1
|
Coenye T, Ahonen M, Anderson S, Cámara M, Chundi P, Fields M, Foidl I, Gnimpieba EZ, Griffin K, Hinks J, Loka AR, Lushbough C, MacPhee C, Nater N, Raval R, Slater-Jefferies J, Teo P, Wilks S, Yung M, Webb JS. Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy. Biofilm 2024; 8:100210. [PMID: 39221168 PMCID: PMC11364012 DOI: 10.1016/j.bioflm.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Priority question exercises are increasingly used to frame and set future research, innovation and development agendas. They can provide an important bridge between the discoveries, data and outputs generated by researchers, and the information required by policy makers and funders. Microbial biofilms present huge scientific, societal and economic opportunities and challenges. In order to identify key priorities that will help to advance the field, here we review questions from a pool submitted by the international biofilm research community and from practitioners working across industry, the environment and medicine. To avoid bias we used computational approaches to group questions and manage a voting and selection process. The outcome of the exercise is a set of 78 unique questions, categorized in six themes: (i) Biofilm control, disruption, prevention, management, treatment (13 questions); (ii) Resistance, persistence, tolerance, role of aggregation, immune interaction, relevance to infection (10 questions); (iii) Model systems, standards, regulatory, policy education, interdisciplinary approaches (15 questions); (iv) Polymicrobial, interactions, ecology, microbiome, phage (13 questions); (v) Clinical focus, chronic infection, detection, diagnostics (13 questions); and (vi) Matrix, lipids, capsule, metabolism, development, physiology, ecology, evolution environment, microbiome, community engineering (14 questions). The questions presented are intended to highlight opportunities, stimulate discussion and provide focus for researchers, funders and policy makers, informing future research, innovation and development strategy for biofilms and microbial communities.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Merja Ahonen
- Satakunta University of Applied Sciences, Finland
| | - Skip Anderson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Miguel Cámara
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Matthew Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ines Foidl
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Kristen Griffin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jamie Hinks
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | | | - Cait MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nater
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Rasmita Raval
- National Biofilms Innovation Centre, Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jo Slater-Jefferies
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Pauline Teo
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Sandra Wilks
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Maria Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | - Jeremy S. Webb
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Shiue SJ, Wu MS, Chiang YH, Lin HY. Bacteriophage-cocktail hydrogel dressing to prevent multiple bacterial infections and heal diabetic ulcers in mice. J Biomed Mater Res A 2024; 112:1846-1859. [PMID: 38706446 DOI: 10.1002/jbm.a.37728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Bacteriophage (phage) has been reported to reduce the bacterial infection in delayed-healing wounds and, as a result, aiding in the healing of said wounds. In this study we investigated whether the presence of phage itself could help repair delayed-healing wounds in diabetic mice. Three strains of phage that target Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa were used. To prevent the phage liquid from running off the wound, the mixture of phage (phage-cocktail) was encapsulated in a porous hydrogel dressing made with three-dimensional printing. The phage-cocktail dressing was tested for its phage preservation and release efficacy, bacterial reduction, cytotoxicity with 3T3 fibroblast, and performance in repairing a sterile full-thickness skin wound in diabetic mice. The phage-cocktail dressing released 1.7%-5.7% of the phages embedded in 24 h, and reduced between 37%-79% of the surface bacteria compared with the blank dressing (p <.05). The phage-cocktail dressing exhibited no sign of cytotoxicity after 3 days (p <.05). In vivo studies showed that 14 days after incision, the full-thickness wound treated with a phage-cocktail dressing had a higher wound healing ratio compared with the blank dressing and control (p <.01). Histological analysis showed that the structure of the skin layers in the group treated with phage-cocktail dressing was restored in an orderly fashion. Compared with the blank dressing and control, the repaired tissue in the phage-cocktail dressing group had new capillary vessels and no sign of inflammation in its dermis, and its epidermis had a higher degree of re-epithelialization (p <.05). The slow-released phage has demonstrated positive effects in repairing diabetic skin wounds.
