1
|
Tian J, Shang B, Zhang J, Guo Y, Li M, Hu Y, Bai D, She J, Han Y, Guo P, Huang M, Wang Y, Liu M, Zhang J, Ye B, Guo Y, Yang M, Lin Y, Zhang T, Sun X, Yuan X, Zhang D, Xu Z, Chai Y, Qi J, Liu K, Tan S, Zhao Y, Zhou J, Song R, Gao GF, Liu J. T cell immune evasion by SARS-CoV-2 JN.1 escapees targeting two cytotoxic T cell epitope hotspots. Nat Immunol 2025; 26:265-278. [PMID: 39875585 DOI: 10.1038/s41590-024-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025]
Abstract
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.1, is unexplored. Here we demonstrate that T cell evasion exists in epitope hotspots spanning BA.2.86/JN.1 mutations. The newly emerging Q229K at this conserved nucleocapsid protein site impairs HLA-A2 epitope hotspot recognition. The association between HLA-A24 convalescents and T cell immune escape points to the spike (S) protein epitope S448-456NYNYLYRLF, with multiple mutations from Delta to JN.1, including L452Q, L452R, F456L, N450D and L452W, and N450D, L452W and L455S. A cliff drop of immune responses was observed for S448-456NYNYRYRLF (Delta/BA.5.2) and S448-456NYDYWYRSF (JN.1), but with immune preservation of S448-456NYDYWYRLF (BA.2.86). Structural analyses showed that hydrophobicity exposure determines the pronounced escape of L452R and L455S mutants, which was further confirmed by T cell receptor binding. This study highlights the characteristics and molecular mechanisms of the T cell immune escape for JN.1 and provides new insights into understanding the dominant circulation of variants, from the viewpoint of cytotoxic T cell evasion.
Collapse
Affiliation(s)
- Jinmin Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bingli Shang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuechao Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Junying She
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Peipei Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengkun Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Yalan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maoshun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
| | - Beiwei Ye
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yaxin Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengjie Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Lin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Xin Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoju Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Danni Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ziqian Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yingze Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jikun Zhou
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, China.
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China.
| | - Jun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Sangare K, Liu S, Selvaraj P, Stauft CB, Starost MF, Wang TT. Combined mutations in nonstructural protein 14, envelope, and membrane proteins mitigate the neuropathogenicity of SARS-CoV-2 Omicron BA.1 in K18-hACE2 mice. mSphere 2025; 10:e0072624. [PMID: 39660912 PMCID: PMC11774043 DOI: 10.1128/msphere.00726-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
We previously reported that mutations outside the spike protein play a role in the attenuation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 variant in human ACE2 transgenic mice (K18-hACE2). Here, we assessed the pathogenicity of SARS-CoV-2 (WA1/2020) containing mutations from the Omicron BA.1 variant in K18-hACE2 mice. At an infection dose of 104 plaque-forming units (PFU), WA1 virus carrying Omicron BA.1 Nsp14(I42V), E(T9I), M(D3G/Q19E/A63T), but not Nsp6(Δ105-107, I189V), substitutions showed significant reduction in lethality. Interestingly, reduction of viral load is more pronounced in the brains than in the lungs. Subsequent analyses suggest that BA.1 E(T9I) and M(D3G/Q19E/A63T) substitutions result in less efficient packaging of virus-like particles. Given that Nsp14(I42V), E(T9I), M(Q19E/A63T) are well preserved in subsequent omicron subvariants, including currently circulating variants, our findings highlight the importance of understanding how non-spike mutations affect the pathogenicity of SARS-CoV-2 variants. IMPORTANCE Inoculation of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) with SARS-CoV-2 often leads to a fatal brain infection. Omicron BA.1 variant, however, was found to be non-lethal in this model. Here, we systematically assessed the effect of individual mutations of Omicron BA.1 on the pathogenicity of the virus in hACE2 transgenic mice and found that combination of 5 mutations of Nsp14, E, and M of BA.1 variant significantly lowered brain viral load and reduced lethality. These results provide new insights into how SARS-CoV-2 Omicron BA.1 is attenuated.
Collapse
Affiliation(s)
- Kotou Sangare
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Matthew F. Starost
- Division of Veterinary Resources, Diagnostic and Research Services Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Tony T. Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Messina NL, Germano S, Chung AW, van de Sandt CE, Stevens NE, Allen LF, Bonnici R, Croda J, Counoupas C, Grubor‐Bauk B, Haycroft ER, Kedzierska K, McDonald E, McElroy R, Netea MG, Novakovic B, Perrett KP, Pittet LF, Purcell RA, Subbarao K, Triccas JA, Lynn DJ, Curtis N. Effect of Bacille Calmette-Guérin vaccination on immune responses to SARS-CoV-2 and COVID-19 vaccination. Clin Transl Immunology 2025; 14:e70023. [PMID: 39872402 PMCID: PMC11761716 DOI: 10.1002/cti2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025] Open
Abstract
Objectives Bacille Calmette-Guérin (BCG) vaccination has off-target effects on disease risk for unrelated infections and immune responses to vaccines. This study aimed to determine the immunomodulatory effects of BCG vaccination on immune responses to vaccines against SARS-CoV-2. Methods Blood samples, from a subset of 275 SARS-CoV-2-naïve healthcare workers randomised to BCG vaccination (BCG group) or no BCG vaccination (Control group) in the BRACE trial, were collected before and 28 days after the primary course (two doses) of ChAdOx1-S (Oxford-AstraZeneca) or BNT162b2 (Pfizer-BioNTech) vaccination. SARS-CoV-2-specific antibodies were measured using ELISA and multiplex bead array, whole blood cytokine responses to γ-irradiated SARS-CoV-2 (iSARS) stimulation were measured by multiplex bead array, and SARS-CoV-2-specific T-cell responses were measured by activation-induced marker and intracellular cytokine staining assays. Results After randomisation (mean 11 months) but prior to COVID-19 vaccination, the BCG group had lower cytokine responses to iSARS stimulation than the Control group. After two doses of ChAdOx1-S, differences in iSARS-induced cytokine responses between the BCG group and Control group were found for three cytokines (CTACK, TRAIL and VEGF). No differences were found between the groups after BNT162b2 vaccination. There were also no differences between the BCG and Control groups in COVID-19 vaccine-induced antigen-specific antibody responses, T-cell activation or T-cell cytokine production. Conclusion BCG vaccination induced a broad and persistent reduction in ex vivo cytokine responses to SARS-CoV-2. Following COVID-19 vaccination, this effect was abrogated, and BCG vaccination did not influence adaptive immune responses to COVID-19 vaccine antigens.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
