1
|
Maji KJ, Li Z, Hu Y, Vaidyanathan A, Stowell JD, Milando C, Wellenius G, Kinney PL, Russell AG, Talat Odman M. Prescribed burn related increases of population exposure to PM 2.5 and O 3 pollution in the southeastern US over 2013-2020. ENVIRONMENT INTERNATIONAL 2024; 193:109101. [PMID: 39509841 DOI: 10.1016/j.envint.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Ambient air quality across the southeastern US has improved substantially in recent decades. However, emissions from prescribed burns remain high, which may pose a substantial health threat. We employed a multistage modeling framework to estimate year-round, long-term effects of prescribed burns on air quality and premature deaths. The framework integrates a chemical transport model with a data-fusion approach to estimate 24-h average PM2.5 and maximum daily 8-h averaged O3 (MDA8-O3) concentrations attributable to prescribed burns for the period 2013-2020. The Global Exposure Mortality Model and a log-linear exposure-response function were used to estimate the premature deaths ascribed to long-term prescribed burn PM2.5 and MDA8-O3 exposure in ten southeastern states. Our results indicate that prescribed burns contributed on annual average 0.59 ± 0.20 µg/m3 of PM2.5 (∼10 % of ambient PM2.5) over the ten southeastern states during the study period. On average around 15 % of the state-level ambient PM2.5 concentrations were contributed by prescribed burns in Alabama (0.90 ± 0.15 µg/m3), Florida (0.65 ± 0.19 µg/m3), Georgia (0.91 ± 0.19 µg/m3), Mississippi (0.65 ± 0.10 µg/m3) and South Carolina (0.65 ± 0.09 µg/m3). In the extensive burning season (January-April), daily average contributions to ambient PM2.5 increased up to 22 % in those states. A large part of Alabama and Georgia experiences ≥3.5 µg/m3 prescribed burn PM2.5 over 30 days/year. Additionally, prescribed burns are responsible for an average increase of 0.32 ± 0.12 ppb of MDA8-O3 (0.8 % of ambient MDA8-O3) over the ten southeastern states. The combined effect of prescribed burn PM2.5 exposure, population growth, and increase of baseline mortality over time resulted in a total of 20,416 (95 % confidence interval (CI): 16,562-24,174) excess non-accidental premature deaths in the ten southeastern states, with 25 % of these deaths in Georgia. Prescribed burn MDA8-O3 was responsible for an additional 1,332 (95 % CI: 858-1,803) premature deaths in the ten southeastern states. These findings indicate significant impacts from prescribed burns, suggesting potential benefits of enhanced forest management strategies.
Collapse
Affiliation(s)
- Kamal J Maji
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zongrun Li
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ambarish Vaidyanathan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Chad Milando
- School of Public Health, Boston University, Boston, MA 02118, USA
| | | | - Patrick L Kinney
- School of Public Health, Boston University, Boston, MA 02118, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M Talat Odman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
2
|
Yu Y, Tang Z, Huang Y, Zhang J, Wang Y, Zhang Y, Wang Q. Assessing long-term effects of gaseous air pollution exposure on mortality in the United States using a variant of difference-in-differences analysis. Sci Rep 2024; 14:16220. [PMID: 39003417 PMCID: PMC11246484 DOI: 10.1038/s41598-024-66951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Long-term mortality effects of particulate air pollution have been investigated in a causal analytic frame, while causal evidence for associations with gaseous air pollutants remains extensively lacking, especially for carbon monoxide (CO) and sulfur dioxide (SO2). In this study, we estimated the causal relationship of long-term exposure to nitrogen dioxide (NO2), CO, SO2, and ozone (O3) with mortality. Utilizing the data from National Morbidity, Mortality, and Air Pollution Study, we applied a variant of difference-in-differences (DID) method with conditional Poisson regression and generalized weighted quantile sum regression (gWQS) to investigate the independent and joint effects. Independent exposures to NO2, CO, and SO2 were causally associated with increased risks of total, nonaccidental, and cardiovascular mortality, while no evident associations with O3 were identified in the entire population. In gWQS analyses, an interquartile range-equivalent increase in mixture exposure was associated with a relative risk of 1.067 (95% confidence interval: 1.010-1.126) for total mortality, 1.067 (1.009-1.128) for nonaccidental mortality, and 1.125 (1.060-1.193) for cardiovascular mortality, where NO2 was identified as the most significant contributor to the overall effect. This nationwide DID analysis provided causal evidence for independent and combined effects of NO2, CO, SO2, and O3 on increased mortality risks among the US general population.
