1
|
Faes L, Bijon J, Bacci T, Freund KB. Review of type 3 macular neovascularization in age-related macular degeneration: no DRAMA (Deep Retinal Age-related Microvascular Anomalies). Eye (Lond) 2024:10.1038/s41433-024-03343-3. [PMID: 39394372 DOI: 10.1038/s41433-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 10/13/2024] Open
Abstract
Type 3 macular neovascularization (MNV) is a unique form of neovascular age-related macular degeneration (AMD) that presents distinct pathogenetic features, clinical manifestations, and prognostic considerations when compared to types 1 and 2 MNV. Insights gained from clinicopathological correlations, bridging in vivo examination techniques with ex vivo histological analysis, have significantly enhanced our comprehension of this MNV phenotype, shaped current management strategies and influenced future directions for therapeutics. The particularities of type 3 MNV, which may largely stem from its origin from the retinal vasculature, are critically important for predicting the disease course. Our current understanding suggests that type 3 MNV occurs in response to retinal pigment epithelium (RPE) disruption and photoreceptor loss when neovessels originating from the deep capillary plexus are accompanied by activated Müller glia as they infiltrate sub-retinal pigment epithelium basal laminar deposits. Dysregulation of angiogenic and angiostatic factors are thought to play a key role in its pathogenesis. The prognosis for type 3 MNV is likely bilateral involvement and progression towards macular atrophy. It may be imperative for practitioners to distinguish type 3 MNV from other mimicking pathologies such as intraretinal microvascular anomalies, which are also part of the type 3 disease spectrum. For instance, deep retinal age-related microvascular anomalies (DRAMA) may present with similar features on multimodal imaging yet may necessitate distinct management protocols. Distinguishing between these conditions may be vital for implementing tailored treatment regimens and improving patient outcomes in the diverse landscape of AMD phenotypes in the future.
Collapse
Affiliation(s)
- Livia Faes
- Vitreous Retina Macula Consultants of New York, New York, USA
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, USA
| | - Tommaso Bacci
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena University Hospital, Siena, Italy
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Mahmoudi A, Manafi N, Corradetti G, Gupta Nittala M, Emamverdi M, Trejo Corona S, Wykoff CC, Sarraf D, Sadda SR. Risk factors for development of hyper-reflective foci overlying drusen in eyes with intermediate age-related macular degeneration. Br J Ophthalmol 2024; 108:1234-1239. [PMID: 38325906 DOI: 10.1136/bjo-2023-324098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
AIMS The aim of this study is to assess baseline characteristics of drusen preceding the development of intraretinal hyper-reflective foci (IHRF) in eyes with intermediate age-related macular degeneration (AMD). METHODS In this retrospective case-control study, longitudinal optical coherence tomography (OCT) volume data from eyes with intermediate AMD in a retina clinic population were screened. All drusen that developed overlying IHRF were marked. A random number generator was used to select for further grading three drusen that did not develop IHRF. RESULTS Ninety eyes (from 72 patients), including 140 drusen with overlying IHRF and 270 IHRF- drusen, were analysed. Greater drusen height, basal drusen width and overlying ellipsoid zone (EZ) and external limiting membrane disruption were associated with a significantly greater risk for IHRF development (p≤0.001). Regression analysis revealed EZ disruption increased these odds by 4.1 (p≤0.001). Each 10-µm increase in drusen height and width increased the odds by 34% (p≤0.001) and 3% (p: 0.005), respectively. Each 100-µm increase in distance from the fovea decreased the odds by 10% (p: 0.013). CONCLUSIONS The presence of overlying EZ disruption and a greater drusen height substantially increased the risk for IHRF development, whereas drusen further from the fovea indicated reduced risk. Given the importance of IHRF as a biomarker for AMD progression, these findings may be of value in defining patient populations for future early intervention trials.
