1
|
Buchholz KR, Reichelt M, Johnson MC, Robinson SJ, Smith PA, Rutherford ST, Quinn JG. Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A. Nat Commun 2024; 15:4733. [PMID: 38830951 PMCID: PMC11148078 DOI: 10.1038/s41467-024-49200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Polymyxins are gram-negative antibiotics that target lipid A, the conserved membrane anchor of lipopolysaccharide in the outer membrane. Despite their clinical importance, the molecular mechanisms underpinning polymyxin activity remain unresolved. Here, we use surface plasmon resonance to kinetically interrogate interactions between polymyxins and lipid A and derive a phenomenological model. Our analyses suggest a lipid A-catalyzed, three-state mechanism for polymyxins: transient binding, membrane insertion, and super-stoichiometric cluster accumulation with a long residence time. Accumulation also occurs for brevicidine, another lipid A-targeting antibacterial molecule. Lipid A modifications that impart polymyxin resistance and a non-bactericidal polymyxin derivative exhibit binding that does not evolve into long-lived species. We propose that transient binding to lipid A permeabilizes the outer membrane and cluster accumulation enables the bactericidal activity of polymyxins. These findings could establish a blueprint for discovery of lipid A-targeting antibiotics and provide a generalizable approach to study interactions with the gram-negative outer membrane.
Collapse
Affiliation(s)
- Kerry R Buchholz
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA.
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew C Johnson
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Peter A Smith
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA
- Revagenix, Inc., San Mateo, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA, USA.
| | - John G Quinn
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
2
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
3
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Whitehead B, Antennuci F, Boysen AT, Nejsum P. Polymyxin B inhibits pro-inflammatory effects of E. coli outer membrane vesicles whilst increasing immune cell uptake and clearance. J Antibiot (Tokyo) 2023; 76:360-364. [PMID: 37016014 DOI: 10.1038/s41429-023-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Polymyxin B (PMB) is a peptide based antibiotic that binds the lipid A moiety of lipopolysaccharide (LPS) with a resultant bactericidal effect. The interaction of PMB with LPS presented on outer membrane vesicles (OMVs) is not fully known, however, a sacrificial role of OMVs in protecting bacterial cells by sequestering PMB has been described. Here we assess the ability of PMB to neutralize the immune-stimulatory properties of OMVs whilst modulating the uptake of OMVs in human immune cells. We show for the first time that PMB increases immune cell uptake of Escherichia coli derived OMVs whilst inhibiting TNF and IL-1β production. Therefore, we present a potential new role for PMB in the neutralization of OMVs via LPS masking and increased immune cell uptake.
Collapse
Affiliation(s)
- Bradley Whitehead
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Fabio Antennuci
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders T Boysen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Nejsum
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Noden M, Taylor SD. Enantioselective Synthesis and Application of Small and Environmentally Sensitive Fluorescent Amino Acids for Probing Biological Interactions. J Org Chem 2021; 86:11407-11418. [PMID: 34387500 DOI: 10.1021/acs.joc.1c00907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmentally sensitive fluorescent amino acids (FlAAs) have been used extensively to probe biological interactions. However, most of these amino acids are large and do not resemble amino acid side chains. Here, we report the enantioselective synthesis of two small and environmentally sensitive fluorescent amino acids bearing 7-dialkylaminocoumarin side chains by alkylation of a Ni(II) glycine Schiff base complex. These amino acids exhibit a large increase in fluorescence as environment polarity decreases. One of these FLAAs was incorporated into a highly active analog of the cyclic lipopeptide antibiotic paenibacterin by Fmoc solid-phase peptide synthesis via a new and very efficient route. This peptide was used to probe the interaction of the antibiotic with model liposomes, lipopolysaccharides, and live bacteria.