| | - Susie Germano
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Natalie E Stevens
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkSAAustralia
| | - Lilith F Allen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Julio Croda
- Universidade Federal de Mato Grosso do Sul‐UFMSCampo GrandeMSBrazil
- Fiocruz Mato Grosso do SulFundação Oswaldo CruzCampo GrandeMSBrazil
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenCTUSA
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Sydney Institute for Infectious Diseases and the Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Centre for Infection and ImmunityCentenary InstituteCamperdownNSWAustralia
| | - Branka Grubor‐Bauk
- Viral Immunology Group, Adelaide Medical School, Basil Hetzel Institute for Translational Health ResearchUniversity of AdelaideAdelaideSAAustralia
| | - Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Ellie McDonald
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences InstituteUniversity of BonnBonnGermany
| | - Boris Novakovic
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Molecular Immunity Group, Infection and Immunity ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
| | - Kirsten P Perrett
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Population Allergy GroupMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of Allergy and ImmunologyThe Royal Children's Hospital MelbourneParkvilleVICAustralia
| | - Laure F Pittet
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Immunology, Vaccinology, Rheumatology and Infectious Diseases UnitGeneva University Hospitals and Faculty of MedicineGenevaSwitzerland
| | - Ruth A Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneyCamperdownNSWAustralia
- Sydney Institute for Infectious Diseases and the Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Centre for Infection and ImmunityCentenary InstituteCamperdownNSWAustralia
| | - David J Lynn
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideSAAustralia
- Flinders Health and Medical Research InstituteFlinders UniversityBedford ParkSAAustralia
| | - Nigel Curtis
- Infectious Diseases Group, Infection, Immunity and Global Health ThemeMurdoch Children's Research InstituteParkvilleVICAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVICAustralia
- Department of Infectious DiseasesThe Royal Children's Hospital MelbourneParkvilleVICAustralia
| |
Collapse
|
4
|
Seki M, Kubosawa C, Ono M, Kamoshita F, Shimizu A, Mitsutake K. Clinical Features of Patients with COVID-19 Recurrence During Hospitalization in the Omicron Variant Surge. Infect Drug Resist 2024; 17:5011-5015. [PMID: 39554473 PMCID: PMC11568766 DOI: 10.2147/idr.s485976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Background Repeat positive results for SARS-CoV-2 by antigen detection test/RT-PCR in recovered COVID-19 patients were not very rare even when omicron variants became dominant, but the clinical features of patients with recurrent COVID-19 during hospitalization are still unclear. Methods The clinical characteristics of patients with recurrent COVID-19 during hospitalization were retrospectively investigated from January 2023 to December 2023. Results Recurrence of COVID-19 was found in 7 of 275 (2.5%) patients during hospitalization. Their mean age was 80.3 (74-89) years, and 4 of 7 (57.1%) patients were hospitalized on the hematology ward with B cell/non-Hodgkin lymphoma. These 4 lymphoma patients had been vaccinated, but the other 3 patients hospitalized on the emergency ward and the neurology ward had not been vaccinated. Of the 7 patients, 6 (85.7%) were initially treated with remdesivir (RDV), but only 3 patients were re-treated with RDV, and the other 4 patients were successfully re-treated with oral 3C-like protease inhibitors, such as ensitrelvir (ESV) and nirmatrelvir/ritonavir (N/R). Conclusion These data suggest that COVID-19 recurrence was found in patients with hematological disorders, such as lymphoma, and/or patients with no vaccination history. However, these patients were treated successfully by re-administration of anti-SARS-CoV-2 agents, including ESV and N/R.
Collapse
Affiliation(s)
- Masafumi Seki
- Division of Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, Hidaka City, Japan
| | - Chie Kubosawa
- Division of Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, Hidaka City, Japan
| | - Makoto Ono
- Division of Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, Hidaka City, Japan
| | - Fumitaka Kamoshita
- Division of Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, Hidaka City, Japan
| | - Atsuko Shimizu
- Division of Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, Hidaka City, Japan
| | - Kotaro Mitsutake
- Division of Infectious Diseases and Infection Control, Saitama Medical University International Medical Center, Hidaka City, Japan
| |
Collapse
|
5
|
Binayke A, Zaheer A, Vishwakarma S, Sharma P, Dandotiya J, Raghavan S, Gosain M, Singh S, Chattopadhyay S, Kaushal J, Madan U, Kshetrapal P, Batra G, Wadhwa N, Pandey AK, Bhatnagar S, Garg PK, Awasthi A. Understanding the landscape of the SARS-CoV-2-specific T cells post-omicron surge. J Med Virol 2024; 96:e29877. [PMID: 39169721 DOI: 10.1002/jmv.29877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Emerging evidence shows increased humoral response post-omicron surge, but research on T cell responses is limited. This study investigated the durability, magnitude, and breadth of SARS-CoV-2-spike-specific T cell responses in 216 two-dose vaccinated individuals pre- and post-omicron surge. Post-surge samples showed enhanced T cell responses, indicating widespread asymptomatic exposure to omicron. Further analysis of 105 individuals with multiple exposures to SARS-CoV-2 through boosters or infections showed that post-omicron, two-dose vaccinated individuals had T cell responses comparable to those of COVID-19 convalescents or boosted individuals. Additionally, we report cross-reactive T cell responses against omicron sub-variants, including BA2.86, remained strong, with preserved frequencies of spike-specific stem-cell-like memory T cells. In silico prediction indicates that mutated epitopes of JN.1 and KP.2 retain over 95.6% of their HLA binding capability. Overall, our data suggests that T cell responses are sustained, enhanced, and cross-reactive against emerging SARS-CoV-2 variants following symptomatic or asymptomatic omicron infection.
