1
|
Wang Y, Li S, Hou X, Cui T, Zhuang Z, Zhao Y, Wang H, Wei W, Xu M, Fu Q, Chen C, Wang D. Low-Spin Fe 3+ Evoked by Multiple Defects with Optimal Intermediate Adsorption Attaining Unparalleled Performance in Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412598. [PMID: 39543434 DOI: 10.1002/adma.202412598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Electrocatalytic water splitting is long constrained by the sluggish kinetics of anodic oxygen evolution reaction (OER), and rational spin-state manipulation holds great promise to break through this bottleneck. Low-spin Fe3+ (LS, t2g 5eg 0) species are identified as highly active sites for OER in theory, whereas it is still a formidable challenge to construct experimentally. Herein, a new strategy is demonstrated for the effective construction of LS Fe3+ in NiFe-layered double hydroxide (NiFe-LDH) by introducing multiple defects, which induce coordination unsaturation over Fe sites and thus enlarge their d orbital splitting energy. The as-obtained catalyst exhibits extraordinary OER performance with an ultra-low overpotential of 244 mV at the industrially required current density of 500 mA cm-2, which is 110 mV lower than that of the conventional NiFe-LDH with high-spin Fe3+ (HS, t2g 3eg 2) and superior to most previously reported NiFe-based catalysts. Comprehensive experimental and theoretical studies reveal that LS Fe3+ configuration effectively reduces the adsorption strength of the O* intermediate compared with that of the HS case, thereby altering the rate-determining step from (O* → OOH*) to (OH* → O*) of OER and lowering its reaction energy barrier. This work paves a new avenue for developing efficient spin-dependent electrocatalysts for OER and beyond.
Collapse
Affiliation(s)
- Yihao Wang
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shanqing Li
- Department of Materials and Environmental Engineering, Chizhou University, Chizhou, 247000, P. R. China
| | - Xu Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Tingting Cui
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunhe Zhao
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Wei Wei
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, The Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Xu
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering & Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Chen Z, Zheng H, Zhang J, Jiang Z, Bao C, Yeh CH, Lai NC. Covalent organic frameworks derived Single-Atom cobalt catalysts for boosting oxygen reduction reaction in rechargeable Zn-Air batteries. J Colloid Interface Sci 2024; 670:103-113. [PMID: 38759265 DOI: 10.1016/j.jcis.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
The design and development of high-performance and long-life Pt-free catalysts for the oxygen reduction reaction (ORR) is of great important with respect to metal-air batteries and fuel cells. Herein, a new low-cost covalent organic frameworks (COFs)-derived CoNC single-atoms catalyst (SAC) is fabricated and compared with the engineered nanoparticle (NP) counterpart for ORR activity. The ORR performance of the SAC catalyst (CoSA@NC) surpasses the NP counterpart (CoNP-NC) under the same operation condition. CoSA@NC also achieves improved long-term durability and better methanol tolerance compared with the Pt/C. The zinc-air battery assembled by the CoSA@NC cathode delivers a higher power density and energy density than that of commercial Pt/C catalyst. Molecular dynamics (MD) is performed to explain the spontaneous evolution from clusters to single-atom metal configuration and density functional theory (DFT) calculations find that CoSA@NC possesses lower d-band center, resulting in weaker interaction between the surface and the O-containing intermediates. Consequently, the reductive desorption of OH*, the rate-determine step, is further accelerated.
Collapse
Affiliation(s)
- Zhenghao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Bao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chen-Hao Yeh
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Chen Z, Li X, Ma H, Zhang Y, Peng J, Ma T, Cheng Z, Gracia J, Sun Y, Xu ZJ. Spin-dependent electrocatalysis. Natl Sci Rev 2024; 11:nwae314. [PMID: 39363911 PMCID: PMC11448474 DOI: 10.1093/nsr/nwae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
The shift towards sustainable energy requires efficient electrochemical conversion technologies, emphasizing the crucial need for robust electrocatalyst design. Recent findings reveal that the efficiency of some electrocatalytic reactions is spin-dependent, with spin configuration dictating performance. Consequently, understanding the spin's role and controlling it in electrocatalysts is important. This review succinctly outlines recent investigations into spin-dependent electrocatalysis, stressing its importance in energy conversion. It begins with an introduction to spin-related features, discusses characterization techniques for identifying spin configurations, and explores strategies for fine-tuning them. At the end, the article provides insights into future research directions, aiming to reveal more unknown fundamentals of spin-dependent electrocatalysis and encourage further exploration in spin-related research and applications.