Collapse
Affiliation(s)
- Sheng-Jie Shiue
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Chiang
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-Yi Lin
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
3
|
Chang TH, Pourtois JD, Haddock NL, Furkuawa D, Kelly KE, Amanatullah DF, Burgener E, Milla C, Banaei N, Bollyky PL. Prophages are Infrequently Associated With Antibiotic Resistance in Pseudomonas aeruginosa Clinical Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.595912. [PMID: 38895396 PMCID: PMC11185549 DOI: 10.1101/2024.06.02.595912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Antimicrobial resistance (AMR) is a significant obstacle to the treatment of bacterial infections, including in the context of Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF). Lysogenic bacteriophages can integrate their genome into the bacterial chromosome and are known to promote genetic transfer between bacterial strains. However, the contribution of lysogenic phages to the incidence of AMR is poorly understood. Here, in a set of 187 clinical isolates of Pseudomonas aeruginosa collected from 82 patients with CF, we evaluate the links between prophages and both genomic and phenotypic resistance to five anti-pseudomonal antibiotics: tobramycin, colistin, ciprofloxacin, meropenem, aztreonam, and tazobactam. We find that P. aeruginosa isolates contain on average 3.06 +/-1.84 (SD) predicted prophages. We find no significant association between the number of prophages per isolate and the mean inhibitory concentration (MIC) for any of these antibiotics. We then investigate the relationship between particular prophages and AMR. We identify a single lysogenic phage that is associated with phenotypic resistance to the antibiotic tobramycin. Consistent with this association, we identify AMR genes associated with resistance to tobramycin in these strains and find that they are not encoded directly on prophage sequences. These findings suggest that prophages are infrequently associated with the AMR genes in clinical isolates of P. aeruginosa .
Collapse
|
4
|
Copeland CJ, Roddy JW, Schmidt AK, Secor P, Wheeler T. VIBES: a workflow for annotating and visualizing viral sequences integrated into bacterial genomes. NAR Genom Bioinform 2024; 6:lqae030. [PMID: 38584872 PMCID: PMC10993291 DOI: 10.1093/nargab/lqae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists. Some prophages have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES (Viral Integrations in Bacterial genomES), a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab-separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES's primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1072 Pseudomonas spp. genomes.
Collapse
Affiliation(s)
- Conner J Copeland
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jack W Roddy
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Amelia K Schmidt
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
5
|
Chen Q, Cai P, Chang THW, Burgener E, Kratochvil MJ, Gupta A, Hargill A, Secor PR, Nielsen JE, Barron AE, Milla C, Heilshorn SC, Spakowitz A, Bollyky PL. Pf bacteriophages hinder sputum antibiotic diffusion via electrostatic binding. SCIENCE ADVANCES 2024; 10:eadl5576. [PMID: 38820163 PMCID: PMC11141622 DOI: 10.1126/sciadv.adl5576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.
Collapse
Affiliation(s)
- Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Pam Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Tony Hong Wei Chang
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Elizabeth Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Michael J Kratochvil
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA
| | - Aditi Gupta
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Aviv Hargill
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, CA 94305, USA
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA
| | - Andy Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages induce the secretion of antiviral and proinflammatory cytokines from human respiratory epithelial cells. PLoS Biol 2024; 22:e3002566. [PMID: 38652717 PMCID: PMC11037538 DOI: 10.1371/journal.pbio.3002566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, United States of America
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| |
Collapse
|
7
|
Popgeorgiev N, Krupovic M, Hiblot J, Fancello L, Monteil-Bouchard S, Desnues C. A New Inovirus from the Human Blood Encodes Proteins with Nuclear Subcellular Localization. Viruses 2024; 16:475. [PMID: 38543840 PMCID: PMC10975378 DOI: 10.3390/v16030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses infecting bacteria (bacteriophages) represent the most abundant viral particles in the human body. They participate in the control of the human-associated bacterial communities and play an important role in the dissemination of virulence genes. Here, we present the identification of a new filamentous single-stranded DNA phage of the family Inoviridae, named Ralstonia Inoviridae Phage 1 (RIP1), in the human blood. Metagenomics and PCR analyses detected the RIP1 genome in blood serum, in the absence of concomitant bacterial infection or contamination, suggesting inovirus persistence in the human blood. Finally, we have experimentally demonstrated that the RIP1-encoded rolling circle replication initiation protein and serine integrase have functional nuclear localization signals and upon expression in eukaryotic cells both proteins were translocated into the nucleus. This observation adds to the growing body of data suggesting that phages could have an overlooked impact on the evolution of eukaryotic cells.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
- Institut Universitaire de France (IUF), 75013 Paris, France
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany;
| | - Laura Fancello
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, 38000 Grenoble, France;
| | - Sonia Monteil-Bouchard
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (C.D.)