Collapse
Affiliation(s)
- Yong Yu
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Ziqing Tang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuqian Huang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jingjing Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yixiang Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qun Wang
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Nobile F, Dimakopoulou K, Åström C, Coloma F, Dadvand P, de Bont J, de Hoogh K, Ibi D, Katsouyanni K, Ljungman P, Melén E, Nieuwenhuijsen M, Pickford R, Sommar JN, Tonne C, Vermeulen RCH, Vienneau D, Vlaanderen JJ, Wolf K, Samoli E, Stafoggia M. External exposome and all-cause mortality in European cohorts: the EXPANSE project. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1327218. [PMID: 38863881 PMCID: PMC11165119 DOI: 10.3389/fepid.2024.1327218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Background Many studies reported associations between long-term exposure to environmental factors and mortality; however, little is known on the combined effects of these factors and health. We aimed to evaluate the association between external exposome and all-cause mortality in large administrative and traditional adult cohorts in Europe. Methods Data from six administrative cohorts (Catalonia, Greece, Rome, Sweden, Switzerland and the Netherlands, totaling 27,913,545 subjects) and three traditional adult cohorts (CEANS-Sweden, EPIC-NL-the Netherlands, KORA-Germany, totaling 57,653 participants) were included. Multiple exposures were assigned at the residential addresses, and were divided into three a priori defined domains: (1) air pollution [fine particulate matter (PM2.5), nitrogen dioxide (NO₂), black carbon (BC) and warm-season Ozone (warm-O3)]; (2) land/built environment (Normalized Difference Vegetation Index-NDVI, impervious surfaces, and distance to water); (3) air temperature (cold- and warm-season mean and standard deviation). Each domain was synthesized through Principal Component Analysis (PCA), with the aim of explaining at least 80% of its variability. Cox proportional-hazards regression models were applied and the total risk of the external exposome was estimated through the Cumulative Risk Index (CRI). The estimates were adjusted for individual- and area-level covariates. Results More than 205 million person-years at risk and more than 3.2 million deaths were analyzed. In single-component models, IQR increases of the first principal component of the air pollution domain were associated with higher mortality [HRs ranging from 1.011 (95% CI: 1.005-1.018) for the Rome cohort to 1.076 (1.071-1.081) for the Swedish cohort]. In contrast, lower levels of the first principal component of the land/built environment domain, pointing to reduced vegetation and higher percentage of impervious surfaces, were associated with higher risks. Finally, the CRI of external exposome increased mortality for almost all cohorts. The associations found in the traditional adult cohorts were generally consistent with the results from the administrative ones, albeit without reaching statistical significance. Discussion Various components of the external exposome, analyzed individually or in combination, were associated with increased mortality across European cohorts. This sets the stage for future research on the connections between various exposure patterns and human health, aiding in the planning of healthier cities.