Collapse
Affiliation(s)
- Zhengjie Chen
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xiaoning Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Hao Ma
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Peng
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, North Wollongong 2500, Australia
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, Alicante 03012, Spain
| | - Yuanmiao Sun
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Center for Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
4
|
Chen Y, Zhen C, Chen Y, Zhao H, Wang Y, Yue Z, Wang Q, Li J, Gu MD, Cheng Q, Yang H. Oxygen Functional Groups Regulate Cobalt-Porphyrin Molecular Electrocatalyst for Acidic H 2O 2 Electrosynthesis at Industrial-Level Current. Angew Chem Int Ed Engl 2024; 63:e202407163. [PMID: 38864252 DOI: 10.1002/anie.202407163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) based on proton exchange membrane (PEM) reactor represents a promising approach to industrial-level H2O2 production, while it is hampered by the lack of high-efficiency electrocatalysts in acidic medium. Herein, we present a strategy for the specific oxygen functional group (OFG) regulation to promote the H2O2 selectivity up to 92 % in acid on cobalt-porphyrin molecular assembled with reduced graphene oxide. In situ X-ray adsorption spectroscopy, in situ Raman spectroscopy and Kelvin probe force microscopy combined with theoretical calculation unravel that different OFGs exert distinctive regulation effects on the electronic structure of Co center through either remote (carboxyl and epoxy) or vicinal (hydroxyl) interaction manners, thus leading to the opposite influences on the promotion in 2e- ORR selectivity. As a consequence, the PEM electrolyzer integrated with the optimized catalyst can continuously and stably produce the high-concentration of ca. 7 wt % pure H2O2 aqueous solution at 400 mA cm-2 over 200 h with a cell voltage as low as ca. 2.1 V, suggesting the application potential in industrial-scale H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Yihe Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Yubin Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hao Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yuda Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Qiansen Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| |
Collapse
|
5
|
Zhao W, Yang J, Xu F, Weng B. Recent Advancements on Spin Engineering Strategies for Highly Efficient Electrocatalytic Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401057. [PMID: 38587966 DOI: 10.1002/smll.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
6
|
Dai J, Tong Y, Zhao L, Hu Z, Chen CT, Kuo CY, Zhan G, Wang J, Zou X, Zheng Q, Hou W, Wang R, Wang K, Zhao R, Gu XK, Yao Y, Zhang L. Spin polarized Fe 1-Ti pairs for highly efficient electroreduction nitrate to ammonia. Nat Commun 2024; 15:88. [PMID: 38167739 PMCID: PMC10762114 DOI: 10.1038/s41467-023-44469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 μg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.
Collapse
Affiliation(s)
- Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yawen Tong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, China
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, China
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyuan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Ai M, Pan L, Shi C, Huang ZF, Zhang X, Mi W, Zou JJ. Spin selection in atomic-level chiral metal oxide for photocatalysis. Nat Commun 2023; 14:4562. [PMID: 37507418 PMCID: PMC10382512 DOI: 10.1038/s41467-023-40367-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
The spin degree of freedom is an important and intrinsic parameter in boosting carrier dynamics and surface reaction kinetics of photocatalysis. Here we show that chiral structure in ZnO can induce spin selectivity effect to promote photocatalytic performance. The ZnO crystals synthesized using chiral methionine molecules as symmetry-breaking agents show hierarchical chirality. Magnetic circular dichroism spectroscopic and magnetic conductive-probe atomic force microscopic measurements demonstrate that chiral structure acts as spin filters and induces spin polarization in photoinduced carriers. The polarized carriers not only possess the prolonged carrier lifetime, but also increase the triplet species instead of singlet byproducts during reaction. Accordingly, the left- and right-hand chiral ZnO exhibit 2.0- and 1.9-times higher activity in photocatalytic O2 production and 2.5- and 2.0-times higher activities in contaminant photodegradation, respectively, compared with achiral ZnO. This work provides a feasible strategy to manipulate the spin properties in metal oxides for electron spin-related redox catalysis.