| | - Christelle Desnues
- Microbiologie Environnementale Biotechnologie, Institut Méditerranéen d’Océanologie, 163 Avenue de Luminy, 13009 Marseille, France; (S.M.-B.); (C.D.)
| |
Collapse
|
8
|
Chen Q, Cai P, Chang THW, Burgener E, Kratochvil MJ, Gupta A, Hargil A, Secor PR, Nielsen JE, Barron AE, Milla C, Heilshorn SC, Spakowitz A, Bollyky PL. Pf bacteriophages hinder sputum antibiotic diffusion via electrostatic binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584330. [PMID: 38496625 PMCID: PMC10942440 DOI: 10.1101/2024.03.10.584330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of morbidity and mortality in patients with cystic fibrosis, necessitating treatment with inhaled antibiotics. Pf phage is a filamentous bacteriophage produced by Pa that has been reported to act as a structural element in Pa biofilms. Pf presence has been associated with resistance to antibiotics and poor outcomes in cystic fibrosis, though the underlying mechanisms are unclear. Here, we have investigated how Pf phages and sputum biopolymers impede antibiotic diffusion using human sputum samples and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf phages and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf phages in sputum reduce the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf phages and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.
Collapse
Affiliation(s)
- Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305
| | - Pam Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305
| | - Tony Hong Wei Chang
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305
| | - Elizabeth Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305
- Children’s Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Michael J. Kratochvil
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305
| | - Aditi Gupta
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, CA 94305, United States
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Annelise E. Barron
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, CA 94305, United States
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305
| | - Andy Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305
| |
Collapse
|
9
|
Wnorowska U, Łysik D, Piktel E, Zakrzewska M, Okła S, Lesiak A, Spałek J, Mystkowska J, Savage PB, Janmey P, Fiedoruk K, Bucki R. Ceragenin-mediated disruption of Pseudomonas aeruginosa biofilms. PLoS One 2024; 19:e0298112. [PMID: 38346040 PMCID: PMC10861078 DOI: 10.1371/journal.pone.0298112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Microbial biofilms, as a hallmark of cystic fibrosis (CF) lung disease and other chronic infections, remain a desirable target for antimicrobial therapy. These biopolymer-based viscoelastic structures protect pathogenic organisms from immune responses and antibiotics. Consequently, treatments directed at disrupting biofilms represent a promising strategy for combating biofilm-associated infections. In CF patients, the viscoelasticity of biofilms is determined mainly by their polymicrobial nature and species-specific traits, such as Pseudomonas aeruginosa filamentous (Pf) bacteriophages. Therefore, we examined the impact of microbicidal ceragenins (CSAs) supported by mucolytic agents-DNase I and poly-aspartic acid (pASP), on the viability and viscoelasticity of mono- and bispecies biofilms formed by Pf-positive and Pf-negative P. aeruginosa strains co-cultured with Staphylococcus aureus or Candida albicans. METHODS The in vitro antimicrobial activity of ceragenins against P. aeruginosa in mono- and dual-species cultures was assessed by determining minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Inhibition of P. aeruginosa mono- and dual-species biofilms formation by ceragenins alone and in combination with DNase I or poly-aspartic acid (pASP) was estimated by the crystal violet assay. Additionally, the viability of the biofilms was measured by colony-forming unit (CFU) counting. Finally, the biofilms' viscoelastic properties characterized by shear storage (G') and loss moduli (G"), were analyzed with a rotational rheometer. RESULTS Our results demonstrated that ceragenin CSA-13 inhibits biofilm formation and increases its fluidity regardless of the Pf-profile and species composition; however, the Pf-positive biofilms are characterized by elevated viscosity and elasticity parameters. CONCLUSION Due to its microbicidal and viscoelasticity-modifying properties, CSA-13 displays therapeutic potential in biofilm-associated infections, especially when combined with mucolytic agents.