Collapse
Affiliation(s)
- Akshay Binayke
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Aymaan Zaheer
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Siddhesh Vishwakarma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Priyanka Sharma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Mudita Gosain
- Translational Health Science and Technology Institute, Faridabad, India
| | - Savita Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Jyotsana Kaushal
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Upasna Madan
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Gaurav Batra
- Translational Health Science and Technology Institute, Faridabad, India
| | - Nitya Wadhwa
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Pramod Kumar Garg
- Translational Health Science and Technology Institute, Faridabad, India
- All India Institute of Medical Science, New Delhi, India
| | - Amit Awasthi
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
6
|
Pons-Tomàs G, Pino R, Soler-García A, Launes C, Martínez-de-Albeniz I, Ríos-Barnés M, Melé-Casas M, Hernández-García M, Monsonís M, Gené A, de-Sevilla MF, García-García JJ, Fortuny C, Fumadó V. Deciphering the Longevity and Levels of SARS-CoV-2 Antibodies in Children: A Year-Long Study Highlighting Clinical Phenotypes and Age-Related Variations. Pathogens 2024; 13:622. [PMID: 39204223 PMCID: PMC11357146 DOI: 10.3390/pathogens13080622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Identifying potential factors correlated with the sustained presence of antibodies in plasma may facilitate improved retrospective diagnoses and aid in the appraisal of pertinent vaccination strategies for various demographic groups. The main objective was to describe the persistence of anti-spike IgG one year after diagnosis in children and analyse its levels in relation to epidemiological and clinical variables. METHODS A prospective, longitudinal, observational study was conducted in a university reference hospital in the Metropolitan Region of Barcelona (Spain) (March 2020-May 2021). This study included patients under 18 years of age with SARS-CoV-2 infection (positive PCR or antigen tests for SARS-CoV-2). Clinical and serological follow-up one year after infection was performed. RESULTS We included 102 patients with a median age of 8.8 years. Anti-spike IgG was positive in 98/102 (96%) 12 months after the infection. There were higher anti-spike IgG levels were noted in patients younger than 2 years (p = 0.034) and those with pneumonia (p < 0.001). A positive and significant correlation was observed between C-reactive protein at diagnosis and anti-spike IgG titre one-year after diagnosis (p = 0.027). CONCLUSION Anti-SARS-CoV-2 IgG antibodies were detected in almost all paediatric patients one year after infection. We also observed a positive correlation between virus-specific IgG antibody titres with SARS-CoV-2 clinical phenotype (pneumonia) and age (under 2 years old).
Collapse
Affiliation(s)
- Gemma Pons-Tomàs
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - Rosa Pino
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
| | - Aleix Soler-García
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - Cristian Launes
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | | | - María Ríos-Barnés
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Infectious and Imported Diseases Department, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Maria Melé-Casas
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - María Hernández-García
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
| | - Manuel Monsonís
- Department of Microbiology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (M.M.); (A.G.)
| | - Amadeu Gené
- Department of Microbiology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (M.M.); (A.G.)
| | - Mariona-F. de-Sevilla
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Juan-José García-García
- Paediatric Department, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; (G.P.-T.); (R.P.); (A.S.-G.); (M.M.-C.); (M.H.-G.); (M.-F.d.-S.); (J.-J.G.-G.)
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Claudia Fortuny
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Infectious and Imported Diseases Department, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Victoria Fumadó
- Infectious Diseases and Microbiome Research Group, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain; (M.R.-B.); (C.F.); (V.F.)
- Department of Surgery and Medical-Surgical Specialties, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Infectious and Imported Diseases Department, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| |
Collapse
|
7
|
Rodriguez Velásquez S, Biru LE, Hakiza SM, Al-Gobari M, Triulzi I, Dalal J, Varela CBG, Botero Mesa S, Keiser O. Long-term levels of protection of different types of immunity against the Omicron variant: a rapid literature review. Swiss Med Wkly 2024; 154:3732. [PMID: 38749028 DOI: 10.57187/s.3732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION With the emergence of newer SARS-CoV-2 variants and their substantial effects on the levels and duration of protection against infection, an understanding of these characteristics of the protection conferred by humoral and cellular immunity can aid in the proper development and implementation of vaccine and safety guidelines. METHODS We conducted a rapid literature review and searched five electronic databases weekly from 1 November 2021 to 30 September 2022. Studies that assessed the humoral or cellular immunity conferred by infection, vaccination or a hybrid (combination of both) in adults and risk groups (immunocompromised and older populations) were identified. Studies were eligible when they reported data on immunological assays of COVID-19 (related to vaccination and/or infection) or the effectiveness of protection (related to the effectiveness of vaccination and/or infection). RESULTS We screened 5103 studies and included 205 studies, of which 70 provided data on the duration of protection against SARS-CoV-2 infection. The duration of protection of adaptive immunity was greatly impacted by Omicron and its subvariants: levels of protection were low by 3-6 months from exposure to infection/vaccination. Although more durable, cellular immunity also showed signs of waning by 6 months. First and second mRNA vaccine booster doses increased the levels of protection against infection and severe disease from Omicron and its subvariants but continued to demonstrate a high degree of waning over time. CONCLUSION All humoral immunities (infection-acquired, vaccine-acquired and hybrid) waned by 3-6 months. Cellular immunity was more durable but showed signs of waning by 6 months. Hybrid immunity had the highest magnitude of protection against SARS-CoV-2 infection. Boosting may be recommended as early as 3-4 months after the last dose, especially in risk groups.
Collapse
Affiliation(s)
- Sabina Rodriguez Velásquez
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Loza Estifanos Biru
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Sandrine Marie Hakiza
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Muaamar Al-Gobari
- The GRAPH Network, Geneva, Switzerland
- HIV/AIDS Unit Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Isotta Triulzi
- The GRAPH Network, Geneva, Switzerland
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Sara Botero Mesa
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Olivia Keiser
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| |
Collapse
|
8
|