Collapse
Affiliation(s)
- Federica Nobile
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christofer Åström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Fabián Coloma
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Payam Dadvand
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kees de Hoogh
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorina Ibi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachś Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Pickford
- Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johan Nilsson Sommar
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Cathryn Tonne
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jelle J. Vlaanderen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Zheng Y, Jiang F, Feng S, Shen Y, Liu H, Guo H, Lyu X, Jia M, Lou C. Large-scale land-sea interactions extend ozone pollution duration in coastal cities along northern China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100322. [PMID: 37860828 PMCID: PMC10582397 DOI: 10.1016/j.ese.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Land-sea atmosphere interaction (LSAI) is one of the important processes affecting ozone (O3) pollution in coastal areas. The effects of small-scale LSAIs like sea-land breezes have been widely studied. However, it is not fully clear how and to what extent the large-scale LSAIs affect O3 pollution. Here we explored an O3 episode to illuminate the role of large-scale LSAIs in O3 pollution over the Bohai-Yellow Seas and adjacent areas through observations and model simulations. The results show that the northern Bohai Sea's coastal region, influenced by the Mongolian High, initially experienced a typical unimodal diurnal O3 variation for three days, when O3 precursors from Beijing-Tianjin-Hebei, Shandong, and Northeast China were transported to the Bohai-Yellow Seas. Photochemical reactions generated O3 within marine air masses, causing higher O3 levels over the seas than coastal regions. As the Mongolian High shifted eastward and expanded, southerly winds on its western edge transported O3-rich marine air masses toward the coast, prolonging pollution for an additional three days and weakening diurnal variations. Subsequently, emissions from the Korean Peninsula and marine shipping significantly affected O3 levels in the northern Bohai Sea (10.7% and 13.7%, respectively). Notably, Shandong's emissions played a substantial role in both phases (27.5% and 26.1%, respectively). These findings underscore the substantial impact of large-scale LSAIs driven by the Mongolian High on O3 formation and pollution duration in coastal cities. This insight helps understand and manage O3 pollution in northern Bohai Sea cities and broadly applies to temperate coastal cities worldwide.
Collapse
Affiliation(s)
- Yanhua Zheng
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Fei Jiang
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210023, China
| | - Shuzhuang Feng
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Yang Shen
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Huan Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaopu Lyu
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Mengwei Jia
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Chenxi Lou
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Liu L, Zeng Y, Ji JS. Real-World Evidence of Multiple Air Pollutants and Mortality: A Prospective Cohort Study in an Oldest-Old Population. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:23-33. [PMID: 38269260 PMCID: PMC10804360 DOI: 10.1021/envhealth.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 01/26/2024]
Abstract
We aimed to report real-world longitudinal ambient air pollutants levels compared to WHO Air Quality Guidelines (AQG) and analyze multiple air pollutants' joint effect on longevity, and the modification and confounding from the climate and urbanization with a focus on the oldest-old. This study included 13,207 old participants with 73.3% aged 80 and beyond, followed up from 2008 to 2018 in 23 Chinese provinces. We used the Cox-proportional hazards model and quantile-based g-computation model to measure separate and joint effects of the multiple pollutants. We adjusted for climate and area economic factors based on a directed acyclic graph. In 2018, no participants met the WHO AQG for PM2.5 and O3, and about one-third met the AQG for NO2. The hazard ratio (HR) for mortality was 1.07 (95% confidence interval-CI: 1.05, 1.09) per decile increase in all three pollutants, with PM2.5 being the dominant contributor according to the quantile-based g-computation model. In the three-pollutant model, the HRs (95% CI) for PM2.5 and NO2 were 1.27 (1.25, 1.3) and 1.08 (1.05, 1.12) per 10 μg/m3 increase, respectively. The oldest-old experienced a much lower mortality risk from air pollution compared to the young-old. The mortality risk of PM2.5 was higher in areas with higher annual average temperatures. The adjustment of road density considerably intensified the association between NO2 and mortality. The ambient PM2.5 and O3 levels in China exceeded the WHO AQG target substantially. Multiple pollutants coexposure, confounding, and modification of the district economic and climate factors should not be ignored in the association between air pollution and mortality.
Collapse
Affiliation(s)
- Linxin Liu
- Vanke
School of Public Health, Tsinghua University, Beijing, China 100084
- School
of Medicine, Tsinghua University, Beijing, China 100084
| | - Yi Zeng
- Center
for the Study of Aging and Human Development, School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Center
for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China 100091
| | - John S. Ji
- Vanke
School of Public Health, Tsinghua University, Beijing, China 100084
| |
Collapse
|
6
|
Yao M, Niu Y, Liu S, Liu Y, Kan H, Wang S, Ji JS, Zhao B. Mortality Burden of Cardiovascular Disease Attributable to Ozone in China: 2019 vs 2050. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10985-10997. [PMID: 37466930 DOI: 10.1021/acs.est.3c02076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Due to a combination of lifestyle risk factors, the burden of cardiovascular disease (CVD) has been increasing in China, affecting an estimated 330 million people. Environmental risk factors can exacerbate these risks or independently contribute to CVD. Ozone is an overlooked and invisible risk factor, and it plays a significant role in the development of CVD. Our study provides a novel quantification of the ozone-attributable CVD mortality burden based on daily maximum 8-h average ozone concentration during May to October (6mDMA8) in Chinese adults in 2050, projected under Shared Socioeconomic Pathways 585 and 126, and using the updated WHO air quality guideline level. The study also considers the contributions made by changes in ozone exposure, population aging, population size, and baseline death rates of CVD between 2019 and 2050. While adopting a sustainable and green pathway (SSP 126) can reduce the projected magnitude of premature CVD deaths to 359,200 in 2050, it may not be sufficient to reduce the CVD mortality burden significantly. Therefore, it is crucial to implement strategies for stricter ozone control and reducing the baseline death rate of CVD to mitigate the impacts of ozone on Chinese adults.