Collapse
Affiliation(s)
- Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Agata Lesiak
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Jakub Spałek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, Bialystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Paul Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages interact with respiratory epithelial cells and induce the secretion of antiviral and proinflammatory cytokines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579115. [PMID: 38370761 PMCID: PMC10871231 DOI: 10.1101/2024.02.06.579115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. We determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|
11
|
Dharmaraj T, Kratochvil MJ, Pourtois JD, Chen Q, Hajfathalian M, Hargil A, Lin YH, Evans Z, Oromí-Bosch A, Berry JD, McBride R, Haddock NL, Holman DR, van Belleghem JD, Chang TH, Barr JJ, Lavigne R, Heilshorn SC, Blankenberg FG, Bollyky PL. Rapid assessment of changes in phage bioactivity using dynamic light scattering. PNAS NEXUS 2023; 2:pgad406. [PMID: 38111822 PMCID: PMC10726995 DOI: 10.1093/pnasnexus/pgad406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. In this study, we use dynamic light scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-y-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web application (Phage-Estimator of Lytic Function) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and nondestructive tool for quality control of phage preparations in academic and commercial settings.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Julie D Pourtois
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zoe Evans
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | | | - Joel D Berry
- Felix Biotechnology, South SanFrancisco, CA 94080, USA
| | | | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Derek R Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonas D van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Tony H Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Francis G Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children's Hospital, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center for Molecular and Genetic Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Copeland CJ, Roddy JW, Schmidt AK, Secor PR, Wheeler TJ. VIBES: A Workflow for Annotating and Visualizing Viral Sequences Integrated into Bacterial Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562434. [PMID: 37905003 PMCID: PMC10614876 DOI: 10.1101/2023.10.17.562434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists, and have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES, a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster, and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES' primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1,072 Pseudomonas spp. genomes. VIBES software is available at https://github.com/TravisWheelerLab/VIBES.
Collapse
Affiliation(s)
- Conner J. Copeland
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Jack W. Roddy
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Travis J. Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Pellegri C, Moreau A, Duché D, Houot L. Direct interaction between fd phage pilot protein pIII and the TolQ-TolR proton-dependent motor provides new insights into the import of filamentous phages. J Biol Chem 2023; 299:105048. [PMID: 37451481 PMCID: PMC10424213 DOI: 10.1016/j.jbc.2023.105048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Filamentous phages are one of the simplest examples of viruses with a protein capsid that protects a circular single-stranded DNA genome. The infection is very specific, nonlytic, and can strongly affect the physiology or provide new pathogenic factors to its bacterial host. The infection process is proposed to rely on a pore-forming mechanism similar to that of certain nonenveloped eukaryotic viruses. The Ff coliphages (including M13, fd, and f1) have been intensively studied and were used to establish the sequence of events taking place for efficient crossing of the host envelope structure. However, the mechanism involved in the penetration of the cell inner membrane is not well understood. Here, we identify new host players involved in the phage translocation mechanism. Interaction studies by a combination of in vivo biochemical methods demonstrate that the adhesion protein pIII located at the tip of the phage binds to TolQ and TolR, two proteins that form a conserved proton-dependent molecular motor in the inner membrane of the host cell. Moreover, in vivo cysteine cross-linking studies reveal that the interactions between the pIII and TolQ or TolR occur between their transmembrane helix domains and may be responding to the proton motive force status of the cell. These results allow us to propose a model for the late stage of filamentous phage translocation mediated by multiple interactions with each individual component of the host TolQRA complex.