Messina NL, Germano S, McElroy R, Bonnici R, Grubor-Bauk B, Lynn DJ, McDonald E, Nicholson S, Perrett KP, Pittet LF, Rudraraju R, Stevens NE, Subbarao K, Curtis N. Specific and off-target immune responses following COVID-19 vaccination with ChAdOx1-S and BNT162b2 vaccines-an exploratory sub-study of the BRACE trial. EBioMedicine 2024; 103:105100. [PMID: 38663355 PMCID: PMC11058726 DOI: 10.1016/j.ebiom.2024.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic led to the rapid development and deployment of several highly effective vaccines against SARS-CoV-2. Recent studies suggest that these vaccines may also have off-target effects on the immune system. We sought to determine and compare the off-target effects of the adenovirus vector ChAdOx1-S (Oxford-AstraZeneca) and modified mRNA BNT162b2 (Pfizer-BioNTech) vaccines on immune responses to unrelated pathogens. METHODS Prospective sub-study within the BRACE trial. Blood samples were collected from 284 healthcare workers before and 28 days after ChAdOx1-S or BNT162b2 vaccination. SARS-CoV-2-specific antibodies were measured using ELISA, and whole blood cytokine responses to specific (SARS-CoV-2) and unrelated pathogen stimulation were measured by multiplex bead array. FINDINGS Both vaccines induced robust SARS-CoV-2 specific antibody and cytokine responses. ChAdOx1-S vaccination increased cytokine responses to heat-killed (HK) Candida albicans and HK Staphylococcus aureus and decreased cytokine responses to HK Escherichia coli and BCG. BNT162b2 vaccination decreased cytokine response to HK E. coli and had variable effects on cytokine responses to BCG and resiquimod (R848). After the second vaccine dose, BNT162b2 recipients had greater specific and off-target cytokine responses than ChAdOx1-S recipients. INTERPRETATION ChAdOx1-S and BNT162b2 vaccines alter cytokine responses to unrelated pathogens, indicative of potential off-target effects. The specific and off-target effects of these vaccines differ in their magnitude and breadth. The clinical relevance of these findings is uncertain and needs further study. FUNDING Bill & Melinda Gates Foundation, National Health and Medical Research Council, Swiss National Science Foundation and the Melbourne Children's. BRACE trial funding is detailed in acknowledgements.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - Susie Germano
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Ellie McDonald
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kirsten P Perrett
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Population Allergy Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Allergy and Immunology, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Laure F Pittet
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Paediatric Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Elizabeth Street, Melbourne, VIC, Australia
| | - Nigel Curtis
- Infectious Diseases Group, Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Binayke A, Zaheer A, Vishwakarma S, Singh S, Sharma P, Chandwaskar R, Gosain M, Raghavan S, Murugesan DR, Kshetrapal P, Thiruvengadam R, Bhatnagar S, Pandey AK, Garg PK, Awasthi A. A quest for universal anti-SARS-CoV-2 T cell assay: systematic review, meta-analysis, and experimental validation. NPJ Vaccines 2024; 9:3. [PMID: 38167915 PMCID: PMC10762233 DOI: 10.1038/s41541-023-00794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Measuring SARS-CoV-2-specific T cell responses is crucial to understanding an individual's immunity to COVID-19. However, high inter- and intra-assay variability make it difficult to define T cells as a correlate of protection against COVID-19. To address this, we performed systematic review and meta-analysis of 495 datasets from 94 original articles evaluating SARS-CoV-2-specific T cell responses using three assays - Activation Induced Marker (AIM), Intracellular Cytokine Staining (ICS), and Enzyme-Linked Immunospot (ELISPOT), and defined each assay's quantitative range. We validated these ranges using samples from 193 SARS-CoV-2-exposed individuals. Although IFNγ ELISPOT was the preferred assay, our experimental validation suggested that it under-represented the SARS-CoV-2-specific T cell repertoire. Our data indicate that a combination of AIM and ICS or FluoroSpot assay would better represent the frequency, polyfunctionality, and compartmentalization of the antigen-specific T cell responses. Taken together, our results contribute to defining the ranges of antigen-specific T cell assays and propose a choice of assay that can be employed to better understand the cellular immune response against viral diseases.
Collapse
Affiliation(s)
- Akshay Binayke
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Aymaan Zaheer
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Siddhesh Vishwakarma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Savita Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Priyanka Sharma
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Rucha Chandwaskar
- Department of Microbiology, AMITY University Rajasthan, Jaipur, India
| | - Mudita Gosain
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | | | - Ramachandran Thiruvengadam
- Translational Health Science and Technology Institute, Faridabad, India
- Pondicherry Institute of Medical Sciences, Puducherry, India
| | | | | | - Pramod Kumar Garg
- Translational Health Science and Technology Institute, Faridabad, India
- All India Institute of Medical Sciences, New Delhi, India
| | - Amit Awasthi
- Immunology Core Laboratory, Translational Health Science and Technology Institute, Faridabad, India.
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
10
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
11
|
Guan X, Verma AK, Wang G, Shi J, Perlman S, Du L. Glycosylated Delta-receptor-binding domain mucosal vaccine elicits broadly neutralizing antibodies with protection against SARS-CoV-2 challenge. iScience 2023; 26:108033. [PMID: 37822493 PMCID: PMC10563057 DOI: 10.1016/j.isci.2023.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Mucosal COVID-19 vaccines are needed to block SARS-CoV-2 infection at the mucosal site. Intranasal delivery of a glycosylated Delta variant receptor-binding domain (Delta-RBD) mucosal vaccine elicited potent and balanced systemic antibody titers comparable to those induced by the intramuscular injection of the same vaccine or Omicron-S subunit vaccine, as well as high mucosal IgA antibody responses. It elicited broadly neutralizing antibodies against the original SARS-CoV-2 strain, Delta and Omicron BA1/BA2 variants, completely protecting transgenic mice from lethal challenge with a Delta variant, including complete absence of weight loss. Of note, intramuscular priming with the Omicron-S protein followed by intranasal boosting with the Delta-RBD protein improved the vaccine's ability to generate broad-spectrum neutralizing antibodies against recent BA5 and XBB Omicron variants. Overall, this vaccine has the potential to prevent the SARS-CoV-2 infection of the respiratory mucosa, while the i.m. priming and i.n. boosting vaccination strategy may offer protection against known and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Gang Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Juan Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
12
|
Rizvi ZA, Dandotiya J, Sadhu S, Khatri R, Singh J, Singh V, Adhikari N, Sharma K, Das V, Pandey AK, Das B, Medigeshi G, Mani S, Bhatnagar S, Samal S, Pandey AK, Garg PK, Awasthi A. Omicron sub-lineage BA.5 infection results in attenuated pathology in hACE2 transgenic mice. Commun Biol 2023; 6:935. [PMID: 37704701 PMCID: PMC10499788 DOI: 10.1038/s42003-023-05263-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
A recently emerged sub-lineage of Omicron, BA.5, together with BA.4, caused a fifth wave of coronavirus disease (COVID-19) in South Africa and subsequently emerged as a predominant strain globally due to its high transmissibility. The lethality of BA.5 infection has not been studied in an acute hACE2 transgenic (hACE2.Tg) mouse model. Here, we investigated tissue-tropism and immuno-pathology induced by BA.5 infection in hACE2.Tg mice. Our data show that intranasal infection of BA.5 in hACE2.Tg mice resulted in attenuated pulmonary infection and pathology with diminished COVID-19-induced clinical and pathological manifestations. BA.5, similar to Omicron (B.1.1.529), infection led to attenuated production of inflammatory cytokines, anti-viral response and effector T cell response as compared to the ancestral strain of SARS-CoV-2, Wuhan-Hu-1. We show that mice recovered from B.1.1.529 infection showed robust protection against BA.5 infection associated with reduced lung viral load and pathology. Together, our data provide insights as to why BA.5 infection escapes previous SARS-CoV-2 exposure induced-T cell immunity but may result in milder immuno-pathology and alleviated chances of re-infectivity in Omicron-recovered individuals.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Jyotsna Dandotiya