Collapse
Affiliation(s)
- Alireza Mahmoudi
- Doheny Eye Institute, Pasadena, California, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, USA
| | - Navid Manafi
- Doheny Eye Institute, Pasadena, California, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, USA
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, California, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, USA
| | - Muneeswar Gupta Nittala
- Doheny Eye Institute, Pasadena, California, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, USA
| | - Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, California, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, USA
| | | | | | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute,University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - SriniVas R Sadda
- Doheny Eye Institute, Pasadena, California, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Goerdt L, Amjad M, Swain TA, McGwin G, Clark ME, Owsley C, Sloan KR, Curcio CA, Kar D. Extent and Topography of Subretinal Drusenoid Deposits Associate With Rod-Mediated Vision in Aging and AMD: ALSTAR2 Baseline. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 39163034 PMCID: PMC11343004 DOI: 10.1167/iovs.65.10.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose In AMD, rod-mediated dark adaptation (RMDA) at 5° eccentricity is slower in eyes with subretinal drusenoid deposits (SDDs) than in eyes without. Here we quantified SDD burden using supervised deep learning for comparison to vision and photoreceptor topography. Methods In persons ≥60 years from the Alabama Study on Early Age-Related Macular Degeneration 2, normal, early AMD, and intermediate AMD eyes were classified by the AREDS nine-step system. A convolutional neural network was trained on 55°-wide near-infrared reflectance images for SDD segmentation. Trained graders annotated ground truth (SDD yes/no). Predicted and true datasets agreed (Dice coefficient, 0.92). Inference was manually proofread using optical coherence tomography. The mean SDD area (mm2) was compared among diagnostic groups (linear regression) and to vision (age-adjusted Spearman correlations). Fundus autofluorescence images were used to mask large vessels in SDD maps. Results In 428 eyes of 428 persons (normal, 218; early AMD, 120; intermediate AMD, 90), the mean SDD area differed by AMD severity (P < 0.0001): 0.16 ± 0.87 (normal), 2.48 ± 11.23 (early AMD), 11.97 ± 13.33 (intermediate AMD). Greater SDD area was associated with worse RMDA (r = 0.27; P < 0.0001), mesopic (r = -0.13; P = 0.02) and scotopic sensitivity (r = -0.17; P < 0.001). SDD topography peaked at 5° superior, extended beyond the Early Treatment of Diabetic Retinopathy Study grid and optic nerve, then decreased. Conclusions SDD area is associated with degraded rod-mediated vision. RMDA 5° (superior retina) probes where SDD is maximal, closer to the foveal center than the rod peak at 3 to 6 mm (10.4°-20.8°) superior and the further eccentric peak of rod:cone ratio. Topographic data imply that factors in addition to rod density influence SDD formation.
Collapse
Affiliation(s)
- Lukas Goerdt
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Mohymina Amjad
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Alabama, United States
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Haj Najeeb B, Schmidt-Erfurth U. The potential key role of choroidal non-perfusion and rod degeneration in the pathogenesis of macular neovascularization type 3. Eye (Lond) 2024; 38:1836-1839. [PMID: 38499856 PMCID: PMC11226597 DOI: 10.1038/s41433-024-03034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Macular neovascularization type 3 (MNV3) is a multifactorial disease with distinct epidemiological, clinical, pathomorphological and topographical characteristics. This review of the literature discusses the latest experimental and clinical outcomes that could explain the pathogenesis of retinal neovascularization. Although patients with MNV3 are usually older than those with MNV1 or 2, their lesions do not coexist with, precede, or follow other types in the same eye. The regional distribution of MNV3 lesions is characterized as confined to the parafoveal macula without any involvement of the rod-free foveal area. Focal outer retinal atrophy and choroidal non-perfusion are the main structural features that occur prior to the development of retinal neovascularization. Also, histological and experimental studies of MNV3 and other non-neovascular age-related macular degeneration diseases complicated with MNV3-like lesions strongly suggest rod degeneration contributes to the pathogenesis. Therefore, the retinal neovascularization in MNV3 has a different pathogenesis from the choroidal neovascularization in MNV1 and 2 and emerging evidence indicates that choroidal non-prefusion and rod degeneration play a key role in the pathogenesis of MNV3. Accordingly, we suggest a sequence of pathological events that start with choroidal non-perfusion due to advanced age followed by hypoxia of the outer retina at the parafoveal area. This induces a remarkable degeneration of rods that triggers the growth of retinal neovascularization due to the imbalance of the angiogenic factors in the outer retina.