Collapse
Affiliation(s)
- Callypso Pellegri
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Ambre Moreau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex, France.
| |
Collapse
|
14
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
15
|
Dharmaraj T, Kratochvil MJ, Pourtois JD, Chen Q, Hajfathalian M, Hargil A, Lin YH, Evans Z, Oromí-Bosch A, Berry JD, McBride R, Haddock NL, Holman DR, van Belleghem JD, Chang TH, Barr JJ, Lavigne R, Heilshorn SC, Blankenberg FG, Bollyky PL. Rapid assessment of changes in phage bioactivity using dynamic light scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547396. [PMID: 37425882 PMCID: PMC10327207 DOI: 10.1101/2023.07.02.547396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. Here, we use Dynamic Light Scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-year-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web-application (Phage-ELF) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and non-destructive tool for quality control of phage preparations in academic and commercial settings.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Julie D. Pourtois
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zoe Evans
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derek R. Holman
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonas D. van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tony H. Chang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, 3800, VIC, Australia
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, CA 94305, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Brüssow H. The human microbiome project at ten years - some critical comments and reflections on "our third genome", the human virome. MICROBIOME RESEARCH REPORTS 2023; 2:7. [PMID: 38045612 PMCID: PMC10688805 DOI: 10.20517/mrr.2022.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 12/05/2023]
Abstract
The Human Microbiome Project (HMP) has raised great expectations claiming the far-reaching influence of the microbiome on human health and disease ranging from obesity and malnutrition to effects going well beyond the gut. So far, with the notable exception of fecal microbiota transplantation in Clostridioides difficile infection, practical application of microbiome intervention has only achieved modest clinical effects. It is argued here that we need criteria for the link between microbiome and disease modelled on the links between pathogens and infectious disease in Koch's postulates. The most important question is whether the microbiome change is a cause of the given disease or a consequence of a pathology leading to disease where the microbiome change is only a parallel event without a causal connection to the disease - in philosophical parlance, an epiphenomenon. Also discussed here is whether human virome research is a necessary complement to the microbiome project with a high potential for practical applications.
Collapse
Affiliation(s)
- Harald Brüssow
- KU Leuven, Department of Biosystems, Laboratory of Gene Technology, Leuven B-3001, Belgium
| |
Collapse
|
17
|
Schwartzkopf CM, Robinson AJ, Ellenbecker M, Faith DR, Schmidt AK, Brooks DM, Lewerke L, Voronina E, Dandekar AA, Secor PR. Tripartite interactions between filamentous Pf4 bacteriophage, Pseudomonas aeruginosa, and bacterivorous nematodes. PLoS Pathog 2023; 19:e1010925. [PMID: 36800381 PMCID: PMC9980816 DOI: 10.1371/journal.ppat.1010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/02/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa PAO1 is infected by the filamentous bacteriophage Pf4. Pf4 virions promote biofilm formation, protect bacteria from antibiotics, and modulate animal immune responses in ways that promote infection. Furthermore, strains cured of their Pf4 infection (ΔPf4) are less virulent in animal models of infection. Consistently, we find that strain ΔPf4 is less virulent in a Caenorhabditis elegans nematode infection model. However, our data indicate that PQS quorum sensing is activated and production of the pigment pyocyanin, a potent virulence factor, is enhanced in strain ΔPf4. The reduced virulence of ΔPf4 despite high levels of pyocyanin production may be explained by our finding that C. elegans mutants unable to sense bacterial pigments through the aryl hydrocarbon receptor are more susceptible to ΔPf4 infection compared to wild-type C. elegans. Collectively, our data support a model where suppression of quorum-regulated virulence factors by Pf4 allows P. aeruginosa to evade detection by innate host immune responses.
Collapse
Affiliation(s)
- Caleb M. Schwartzkopf
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Autumn J. Robinson
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Lincoln Lewerke
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Antimicrobial Treatment of Pseudomonas aeruginosa Severe Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11101432. [PMID: 36290092 PMCID: PMC9598900 DOI: 10.3390/antibiotics11101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogen often encountered in a healthcare setting. It has consistently ranked among the most frequent pathogens seen in nosocomial infections, particularly bloodstream and respiratory tract infections. Aside from having intrinsic resistance to many antibiotics, it rapidly acquires resistance to novel agents. Given the high mortality of pseudomonal infections generally, and pseudomonal sepsis particularly, and with the rise of resistant strains, treatment can be very challenging for the clinician. In this paper, we will review the latest evidence for the optimal treatment of P. aeruginosa sepsis caused by susceptible as well as multidrug-resistant strains including the difficult to treat pathogens. We will also discuss the mode of drug infusion, indications for combination therapy, along with the proper dosing and duration of treatment for various conditions with a brief discussion of the use of non-antimicrobial agents.
Collapse
|