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Srikanth Sadhu
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Janmejay Singh
- Bioassay Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Virendra Singh
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Neeta Adhikari
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Kritika Sharma
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Vinayake Das
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Amit Kumar Pandey
- Centre for Tuberculosis and Bacterial Diseases Research, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Bhabatosh Das
- Centre for Microbiome and Anti-Microbial Resistance, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Guruprasad Medigeshi
- Bioassay Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shalendra Mani
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Shinjini Bhatnagar
- Centre for Maternal and Child Health, Translational Health Science and Technology NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Anil Kumar Pandey
- Department of Physiology, ESIC Medical College & Hospital, Faridabad, 121001, India
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
13
|
Noé A, Dang TD, Axelrad C, Burrell E, Germano S, Elia S, Burgner D, Perrett KP, Curtis N, Messina NL. BNT162b2 COVID-19 vaccination in children alters cytokine responses to heterologous pathogens and Toll-like receptor agonists. Front Immunol 2023; 14:1242380. [PMID: 37691937 PMCID: PMC10485613 DOI: 10.3389/fimmu.2023.1242380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
Background Vaccines can have beneficial off-target (heterologous) effects that alter immune responses to, and protect against, unrelated infections. The heterologous effects of COVID-19 vaccines have not been investigated in children. Aim To investigate heterologous and specific immunological effects of BNT162b2 COVID-19 vaccination in children. Methods A whole blood stimulation assay was used to investigate in vitro cytokine responses to heterologous stimulants (killed pathogens, Toll-like receptor ligands) and SARS-CoV-2 antigens. Samples from 29 children, aged 5-11 years, before and 28 days after a second BNT162b2 vaccination were analysed (V2 + 28). Samples from eight children were analysed six months after BNT162b2 vaccination. Results At V2 + 28, interferon-γ and monocyte chemoattractant protein-1 responses to S. aureus, E. coli, L. monocytogenes, BCG vaccine, H. influenzae, hepatitis B antigen, poly(I:C) and R848 stimulations were decreased compared to pre-vaccination. For most of these heterologous stimulants, IL-6, IL-15 and IL-17 responses were also decreased. There were sustained decreases in cytokine responses to viral, but not bacterial, stimulants six months after BNT162b2 vaccination. Cytokine responses to irradiated SARS-CoV-2, and spike glycoprotein subunits (S1 and S2) were increased at V2 + 28 for most cytokines and remained higher than pre-vaccination responses 6 months after BNT162b2 vaccination for irradiated SARS-CoV-2 and S1. There was no correlation between BNT162b2 vaccination-induced anti-SARS-CoV2-receptor binding domain IgG antibody titre at V2 + 28 and cytokine responses. Conclusions BNT162b2 vaccination in children alters cytokine responses to heterologous stimulants, particularly one month after vaccination. This study is the first to report the immunological heterologous effects of COVID-19 vaccination in children.
Collapse
Affiliation(s)
- Andrés Noé
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital, Melbourne, Parkville, VIC, Australia
| | - Thanh D. Dang
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Christine Axelrad
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Emma Burrell
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Susie Germano
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Sonja Elia
- Infectious Diseases Unit, The Royal Children’s Hospital, Melbourne, Parkville, VIC, Australia
| | - David Burgner
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital, Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsten P. Perrett
- Infectious Diseases Unit, The Royal Children’s Hospital, Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Population Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Nigel Curtis
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital, Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Nicole L. Messina
- Infection, Immunity and Global Health, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Dang TTT, Anzurez A, Nakayama-Hosoya K, Miki S, Yamashita K, de Souza M, Matano T, Kawana-Tachikawa A. Breadth and Durability of SARS-CoV-2-Specific T Cell Responses following Long-Term Recovery from COVID-19. Microbiol Spectr 2023; 11:e0214323. [PMID: 37428088 PMCID: PMC10433967 DOI: 10.1128/spectrum.02143-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
T cell immunity is crucial for long-term immunological memory, but the profile of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory T cells in individuals who recovered from COVID-19 (COVID-19-convalescent individuals) is not sufficiently assessed. In this study, the breadth and magnitude of SARS-CoV-2-specific T cell responses were determined in COVID-19-convalescent individuals in Japan. Memory T cells against SARS-CoV-2 were detected in all convalescent individuals, and those with more severe disease exhibited a broader T cell response relative to cases with mild symptoms. Comprehensive screening of T cell responses at the peptide level was conducted for spike (S) and nucleocapsid (N) proteins, and regions frequently targeted by T cells were identified. Multiple regions in S and N proteins were targeted by memory T cells, with median numbers of target regions of 13 and 4, respectively. A maximum of 47 regions were recognized by memory T cells for an individual. These data indicate that SARS-CoV-2-convalescent individuals maintain a substantial breadth of memory T cells for at least several months following infection. Broader SARS-CoV-2-specific CD4+ T cell responses, relative to CD8+ T cell responses, were observed for the S but not the N protein, suggesting that antigen presentation is different between viral proteins. The binding affinity of predicted CD8+ T cell epitopes to HLA class I molecules in these regions was preserved for the Delta variant and at 94 to 96% for SARS-CoV-2 Omicron subvariants, suggesting that the amino acid changes in these variants do not have a major impact on antigen presentation to SARS-CoV-2-specific CD8+ T cells. IMPORTANCE RNA viruses, including SARS-CoV-2, evade host immune responses through mutations. As broader T cell responses against multiple viral proteins could minimize the impact of each single amino acid mutation, the breadth of memory T cells would be one essential parameter for effective protection. In this study, breadth of memory T cells to S and N proteins was assessed in COVID-19-convalescent individuals. While broad T cell responses were induced against both proteins, the ratio of N to S proteins for breadth of T cell responses was significantly higher in milder cases. The breadth of CD4+ and CD8+ T cell responses was also significantly different between S and N proteins, suggesting different contributions of N and S protein-specific T cells for COVID-19 control. Most CD8+ T cell epitopes in the immunodominant regions maintained their HLA binding to SARS-CoV-2 Omicron subvariants. Our study provides insights into understanding the protective efficacy of SARS-CoV-2-specific memory T cells against reinfection.