Collapse
Affiliation(s)
- Bilal Haj Najeeb
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Curcio CA, Goerdt L. A cell culture system for RPE hypoxia, a physiologic stressor relevant to AMD deposit formation. Eye (Lond) 2024:10.1038/s41433-024-03166-2. [PMID: 38871935 DOI: 10.1038/s41433-024-03166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Lukas Goerdt
- Department of Ophthalmology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Bousquet E, Santina A, Corradetti G, Sacconi R, Ramtohul P, Bijon J, Somisetty S, Voichanski S, Querques G, Sadda S, Freund KB, Sarraf D. FROM DRUSEN TO TYPE 3 MACULAR NEOVASCULARIZATION. Retina 2024; 44:189-196. [PMID: 37756671 DOI: 10.1097/iae.0000000000003945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
PURPOSE To investigate the imaging features preceding the occurrence of type 3 (T3) macular neovascularization (MNV) using tracked spectral-domain optical coherence tomography. METHOD From a cohort of eyes with T3 MNV and ≥ 12 months of previously tracked spectral-domain optical coherence tomography, T3 lesions that developed above soft drusen were selected for optical coherence tomography analysis. Retinal imaging findings at the location where type T3 MNV occurred were analyzed at each follow-up until the onset of T3 MNV. The following optical coherence tomography parameters were assessed: drusen size (height and width), outer nuclear layer/Henle fiber layer thickness at the drusen apex, and the presence of intraretinal hyperreflective foci, retinal pigment epithelium disruption, incomplete retinal pigment epithelium and outer retina atrophy, and complete retinal pigment epithelium and outer retina atrophy. RESULTS From a cohort of 31 eyes with T3 MNV, T3 lesions developed above soft drusen in 20 eyes (64.5%). Drusen showed progressive growth ( P < 0.001) associated with outer nuclear layer/Henle fiber ( P < 0.001) thinning before T3 MNV. The following optical coherence tomography features were identified preceding the occurrence of T3 MNV, typically at the apex of the drusenoid lesion: disruption of the external limiting membrane/ellipsoid zone and/or the retinal pigment epithelium, hyperreflective foci, and incomplete retinal pigment epithelium and outer retina atrophy/complete retinal pigment epithelium and outer retina atrophy. CONCLUSION The results demonstrate specific anatomic alterations preceding the occurrence of T3 MNV that most commonly originates above soft drusen. Drusen growth, reduced outer nuclear layer/Henle fiber thickness, and retinal pigment epithelium atrophy at the drusen apex precede the development of T3 MNV. Identifying these optical coherence tomography features should warrant close monitoring for identification of T3 MNV, which can benefit from prompt intravitreal anti-vascular endothelial growth factor therapy.
Collapse
Affiliation(s)
- Elodie Bousquet
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Ophthalmology, University of Paris Cité, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ahmad Santina
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Giulia Corradetti
- Department of Ophthalmology, Doheny Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Riccardo Sacconi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Prithvi Ramtohul
- Vitreous Retina Macula Consultants of New York, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
| | - Jacques Bijon
- Vitreous Retina Macula Consultants of New York, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
| | - Swathi Somisetty
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shilo Voichanski
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California
- Vitreoretinal Division, Ophthalmology Department, Shaare Zedek Medical Center, Jerusalem, Israel; and
| | - Giuseppe Querques
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Head and Neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - SriniVas Sadda
- Department of Ophthalmology, Doheny Eye Institute, University of California Los Angeles, Los Angeles, California
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California
- Greater Los Angeles Virginia Healthcare Center, Los Angeles, California
| |
Collapse
|
7
|
Clemens CR, Eter N, Alten F. Current Perspectives on Type 3 Macular Neovascularization due to Age-Related Macular Degeneration. Ophthalmologica 2024; 247:73-84. [PMID: 38266500 PMCID: PMC11160428 DOI: 10.1159/000536278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The aim of this review was to systematically summarize the current knowledge on type 3 macular neovascularization (MNV3) in age-related macular degeneration (AMD). SUMMARY Recent histopathologic and multimodal imaging findings led to the consensus definition of the new term "type 3 macular neovascularization" in AMD. MNV3 originates in the deep vascular plexus as a neovascular process without connection with the retinal pigment epithelium in the initial stages. This type has numerous clinical and pathomorphologic features that separate it from the other two types of MNV in AMD. Besides, its frequency appears to be higher than previously thought. In optical coherence tomography (OCT), MNV3 can be classified into stages 1-3. Hyperreflective foci in the outer retina possibly represent a precursor lesion. In addition, MNV3 is characterized by a strong association with reticular pseudodrusen, a high rate of bilaterality, close associations with advanced age and arterial hypertension, decreased choroidal thickness, and decreased choriocapillaris flow signals. Data from latest anti-vascular endothelial growth factor studies in MNV3 suggest that the OCT biomarkers in intraretinal and subretinal fluids should be interpreted differently than in the other types. Additionally, data from MNV3 eyes should be analyzed separately, allowing optimal type-specific treatment strategies in the future. KEY MESSAGES This review highlights the need for accurate characterization of neovascular AMD lesions and an MNV type-specific approach, particularly for MNV3.