Collapse
Affiliation(s)
- Mingyao Yao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Shuchang Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich 8092, Switzerland
| | - Yumeng Liu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 200032, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Yuan Y, Wang K, Sun HZ, Zhan Y, Yang Z, Hu K, Zhang Y. Excess mortality associated with high ozone exposure: A national cohort study in China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100241. [PMID: 36761466 PMCID: PMC9905662 DOI: 10.1016/j.ese.2023.100241] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 05/24/2023]
Abstract
Emerging epidemiological studies suggest that long-term ozone (O3) exposure may increase the risk of mortality, while pre-existing evidence is mixed and has been generated predominantly in North America and Europe. In this study, we investigated the impact of long-term O3 exposure on all-cause mortality in a national cohort in China. A dynamic cohort of 20882 participants aged ≥40 years was recruited between 2011 and 2018 from four waves of the China Health and Retirement Longitudinal Study. A Cox proportional hazard regression model with time-varying exposures on an annual scale was used to estimate the mortality risk associated with warm-season (April-September) O3 exposure. The annual average level of participant exposure to warm-season O3 concentrations was 100 μg m-3 (range: 61-142 μg m-3). An increase of 10 μg m-3 in O3 was associated with a hazard ratio (HR) of 1.18 (95% confidence interval [CI]: 1.13-1.23) for all-cause mortality. Compared with the first exposure quartile of O3, HRs of mortality associated with the second, third, and highest exposure quartiles were 1.09 (95% CI: 0.95-1.25), 1.02 (95% CI: 0.88-1.19), and 1.56 (95% CI: 1.34-1.82), respectively. A J-shaped concentration-response association was observed, revealing a non-significant increase in risk below a concentration of approximately 110 μg m-3. Low-temperature-exposure residents had a higher risk of mortality associated with long-term O3 exposure. This study expands current epidemiological evidence from China and reveals that high-concentration O3 exposure curtails the long-term survival of middle-aged and older adults.
Collapse
Affiliation(s)
- Yang Yuan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Haitong Zhe Sun
- Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kejia Hu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
8
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
9
|
Dwivedi AK, Vishwakarma D, Dubey P, Reddy SY. Air Pollution and the Heart: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 2022; 24:1811-1835. [PMID: 36434404 DOI: 10.1007/s11886-022-01819-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Although environmental exposure such as air pollution is detrimental to cardiovascular disease (CVD), the effects of different air pollutants on different CVD endpoints produced variable findings. We provide updated evidence between air pollutants and CVD outcomes including mitigation strategies with meta-analytic evidence. RECENT FINDINGS An increased exposure to any class of air pollutants including particulate matter (PM), gas, toxic metals, and disruptive chemicals has been associated with CVD events. Exposure to PM < 2.5 μm has been consistently associated with most heart diseases and stroke as well as CVDs among at-risk individuals. Despite this, there is no clinical approach available for systemic evaluation of air pollution exposure and management. A large number of epidemiological evidence clearly suggests the importance of air pollution prevention and control for reducing the risk of CVDs and mortality. Cost-effective and feasible strategies for air pollution monitoring, screening, and necessary interventions are urgently required among at-risk populations and those living or working, or frequently commuting in polluted areas.
Collapse
Affiliation(s)
- Alok Kumar Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA. .,Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| | - Deepanjali Vishwakarma
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA
| | - Pallavi Dubey
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Sireesha Y Reddy
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|