Collapse
Affiliation(s)
- Thi Thu Thao Dang
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Alitzel Anzurez
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Shoji Miki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Mark de Souza
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Shi J, Du T, Wang J, Tang C, Lei M, Yu W, Yang Y, Ma Y, Huang P, Chen H, Wang X, Sun J, Wang H, Zhang Y, Luo F, Huang Q, Li B, Lu S, Hu Y, Peng X. Aryl hydrocarbon receptor is a proviral host factor and a candidate pan-SARS-CoV-2 therapeutic target. SCIENCE ADVANCES 2023; 9:eadf0211. [PMID: 37256962 PMCID: PMC10413656 DOI: 10.1126/sciadv.adf0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The emergence of a series of SARS-CoV-2 variants has necessitated the search for broad-spectrum antiviral targets. The aryl hydrocarbon receptor (AhR) senses tryptophan metabolites and is an immune regulator. However, the role of AhR in SARS-CoV-2 infection and whether AhR can be used as the target of antiviral therapy against SARS-CoV-2 and its variants are yet unclear. Here, we show that infection with SARS-CoV-2 activates AhR signaling and facilitates viral replication by interfering with IFN-I-driven antiviral immunity and up-regulating ACE2 receptor expression. The pharmacological AhR blockade or AhR knockout reduces SARS-CoV-2 and its variants' replication in vitro. Drug targeting of AhR with AhR antagonists markedly reduced SARS-CoV-2 and its variants' replication in vivo and ameliorated lung inflammation caused by SARS-CoV-2 infection in hamsters. Overall, AhR was a SARS-CoV-2 proviral host factor and a candidate host-directed broad-spectrum target for antiviral therapy against SARS-CoV-2 and its variants, including Delta and Omicron, and potentially other variants in the future.
Collapse
Affiliation(s)
- Jiandong Shi
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyue Lei
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Ma
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongli Chen
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixuan Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Luo
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunzhang Hu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing China
| |
Collapse
|
16
|
Diallo BK, Ní Chasaide C, Wong TY, Schmitt P, Lee KS, Weaver K, Miller O, Cooper M, Jazayeri SD, Damron FH, Mills KHG. Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against SARS-CoV-2 infection. NPJ Vaccines 2023; 8:68. [PMID: 37179389 PMCID: PMC10182552 DOI: 10.1038/s41541-023-00665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Current COVID-19 vaccines prevent severe disease, but do not induce mucosal immunity or prevent infection with SARS-CoV-2, especially with recent variants. Furthermore, serum antibody responses wane soon after immunization. We assessed the immunogenicity and protective efficacy of an experimental COVID-19 vaccine based on the SARS-CoV-2 Spike trimer formulated with a novel adjuvant LP-GMP, comprising TLR2 and STING agonists. We demonstrated that immunization of mice twice by the intranasal (i.n.) route or by heterologous intramuscular (i.m.) prime and i.n. boost with the Spike-LP-GMP vaccine generated potent Spike-specific IgG, IgA and tissue-resident memory (TRM) T cells in the lungs and nasal mucosa that persisted for at least 3 months. Furthermore, Spike-LP-GMP vaccine delivered by i.n./i.n., i.m./i.n., or i.m./i.m. routes protected human ACE-2 transgenic mice against respiratory infection and COVID-19-like disease following lethal challenge with ancestral or Delta strains of SARS-CoV-2. Our findings underscore the potential for nasal vaccines in preventing infection with SARS-CoV-2 and other respiratory pathogen.
Collapse
Affiliation(s)
- Béré K Diallo
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caitlín Ní Chasaide
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Pauline Schmitt
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kelly Weaver
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Olivia Miller
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Seyed D Jazayeri
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Rabdano SO, Ruzanova EA, Pletyukhina IV, Saveliev NS, Kryshen KL, Katelnikova AE, Beltyukov PP, Fakhretdinova LN, Safi AS, Rudakov GO, Arakelov SA, Andreev IV, Kofiadi IA, Khaitov MR, Valenta R, Kryuchko DS, Berzin IA, Belozerova NS, Evtushenko AE, Truhin VP, Skvortsova VI. Immunogenicity and In Vivo Protective Effects of Recombinant Nucleocapsid-Based SARS-CoV-2 Vaccine Convacell ®. Vaccines (Basel) 2023; 11:vaccines11040874. [PMID: 37112786 PMCID: PMC10141225 DOI: 10.3390/vaccines11040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The vast majority of SARS-CoV-2 vaccines which are licensed or under development focus on the spike (S) protein and its receptor binding domain (RBD). However, the S protein shows considerable sequence variations among variants of concern. The aim of this study was to develop and characterize a SARS-CoV-2 vaccine targeting the highly conserved nucleocapsid (N) protein. Recombinant N protein was expressed in Escherichia coli, purified to homogeneity by chromatography and characterized by SDS-PAGE, immunoblotting, mass spectrometry, dynamic light scattering and differential scanning calorimetry. The vaccine, formulated as a squalane-based emulsion, was used to immunize Balb/c mice and NOD SCID gamma (NSG) mice engrafted with human PBMCs, rabbits and marmoset monkeys. Safety and immunogenicity of the vaccine was assessed via ELISA, cytokine titer assays and CFSE dilution assays. The protective effect of the vaccine was studied in SARS-CoV-2-infected Syrian hamsters. Immunization induced sustainable N-specific IgG responses and an N-specific mixed Th1/Th2 cytokine response. In marmoset monkeys, an N-specific CD4+/CD8+ T cell response was observed. Vaccinated Syrian hamsters showed reduced lung histopathology, lower virus proliferation, lower lung weight relative to the body, and faster body weight recovery. Convacell® thus is shown to be effective and may augment the existing armamentarium of vaccines against COVID-19.
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Ellina A Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Iuliia V Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Nikita S Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | | | | | - Petr P Beltyukov
- Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical-Biological Agency of Russia (SRIHOPHE), Kuzmolovsky 188663, Russia
| | - Liliya N Fakhretdinova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Ariana S Safi
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - German O Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Sergei A Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Igor V Andreev
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
| | - Ilya A Kofiadi
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
- Department of Immunology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Musa R Khaitov
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
- Department of Immunology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Rudolf Valenta
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Daria S Kryuchko
- Federal Medical-Biological Agency of Russia, Moscow 125310, Russia
| | - Igor A Berzin
- Federal Medical-Biological Agency of Russia, Moscow 125310, Russia
| | - Natalia S Belozerova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Anatoly E Evtushenko
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Viktor P Truhin
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | | |
Collapse
|
18
|
Beukenhorst AL, Koch CM, Hadjichrysanthou C, Alter G, de Wolf F, Anderson RM, Goudsmit J. SARS-CoV-2 elicits non-sterilizing immunity and evades vaccine-induced immunity: implications for future vaccination strategies. Eur J Epidemiol 2023; 38:237-242. [PMID: 36738380 PMCID: PMC9898703 DOI: 10.1007/s10654-023-00965-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/07/2023] [Indexed: 02/05/2023]
Abstract
Neither vaccination nor natural infection result in long-lasting protection against SARS-COV-2 infection and transmission, but both reduce the risk of severe COVID-19. To generate insights into optimal vaccination strategies for prevention of severe COVID-19 in the population, we extended a Susceptible-Exposed-Infectious-Removed (SEIR) mathematical model to compare the impact of vaccines that are highly protective against severe COVID-19 but not against infection and transmission, with those that block SARS-CoV-2 infection. Our analysis shows that vaccination strategies focusing on the prevention of severe COVID-19 are more effective than those focusing on creating of herd immunity. Key uncertainties that would affect the choice of vaccination strategies are: (1) the duration of protection against severe disease, (2) the protection against severe disease from variants that escape vaccine-induced immunity, (3) the incidence of long-COVID and level of protection provided by the vaccine, and (4) the rate of serious adverse events following vaccination, stratified by demographic variables.