Collapse
Affiliation(s)
- Minhua Ai
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
8
|
Hu Y, Li Z, Wang Z, Wang X, Chen W, Wang J, Zhong W, Ma R. Suppressing Local Dendrite Hotspots via Current Density Redistribution Using a Superlithiophilic Membrane for Stable Lithium Metal Anode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206995. [PMID: 36806693 PMCID: PMC10131806 DOI: 10.1002/advs.202206995] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Indexed: 05/10/2023]
Abstract
Li metal anode is considered as one of the most desirable candidates for next-generation battery due to its lowest electrochemical potential and high theoretical capacity. However, undesirable dendrite growth severely exacerbates the interfacial stability, thus damaging battery performance and bringing safety concerns. Here, an efficient strategy is proposed to stabilize Li metal anode by digesting dendrites sprout using a 3D flexible superlithiophilic membrane consisting of poly(vinylidene fluoride) (PVDF) and ZnCl2 composite nanofibers (PZEM) as a protective layer. Both the experimental studies and theoretical calculations show the origin of superlithiophilicity ascribed to a strong interaction between ZnCl2 and PVDF to form the ZnF bonds. The multifield physics calculation implies effective removal of local dendrite hotspots by PZEM via a more homogeneous Li+ flux. The PZEM-covered Li anode (PZEM@Li) exhibits superior Li deposition/stripping performance in a symmetric cell over 1100 cycles at a high current density of 5 mA cm-2 . When paired with LiFePO4 (LFP), PZEM@Li|LFP full cell remains stable over 1000 cycles at 2 C with a degradation rate of 0.0083% per cycle. This work offers a new route for efficient protection of Li metal anode for practical applications.
Collapse
Affiliation(s)
- Yifan Hu
- School of Materials Science and EngineeringTaizhou UniversityTaizhou318000P. R. China
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Zichuang Li
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Zongpeng Wang
- School of Materials Science and EngineeringTaizhou UniversityTaizhou318000P. R. China
| | - Xunlu Wang
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Wei Chen
- Department of Mechanical Materials and Aerospace EngineeringIllinois Institute of Technology ChicagoChicagoIL60616USA
| | - Jiacheng Wang
- School of Materials Science and EngineeringTaizhou UniversityTaizhou318000P. R. China
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Wenwu Zhong
- School of Materials Science and EngineeringTaizhou UniversityTaizhou318000P. R. China
| | - Ruguang Ma
- State Key Laboratory of High‐Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- School of Materials Science and EngineeringSuzhou University of Science and Technology99 Xuefu RoadSuzhou215009P. R. China
| |
Collapse
|
9
|
Giulimondi V, Mitchell S, Pérez-Ramírez J. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catal 2023; 13:2981-2997. [PMID: 36910873 PMCID: PMC9990067 DOI: 10.1021/acscatal.2c05992] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/16/2023]
Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments.
Collapse
Affiliation(s)
- Vera Giulimondi
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Muuli K, Lyu X, Mooste M, Käärik M, Zulevi B, Leis J, Yu H, Cullen DA, Serov A, Tammeveski K. Outstanding Platinum Group Metal-free Bifunctional Catalysts for Rechargeable Zinc-Air Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
11
|
Ma R, Wang K, Li C, Wang C, Habibi-Yangjeh A, Shan G. N-doped graphene for electrocatalytic O 2 and CO 2 reduction. NANOSCALE ADVANCES 2022; 4:4197-4209. [PMID: 36321144 PMCID: PMC9552757 DOI: 10.1039/d2na00348a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) and oxygen reduction reaction (ORR) are important approaches to realize energy conversion and sustainable development. However, sluggish reaction kinetics severely hinders the practical application of devices related to these reactions. N-doped graphene (NG) with unique properties exhibits great potential in catalyzing the CO2RR and ORR, which is attributed to the electron redistribution. In this review, we start from the fundamental properties of NG, especially emphasizing the changes caused by N doping. Then the synthetic methods are summarized by classifying them into top-down strategies and bottom-up strategies. Subsequently, the applications of NG in the ORR and CO2RR are discussed and the effects of electronic structure on the electrocatalytic activity are highlighted. Finally, we give our own perspective on the future research direction of NG in the applications of the ORR and CO2RR.
Collapse
Affiliation(s)
- Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology 99 Xuefu Road Suzhou 215011 China
| | - Kuikui Wang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Chunjie Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology 99 Xuefu Road Suzhou 215011 China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology Wuhan 430074 PR China
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili Ardabil Iran
| | - Guangcun Shan
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University No. 37 XueYuan Road Beijing 100083 China
| |
Collapse
|