactivation of ANGPTL3 with the monoclonal antibody, evinacumab, results in a 50% reduction in LDL-C, even in patients with homozygous familial hypercholesterolemia (HoFH). The safe and effective targeted delivery of nucleic acid-based therapies will shape the future of the lipid arena. ANGPTL3 is a novel target in lipoprotein metabolism, targeting not only LDL-C via an LDL-receptor (LDLR) independent mechanism but also TRLs and carries a significant promise for further ASCVD risk reduction.
Collapse
Affiliation(s)
- Farzahna Mohamed
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Brett S. Mansfield
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| | - Frederick J. Raal
- Department of Internal Medicine, Faculty of Health Sciences, Division of Endocrinology and Metabolism, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|