Collapse
Affiliation(s)
- Anna L Beukenhorst
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- Leyden Laboratories BV, Amsterdam, The Netherlands.
| | | | | | - Galit Alter
- Ragon Institute of MGH MIT and Harvard, Cambridge, MA, USA
| | - Frank de Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Jaap Goudsmit
- Leyden Laboratories BV, Amsterdam, The Netherlands
- Departments of Epidemiology, Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Scendoni R, Cingolani M. What do we know about pathological mechanism and pattern of lung injury related to SARS-CoV-2 Omicron variant? Diagn Pathol 2023; 18:18. [PMID: 36765347 PMCID: PMC9911937 DOI: 10.1186/s13000-023-01306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Pulmonary damage in SARS-CoV-2 is characterized pathologically by diffuse alveolar damage (DAD) and thrombosis. In addition, nosocomial bacterial superinfections and ventilator-induced lung injury (VILI) are likely to occur. The SARS-CoV-2 Omicron variant have manifested itself as a more diffusive virus which mainly affects the upper airways, such as the nose and pharynx. The mechanism leading to a lung injury with a complex clinical course for the Omicron SARS-CoV-2 variant remains unclear. A key question is whether the organ damage is due to direct organ targeting of the virus or downstream effects such as an altered immune response. An immune escape process of Omicron variant is being studied, which could lead to prolonged viral shedding and increase hospitalization times in patients with comorbidities, with an increased risk of pulmonary co-infections/superinfections and organ damage. This brief commentary reports the current knowledge on the Omicron variant and provides some useful suggestions to the scientific community.
Collapse
Affiliation(s)
- Roberto Scendoni
- Department of Law, Institute of Legal Medicine, University of Macerata, Piaggia Dell'Università, 2, 62100, Macerata, Italy.
| | - Mariano Cingolani
- grid.8042.e0000 0001 2188 0260Department of Law, Institute of Legal Medicine, University of Macerata, Piaggia Dell’Università, 2, 62100 Macerata, Italy
| |
Collapse
|
20
|
Kim JW, Cho AH, Shin HG, Jang SH, Cho SY, Lee YR, Lee S. Development and Characterization of Phage Display-Derived Monoclonal Antibodies to the S2 Domain of Spike Proteins of Wild-Type SARS-CoV-2 and Multiple Variants. Viruses 2023; 15:174. [PMID: 36680213 PMCID: PMC9862430 DOI: 10.3390/v15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The rapid emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has resulted in the ongoing global coronavirus disease 2019 (COVID-19) pandemic. Thus, the rapid development of a platform to detect a broad range of SARS-CoV-2 variants is essential for successful COVID-19 management. In this study, four SARS-CoV-2 spike protein-specific single-chain variable fragments (scFvs) were isolated from a synthetic antibody library using phage display technology. Following the conversion of these scFvs into monoclonal antibodies (mAbs) (K104.1-K104.4) and production and purification of the mAbs, the antibody pair (K104.1 and K104.2) that exhibited the highest binding affinity (K104.1 and K104.2, 1.3 nM and 1.9 nM) was selected. Biochemical analyses revealed that this antibody pair specifically bound to different sites on the S2 subunit of the spike protein. Furthermore, we developed a highly sensitive sandwich immunoassay using this antibody pair that accurately and quantitatively detected the spike proteins of wild-type SARS-CoV-2 and multiple variants, including Alpha, Beta, Gamma, Delta, Kappa, and Omicron, in the picomolar range. Conclusively, the novel phage display-derived mAbs we have developed may be useful for the rapid and efficient detection of the fast-evolving SARS-CoV-2.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ah Hyun Cho
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Gyeong Shin
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sung Hoon Jang
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Su Yeon Cho
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ye Rim Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Sukmook Lee
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
21
|
Effective vaccination strategy using SARS-CoV-2 spike cocktail against Omicron and other variants of concern. NPJ Vaccines 2022; 7:169. [PMID: 36535987 PMCID: PMC9762654 DOI: 10.1038/s41541-022-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 Omicron variant harbors more than 30 mutations in its spike (S) protein. Circulating Omicron subvariants, particularly BA5 and other variants of concern (VOCs), show increased resistance to COVID-19 vaccines that target the original S protein, calling for an urgent need for effective vaccines to prevent multiple SARS-CoV-2 VOCs. Here, we evaluated the neutralizing activity and protection conferred by a BA1-S subunit vaccine when combined with or used as booster doses after, administration of wild-type S protein (WT-S). A WT-S/BA1-S cocktail, or WT-S prime and BA1-S boost, induced significantly higher neutralizing antibodies against pseudotyped Omicron BA1, BA2, BA2.12.1, and BA5 subvariants, and similar or higher neutralizing antibodies against the original SARS-CoV-2, than the WT-S protein alone. The WT-S/BA1-S cocktail also elicited higher or significantly higher neutralizing antibodies than the WT-S-prime-BA1-S boost, WT-S alone, or BA1-S alone against pseudotyped SARS-CoV-2 Alpha, Beta, Gamma, and Delta VOCs, and SARS-CoV, a closely related beta-coronavirus using the same receptor as SARS-CoV-2 for viral entry. By contrast, WT-S or BA1-S alone failed to induce potent neutralizing antibodies against all these viruses. Similar to the WT-S-prime-BA1-S boost, the WT-S/BA1-S cocktail completely protected mice against the lethal challenge of a Delta variant with negligible weight loss. Thus, we have identified an effective vaccination strategy that elicits potent, broadly, and durable neutralizing antibodies against circulating SARS-CoV-2 Omicron subvariants, other VOCs, original SARS-CoV-2, and SARS-CoV. These results will provide useful guidance for developing efficacious vaccines that inhibit current and future SARS-CoV-2 variants to control the COVID-19 pandemic.