Collapse
Affiliation(s)
- Christoph R Clemens
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| | - Florian Alten
- Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
| |
Collapse
|
8
|
Berlin A, Messinger JD, Balaratnasingam C, Mendis R, Ferrara D, Freund KB, Curcio CA. Imaging Histology Correlations of Intraretinal Fluid in Neovascular Age-Related Macular Degeneration. Transl Vis Sci Technol 2023; 12:13. [PMID: 37943552 PMCID: PMC10637202 DOI: 10.1167/tvst.12.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose Fluid presence and dynamism is central to the diagnosis and management of neovascular age-related macular degeneration. On optical coherence tomography (OCT), some hyporeflective spaces arise through vascular permeability (exudation) and others arise through degeneration (transudation). Herein we determined whether the histological appearance of fluid manifested this heterogeneity. Methods Two eyes of a White woman in her 90s with anti-vascular endothelial growth factor treated bilateral type 3 neovascularization secondary to age-related macular degeneration were osmicated, prepared for submicrometer epoxy resin sections, and correlated to eye-tracked spectral domain OCT. Examples of intraretinal tissue fluid were sought among similarly prepared donor eyes with fibrovascular scars, in a web-based age-related macular degeneration histopathology resource. Fluid stain intensity was quantified in reference to Bruch's membrane and the empty glass slide. Results Exudative fluid by OCT was slightly reflective and dynamically responded to anti-vascular endothelial growth factor. On histology, this fluid stained moderately, possessed a smooth and homogenous texture, and contained blood cells and fibrin. Nonexudative fluid in degenerative cysts and in outer retinal tubulation was minimally reflective on OCT and did not respond to anti-vascular endothelial growth factor. By histology, this fluid stained lightly, possessed a finely granular texture, and contained mainly tissue debris. Quantification supported the qualitative impressions of fluid stain density. Cells containing retinal pigment epithelium organelles localized to both fluid types. Conclusions High-resolution histology of osmicated tissue can distinguish between exudative and nonexudative fluid, some of which is transudative. Translational Relevance OCT and histological features of different fluid types can inform clinical decision-making and assist in the interpretation of newly available automated fluid detection algorithms.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chandrakumar Balaratnasingam
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Western Australia, Australia
| | | | | | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Berlin A, Messinger JD, Ramtohul P, Balaratnasingam C, Mendis R, Ferrara D, Freund KB, Curcio CA. INFLAMMATORY CELL ACTIVITY IN TREATED NEOVASCULAR AGE-RELATED MACULAR DEGENERATION: A Histologic Case Study. Retina 2023; 43:1904-1913. [PMID: 37871271 PMCID: PMC10801910 DOI: 10.1097/iae.0000000000003881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND Imaging indicators of macular neovascularization risk can help determine patient eligibility for new treatments for geographic atrophy secondary to age-related macular degeneration. Because type 1 macular neovascularization includes inflammation, we assessed by histology the distribution of cells with inflammatory potential in two fellow eyes with age-related macular degeneration. METHODS Two eyes of a White woman in her 90's with type 3 macular neovascularization treated with antivascular endothelial growth factor were prepared for high-resolution histology. Eye-tracked spectral domain optical coherence tomography applied to the preserved donor eyes linked in vivo imaging to histology. Cells were enumerated in the intraretinal, subretinal, and subretinal retinal pigment epithelium (RPE)-basal lamina compartments on 199 glass slides. Cells with numerous organelles were considered to RPE-derived; cells with sparse RPE organelles were considered non-RPE phagocytes. RESULTS Both eyes had soft drusen and abundant subretinal drusenoid deposit. In the retina and subretinal space, RPE-derived cells, including