Collapse
Affiliation(s)
- Michael Noden
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Li X, Sun L, Li C, Yang X, Wang X, Hu X, Nie T, Zhang Y, You X. The Attenuated Protective Effect of Outer Membrane Vesicles Produced by a mcr-1 Positive Strain on Colistin Sensitive Escherichia coli. Front Cell Infect Microbiol 2021; 11:701625. [PMID: 34395312 PMCID: PMC8355893 DOI: 10.3389/fcimb.2021.701625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Resistance to colistin, especially mobilized colistin resistance (mcr), is a serious threat to public health since it may catalyze a return of the “pre-antibiotic era”. Outer membrane vesicles (OMVs) play a role in antibiotic resistance in various ways. Currently, how OMVs participate in mcr-1-mediated colistin resistance has not been established. In this study, we showed that both OMVs from the mcr-1 negative and positive Escherichia coli (E. coli) strains conferred dose-dependent protection from colistin. However, OMVs from the mcr-1 positive strain conferred attenuated protection when compared to the OMVs of a mcr-1 negative strain at the same concentration. The attenuated protective effect of OMVs was related to the reduced ability to absorb colistin from the environment, thus promoting the killing of colistin sensitive E. coli strains. Lipid A modified with phosphoethanolamine was presented in the OMVs of the mcr-1 positive E. coli strain and resulted in decreased affinity to colistin and less protection. Meanwhile, E. coli strain carrying the mcr-1 gene packed more unmodified lipid A in OMVs and kept more phosphoethanolamine modified lipid A in the bacterial cells. Our study provides a first glimpse of the role of OMVs in mcr-1 -mediated colistin resistance.
Collapse
Affiliation(s)
- Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Luong P, Dube DH. Dismantling the bacterial glycocalyx: Chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem 2021; 42:116268. [PMID: 34130219 DOI: 10.1016/j.bmc.2021.116268] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The bacterial glycocalyx is a quintessential drug target comprised of structurally distinct glycans. Bacterial glycans bear unusual monosaccharide building blocks whose proper construction is critical for bacterial fitness, survival, and colonization in the human host. Despite their appeal as therapeutic targets, bacterial glycans are difficult to study due to the presence of rare bacterial monosaccharides that are linked and modified in atypical manners. Their structural complexity ultimately hampers their analytical characterization. This review highlights recent advances in bacterial chemical glycobiology and focuses on the development of chemical tools to probe, perturb, and image bacterial glycans and their biosynthesis. Current technologies have enabled the study of bacterial glycosylation machinery even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
8
|
Jiang X, Yang K, Yuan B, Han M, Zhu Y, Roberts KD, Patil NA, Li J, Gong B, Hancock REW, Velkov T, Schreiber F, Wang L, Li J. Molecular dynamics simulations informed by membrane lipidomics reveal the structure-interaction relationship of polymyxins with the lipid A-based outer membrane of Acinetobacter baumannii. J Antimicrob Chemother 2021; 75:3534-3543. [PMID: 32911540 DOI: 10.1093/jac/dkaa376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND MDR bacteria represent an urgent threat to human health globally. Polymyxins are a last-line therapy against life-threatening Gram-negative 'superbugs', including Acinetobacter baumannii. Polymyxins exert antimicrobial activity primarily via permeabilizing the bacterial outer membrane (OM); however, the mechanism of interaction between polymyxins and the OM remains unclear at the atomic level. METHODS We constructed a lipid A-based OM model of A. baumannii using quantitative membrane lipidomics data and employed all-atom molecular dynamics simulations with umbrella sampling techniques to elucidate the structure-interaction relationship and thermodynamics governing the penetration of polymyxins [B1 and E1 (i.e. colistin A) representing the two clinically used polymyxins] into the OM. RESULTS Polymyxin B1 and colistin A bound to the A. baumannii OM by the initial electrostatic interactions between the Dab residues of polymyxins and the phosphates of lipid A, competitively displacing the cations from the headgroup region of the OM. Both polymyxin B1 and colistin A formed a unique folded conformation upon approaching the hydrophobic centre of the OM, consistent with previous experimental observations. Polymyxin penetration induced reorientation of the headgroups of the OM lipids near the penetration site and caused local membrane disorganization, thereby significantly increasing membrane permeability and promoting the subsequent penetration of polymyxin molecules into the OM and periplasmic space. CONCLUSIONS The thermodynamics governing the penetration of polymyxins through the outer leaflet of the A. baumannii OM were examined and novel structure-interaction relationship information was obtained at the atomic and membrane level. Our findings will facilitate the discovery of novel polymyxins against MDR Gram-negative pathogens.