Collapse
|
22
|
Kongkamol C, Ingviya T, Chusri S, Surasombatpattana S, Kwanyuang A, Chaichulee S, Sophark I, Seesong C, Sorntavorn T, Detpreechakul T, Phaiboonpornpong P, Krainara K, Sathirapanya P, Sathirapanya C. Integrative Effects between a Bubble and Seal Program and Workers' Compliance to Health Advice on Successful COVID-19 Transmission Control in a Factory in Southern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16391. [PMID: 36554271 PMCID: PMC9778696 DOI: 10.3390/ijerph192416391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Applying health measures to prevent COVID-19 transmission caused disruption of businesses. A practical plan to balance public health and business sustainability during the pandemic was needed. Herein, we describe a "Bubble and Seal" (B&S) program implemented in a frozen seafood factory in southern Thailand. We enrolled 1539 workers who lived in the factory dormitories. First, the workers who had a high fatality risk were triaged by RT-PCR tests, quarantined and treated if they had COVID-19. Newly diagnosed or suspected COVID-19 workers underwent the same practices. The non-quarantined workers were regulated to work and live in their groups without contact across the groups. Workers' personal hygiene and preventive measures were strongly stressed. Between the 6th and 9th weeks of the program, the post-COVID-19 infection status (PCIS) of all participants was evaluated by mass COVID-19 antibody or RT-PCR tests. Finally, 91.8% of the workers showed positive PCIS, which was above the number required for program exit. Although no workers had received a vaccination, there was only one case of severe COVID-19 pneumonia, and no evidence of COVID-19 spreading to the surrounding communities. Implementation of the B&S program and workers' adherence to health advice was the key to this success.
Collapse
Affiliation(s)
- Chanon Kongkamol
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Thammasin Ingviya
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Smonrapat Surasombatpattana
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Atichart Kwanyuang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Sitthichok Chaichulee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Intouch Sophark
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Chaiwat Seesong
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Thanawan Sorntavorn
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Tanyawan Detpreechakul
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Pindanunant Phaiboonpornpong
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Kamol Krainara
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Pornchai Sathirapanya
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Chutarat Sathirapanya
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| |
Collapse
|
23
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
24
|
Mendez-Cortina Y, Rodriguez-Perea AL, Chvatal-Medina M, Lopera TJ, Alvarez-Mesa N, Rodas-Marín JK, Moncada DC, Rugeles MT, Velilla PA. Dynamics of humoral immune response in SARS-CoV-2 infected individuals with different clinical stages. Front Immunol 2022; 13:1007068. [DOI: 10.3389/fimmu.2022.1007068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
BackgroundThe COVID-19 pandemic remains a global health problem. As in other viral infections, the humoral immune response against SARS-CoV-2 is thought to be crucial for controlling the infection. However, the dynamic of B cells in the clinical spectrum of this disease is still controversial. This study aimed to characterize B cell subsets and neutralizing responses in COVID-19 patients according to disease severity through a one-month follow-up.MethodsA cohort of 71 individuals with SARS-CoV-2 infection confirmed by RT-PCR were recruited and classified into four groups: i) asymptomatic; ii) symptomatic outpatients; iii) hospitalized in ward, and iv) intensive care unit patients (ICU). Samples were taken at days 0 (inclusion to the study), 7 and 30. B cell subsets and neutralizing antibodies were assessed using multiparametric flow cytometry and plaque reduction neutralization, respectively.ResultsOlder age, male gender and body mass index over 25 were common factors among hospitalized and ICU patients, compared to those with milder clinical presentations. In addition, those requiring hospitalization had more comorbidities. A significant increase in the frequencies of CD19+ cells at day 0 was observed in hospitalized and ICU patients compared to asymptomatic and symptomatic groups. Likewise, the frequency of plasmablasts was significantly increased at the first sample in the ICU group compared to the asymptomatic group, but then waned over time. The frequency of naïve B cells decreased at days 7 and 30 compared to day 0 in hospitalized and ICU patients. The neutralizing antibody titers were higher as the severity of COVID-19 increased; in asymptomatic individuals, it was strongly correlated with the percentage of IgM+ switched memory B cells, and a moderate correlation was found with plasmablasts.ConclusionThe humoral immune response is variable among SARS-CoV-2 infected people depending on the severity and time of clinical evolution. In severe COVID-19 patients, a higher plasmablast frequency and neutralizing antibody response were observed, suggesting that, despite having a robust humoral immunity, this response could be late, having a low impact on disease outcome.
Collapse
|
25
|
Pang G, Yi T, Luo H, Jiang L. Preclinical findings: The pharmacological targets and molecular mechanisms of ferulic acid treatment for COVID-19 and osteosarcoma via targeting autophagy. Front Endocrinol (Lausanne) 2022; 13:971687. [PMID: 36204096 PMCID: PMC9530469 DOI: 10.3389/fendo.2022.971687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
The variant virus-based 2019 coronavirus disease (COVID-19) pandemic has reportedly impacted almost all populations globally, characterized by a huge number of infected individuals. Clinical evidence proves that patients with cancer are more easily infected with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) because of immunologic deficiency. Thus, there is an urgent need to develop candidate medications to treat patients with cancer plus COVID-19, including those with osteosarcoma (OS). Ferulic acid, a latent theriacal compound that has anti-tumor and antivirus activities, is discovered to have potential pharmacological use. Thus, in this study, we aimed to screen and determine the potential therapeutic targets of ferulic acid in treating patients with OS plus COVID-19 as well as the pharmacological mechanisms. We applied a well-established integrated methodology, including network pharmacology and molecular docking technique, to detail target prediction, network construction, gene ontology, and pathway enrichment in core targets. The network pharmacology results show that all candidate genes, by targeting autophagy, were the core targets of ferulic acid in treating OS and COVID-19. Through molecular docking analysis, the signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 1 (MAPK1), and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) were identified as the pharmacological targets of ferulic acid in treating OS. These preclinical findings from bioinformatics analysis altogether effectively determined the pharmacological molecules and mechanisms via targeting autophagy, demonstrating the therapeutic effectiveness of ferulic acid against COVID-19 and OS.
Collapse
Affiliation(s)
- Guangfu Pang
- School of Basic Medical Science, Youjiang Medical College for Nationalities, Baise, China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Hongcheng Luo
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Medical College, Guangxi University, Nanning, China
- Key Laboratory of Tumor Immunology and Pathology (Army Medical University) Ministry of Education, Chongqing, China
| |
Collapse
|