hyperreflective foci, were common (n = 125 and 73, respectively). Non-RPE phagocytes were infrequent (n = 5 in both). Over drusen, RPE morphology transitioned smoothly from the age-normal layer toward the top, suggesting transdifferentiation. The sub-RPE-basal lamina space had RPE-derived cells (n = 87) and non-RPE phagocytes (n = 49), including macrophages and giant cells. CONCLUSION Numerous sub-RPE-basal lamina cells of several types are consistent with the documented presence of proinflammatory lipids in drusen and aged Bruch's membrane. The relatively compartmentalized abundance of infiltrating cells suggests that drusen contents are more inflammatory than subretinal drusenoid deposit, perhaps reflecting their environments. Ectopic RPE occurs frequently. Some manifest as hyperreflective foci. More cells may be visible as optical coherence tomography technologies evolve.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| | | | - Chandrakumar Balaratnasingam
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Western Australia, Australia
| | | | | | - K. Bailey Freund
- Vitreous Retina Macula Consultants of New York NY, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York NY, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL, USA
| |
Collapse
|
10
|
Messinger JD, Brinkmann M, Kimble JA, Berlin A, Freund KB, Grossman GH, Ach T, Curcio CA. Ex Vivo OCT-Based Multimodal Imaging of Human Donor Eyes for Research into Age-Related Macular Degeneration. J Vis Exp 2023:10.3791/65240. [PMID: 37306417 PMCID: PMC10795012 DOI: 10.3791/65240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
A progression sequence for age-related macular degeneration (AMD) learned from optical coherence tomography (OCT)-based multimodal (MMI) clinical imaging could add prognostic value to laboratory findings. In this work, ex vivo OCT and MMI were applied to human donor eyes prior to retinal tissue sectioning. The eyes were recovered from non-diabetic white donors aged ≥80 years old, with a death-to-preservation time (DtoP) of ≤6 h. The globes were recovered on-site, scored with an 18 mm trephine to facilitate cornea removal, and immersed in buffered 4% paraformaldehyde. Color fundus images were acquired after anterior segment removal with a dissecting scope and an SLR camera using trans-, epi-, and flash illumination at three magnifications. The globes were placed in a buffer within a custom-designed chamber with a 60 diopter lens. They were imaged with spectral domain OCT (30° macula cube, 30 µm spacing, averaging = 25), near-infrared reflectance, 488 nm autofluorescence, and 787 nm autofluorescence. The AMD eyes showed a change in the retinal pigment epithelium (RPE), with drusen or subretinal drusenoid deposits (SDDs), with or without neovascularization, and without evidence of other causes. Between June 2016 and September 2017, 94 right eyes and 90 left eyes were recovered (DtoP: 3.9 ± 1.0 h). Of the 184 eyes, 40.2% had AMD, including early intermediate (22.8%), atrophic (7.6%), and neovascular (9.8%) AMD, and 39.7% had unremarkable maculas. Drusen, SDDs, hyper-reflective foci, atrophy, and fibrovascular scars were identified using OCT. Artifacts included tissue opacification, detachments (bacillary, retinal, RPE, choroidal), foveal cystic change, an undulating RPE, and mechanical damage. To guide the cryo-sectioning, OCT volumes were used to find the fovea and optic nerve head landmarks and specific pathologies. The ex vivo volumes were registered with the in vivo volumes by selecting the reference function for eye tracking. The ex vivo visibility of the pathology seen in vivo depends on the preservation quality. Within 16 months, 75 rapid DtoP donor eyes at all stages of AMD were recovered and staged using clinical MMI methods.
Collapse
Affiliation(s)
- Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine
| | - Max Brinkmann
- Department of Ophthalmology, University Hospital of Zurich
| | - James A Kimble
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine
| | - Andreas Berlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York; Department of Ophthalmology, New York University Grossman School of Medicine
| | | | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine;
| |
Collapse
|