Collapse
Affiliation(s)
- Xukai Jiang
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Kai Yang
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Bing Yuan
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Meiling Han
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Bin Gong
- School of Computer Science and Technology, Shandong University, Jinan, China
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, University of Melbourne, Melbourne, Australia
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Luu T, Li W, O'Brien‐Simpson NM, Hong Y. Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies. Chem Asian J 2021; 16:1027-1040. [DOI: 10.1002/asia.202100102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Tracey Luu
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Wenyi Li
- Bio21 Institute University of Melbourne Centre for Oral Health Research Melbourne Dental School Melbourne VIC 3010 Australia
| | - Neil M. O'Brien‐Simpson
- Bio21 Institute University of Melbourne Centre for Oral Health Research Melbourne Dental School Melbourne VIC 3010 Australia
| | - Yuning Hong
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
10
|
Cetuk H, Anishkin A, Scott AJ, Rempe SB, Ernst RK, Sukharev S. Partitioning of Seven Different Classes of Antibiotics into LPS Monolayers Supports Three Different Permeation Mechanisms through the Outer Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1372-1385. [PMID: 33449700 DOI: 10.1021/acs.langmuir.0c02652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The outer membrane (OM) of Gram-negative (G-) bacteria presents a barrier for many classes of antibacterial agents. Lipopolysaccharide (LPS), present in the outer leaflet of the OM, is stabilized by divalent cations and is considered to be the major impediment for antibacterial agent permeation. However, the actual affinities of major antibiotic classes toward LPS have not yet been determined. In the present work, we use Langmuir monolayers formed from E. coli Re and Rd types of LPS to record pressure-area isotherms in the presence of antimicrobial agents. Our observations suggest three general types of interactions. First, some antimicrobials demonstrated no measurable interactions with LPS. This lack of interaction in the case of cefsulodin, a third-generation cephalosporin antibiotic, correlates with its low efficacy against G- bacteria. Ampicillin and ciprofloxacin also show no interactions with LPS, but in contrast to cefsulodin, both exhibit good efficacy against G- bacteria, indicating permeation through common porins. Second, we observe substantial intercalation of the more hydrophobic antibiotics, novobiocin, rifampicin, azithromycin, and telithromycin, into relaxed LPS monolayers. These largely repartition back to the subphase with monolayer compression. We find that the hydrophobic area, charge, and dipole all show correlations with both the mole fraction of antibiotic retained in the monolayer at the monolayer-bilayer equivalence pressure and the efficacies of these antibiotics against G- bacteria. Third, amine-rich gentamicin and the cationic antimicrobial peptides polymyxin B and colistin show no hydrophobic insertion but are instead strongly driven into the polar LPS layer by electrostatic interactions in a pressure-independent manner. Their intercalation stably increases the area per molecule (by up to 20%), which indicates massive formation of defects in the LPS layer. These defects support a self-promoted permeation mechanism of these antibiotics through the OM, which explains the high efficacy and specificity of these antimicrobials against G- bacteria.
Collapse
Affiliation(s)
- Hannah Cetuk
- Biology Department, University of Maryland, College Park, Maryland 20742, United States
| | - Andriy Anishkin
- Biology Department, University of Maryland, College Park, Maryland 20742, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore Maryland 21201, United States
| | - Susan B Rempe
- Center for Chemical, Biological, Radiation, and Nuclear Defense and Energy Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore Maryland 21201, United States
| | - Sergei Sukharev
- Biology Department, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Shi C, Wang X, Wang L, Meng Q, Guo D, Chen L, Dai M, Wang G, Cooney R, Luo J. A nanotrap improves survival in severe sepsis by attenuating hyperinflammation. Nat Commun 2020; 11:3384. [PMID: 32636379 PMCID: PMC7341815 DOI: 10.1038/s41467-020-17153-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Targeting single mediators has failed to reduce the mortality of sepsis. We developed a telodendrimer (TD) nanotrap (NT) to capture various biomolecules via multivalent, hybrid and synergistic interactions. Here, we report that the immobilization of TD-NTs in size-exclusive hydrogel resins simultaneously adsorbs septic molecules, e.g. lipopolysaccharides (LPS), cytokines and damage- or pathogen-associated molecular patterns (DAMPs/PAMPs) from blood with high efficiency (92-99%). Distinct surface charges displayed on the majority of pro-inflammatory cytokines (negative) and anti-inflammatory cytokines (positive) allow for the selective capture via TD NTs with different charge moieties. The efficacy of NT therapies in murine sepsis is both time-dependent and charge-dependent. The combination of the optimized NT therapy with a moderate antibiotic treatment results in a 100% survival in severe septic mice by controlling both infection and hyperinflammation, whereas survival are only 50-60% with the individual therapies. Cytokine analysis, inflammatory gene activation and tissue histopathology strongly support the survival benefits of treatments.
Collapse
Affiliation(s)
- Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiaojing Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Li Chen
- Department of Pathology, Baylor Scott and White Medical Center, Temple, TX, 76508, USA
| | - Matthew Dai
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Brown University, Providence, RI, 02912, USA
| | - Guirong Wang
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Robert Cooney
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Madhumanchi S, Suedee R, Kaewpiboon S, Srichana T, Khalil R, Ul-Haq Z. Effect of sodium deoxycholate sulfate on outer membrane permeability and neutralization of bacterial lipopolysaccharides by polymyxin B formulations. Int J Pharm 2020; 581:119265. [PMID: 32217155 DOI: 10.1016/j.ijpharm.2020.119265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
We demonstrated binding interactions of polymyxin B (PMB), PMB formulations in the mole ratios of 1:2 and 1:3 of PMB:sodium deoxycholate sulfate (SDCS) and a commercial PMB formulation (CPMB) with lipopolysaccharides (LPS). The 1:2 PMB formulation (78.5-135.2 nM) exhibited a lower number of binding sites to the tested LPS compared to CPMB (112.6-140.9 nM) whereas 1:3 PMB formulation exhibited a higher number of binding sites (143.9-340.2 nM). Similarly, in the presence of LPS, the 1:2 PMB formulation (163.8-221.4 nm) exhibited smaller particle sizes compared to PMB, CPMB and 1:3 PMB formulation (248.8-603.5 nm). Molecular docking simulation suggested that the fatty acyl tails of LPS wrap together to produce a pseudo-globular structure of PMB-LPS complex, and among those 1:2 PMB formulation formed a more stable structure. The primary forces behind this complex are hydrogen bonds and salt bridges among the LPS, PMB, and SDCS. This study revealed that the PMB, CPMB, and PMB formulations inserted into the LPS micelles to disrupt the LPS membrane, whereas the SDCS may induce aggregation. The 1:2 PMB formulation also had higher bacterial uptake than other PMB formulations. The 1:2 PMB formulation neutralized the LPS micelles and was effective against Escherichia coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Sreenu Madhumanchi
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sunisa Kaewpiboon
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Ruqaiya Khalil
- Computational Drug Design Lab, Dr. Panjwani Center for Molecular Medicine and Drug, Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Computational Drug Design Lab, Dr. Panjwani Center for Molecular Medicine and Drug, Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
13
|
Madhumanchi S, Suedee R, Nakpheng T, Tinpun K, Temboot P, Srichana T. Binding interactions of bacterial lipopolysaccharides to polymyxin B in an amphiphilic carrier 'sodium deoxycholate sulfate'. Colloids Surf B Biointerfaces 2019; 182:110374. [PMID: 31330430 DOI: 10.1016/j.colsurfb.2019.110374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
This work presents the outcomes of a comparative study of molecular interactions of polymyxin B (PMB) and F12 and F13 formulations in the mole ratios of 1:2 and 1:3 of PMB:sodium deoxycholate sulfate (SDCS), respectively, and a commercial PMB formulation (CPMB) with lipopolysaccharides (LPS). Several spectroscopic and interfacial studies were performed to obtain LPS-peptide interactions at a molecular level. The fluorescence titrimetry method revealed that the F12 formulation (325 nM) exhibited a lower number of binding sites to the LPS compared to CPMB and F13 as well as PMB alone (537 nM). Similarly, in the presence of LPS, the F12 formulation (88 nm) exhibited smaller particle sizes in the dynamic light scattering study compared to PMB (116 nm), CPMB, and the F13 formulation. An interfacial study and circular dichroism spectroscopy revealed PMB and CPMB insertion into the LPS micelles to destabilize and disrupt the LPS membrane, whereas the F12 and F13 formulations may induce pseudo-aggregation. The NMR and IR studies showed that the presence of SDCS, the hydrophobicity of PMB increased by hydrogen bonding and electrostatic interactions and formed stabilized PMB-SDCS micelles. The PMB-SDCS formulation is likely to release PMB for easy penetration into the lipid membrane and cause disruption of the complex LPS micelles. Furthermore, the PMB-SDCS formulations neutralized and detoxified the LPS micelles with minimal toxicity to normal kidney tubular cells as well as an immortalised kidney cell line. The antimicrobial properties of PMBloaded SDCS nanomicelles were effective against a resistant strain of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Sreenu Madhumanchi
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kittiya Tinpun
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pornvichai Temboot
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
14
|
Khadka N, Aryal CM, Pan J. Lipopolysaccharide-Dependent Membrane Permeation and Lipid Clustering Caused by Cyclic Lipopeptide Colistin. ACS OMEGA 2018; 3:17828-17834. [PMID: 30613815 PMCID: PMC6312645 DOI: 10.1021/acsomega.8b02260] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/06/2018] [Indexed: 05/16/2023]
Abstract
Polyanionic lipopolysaccharides (LPS) play an important role in regulating the permeability of the outer membrane (OM) of Gram-negative bacteria. Impairment of the LPS-enriched OM is essential in initiating the bactericidal activity of polymyxins. We are interested in how colistin (polymyxin E) affects the membrane permeability of LPS/phospholipid bilayers. Our vesicle leakage experiment showed that colistin binding enhanced bilayer permeability; the maximum increase in the bilayer permeability was positively correlated with the LPS fraction. Addition of magnesium ions abolished the effect of LPS in enhancing bilayer permeabilization. To describe the vesicle leakage behavior from a structural perspective, we performed liquid atomic force microscopy (AFM) measurements on planar lipid bilayers. We found that colistin caused the formation of nano- and macroclusters that protruded from the bilayer by ∼2 nm. Moreover, cluster development was promoted by increasing the fraction of LPS or colistin concentration but inhibited by magnesium ions. To explain our experimental data, we proposed a lipid clustering model where colistin binds to LPS to form large-scale complexes segregated from zwitterionic phospholipids. The discontinuity (and thickness mismatch) at the edge of LPS-colistin clusters will create a passage that allows solutes to permeate through. The proposed model is consistent with all data obtained from our leakage and AFM experiments. Our results of LPS-dependent membrane restructuring provided useful insights into the mechanism that could be used by polymyxins in impairing the permeability barrier of the OM of Gram-negative bacteria.
Collapse
|
15
|
Martínez-Florensa M, Català C, Velasco-de Andrés M, Cañadas O, Fraile-Ágreda V, Casadó-Llombart S, Armiger-Borràs N, Consuegra-Fernández M, Casals C, Lozano F. Conserved Bacterial-Binding Peptides of the Scavenger-Like Human Lymphocyte Receptor CD6 Protect From Mouse Experimental Sepsis. Front Immunol 2018; 9:627. [PMID: 29706953 PMCID: PMC5906529 DOI: 10.3389/fimmu.2018.00627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs) recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF) sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor. Here, we analyze the bacterial-binding properties of three conserved short peptides (11-mer) mapping at extracellular SRCR domains of human CD6 (CD6.PD1, GTVEVRLEASW; CD6.PD2 GRVEMLEHGEW; and CD6.PD3, GQVEVHFRGVW). All peptides show high binding affinity for PAMPs from Gram-negative (lipopolysaccharide; Kd from 3.5 to 3,000 nM) and Gram-positive (lipoteichoic acid; Kd from 36 to 680 nM) bacteria. The CD6.PD3 peptide possesses broad bacterial-agglutination properties and improved survival of mice undergoing polymicrobial sepsis in a dose- and time-dependent manner. Accordingly, CD6.PD3 triggers a decrease in serum levels of both pro-inflammatory cytokines and bacterial load. Interestingly, CD6.PD3 shows additive survival effects on septic mice when combined with Imipenem/Cilastatin. These results illustrate the therapeutic potential of peptides retaining the bacterial-binding properties of native CD6.
Collapse
Affiliation(s)
- Mario Martínez-Florensa
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olga Cañadas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departmento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|