1
|
Loke YH, Phang HC, Gobal G, Vijayaraj Kumar P, Kee PE, Widodo RT, Goh BH, Liew KB. Application of cocoa butter for formulation of fast melt tablets containing memantine hydrochloride. Drug Dev Ind Pharm 2024:1-11. [PMID: 39418138 DOI: 10.1080/03639045.2024.2417999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Fast melt tablets (FMTs) provide a convenient dosage form that rapidly dissolves on the tongue without the need for water. Cocoa butter serves as a suitable matrix system for FMTs formulation, facilitating rapid disintegration at body temperature. OBJECTIVES This study aimed to formulate FMTs using cocoa butter as a base and investigate the effect of various disintegrants and superdisintegrants on their characteristics. METHODS Cocoa butter-based FMTs were prepared via the fusion molding technique. Different disintegrants and superdisintegrants were added at varying concentrations and subjected to characterization. The optimal formulation was selected and incorporated with 10 mg memantine hydrochloride. RESULTS The optimal FMT formulation consisted of 340 mg cocoa butter, 75 mg starch, and 75 mg crospovidone, exhibiting a hardness of 17.12 ± 0.31 N and a disintegration time of 32.67 ± 0.17 s. Furthermore, FMTs demonstrated a faster release profile compared to the commercially available product, Ebixa. SEM micrographs revealed homogenous blending of individual ingredients within the cocoa butter matrix and FT-IR analysis confirmed the chemical stability of memantine hydrochloride in the formulation. The dissolution profile of F17 suggested that the drug in FMTs released faster compared to Ebixia. Memantine hydrochloride achieved 98.07% of drug release in FMTs at 10 min. Moreover, the prepared FMTs exhibited stability for at least 6 months. CONCLUSION The successful development of cocoa butter-based FMTs containing memantine hydrochloride highlights the potential of cocoa butter as viable alternative matrix-forming material for FMTs production. This innovative formulation offers patients a convenient alternative for medication administration.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| | - Hiu Ching Phang
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| | - Ganesan Gobal
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| | | | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taiwan
| | - Riyanto Teguh Widodo
- Faculty of Pharmacy, Universiti Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| |
Collapse
|
2
|
Zhang W, Thool P, Weitz BW, Hou HH. Investigating the effects of formulation variables on the disintegration of spray dried amorphous solid dispersion tablets. J Pharm Sci 2024:S0022-3549(24)00432-5. [PMID: 39374694 DOI: 10.1016/j.xphs.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
Amorphous solid dispersion (ASD) tablets based on hydrophilic polymer carriers may encounter disintegration challenges. In this work, the effect of different formulation composition variables on the ASD tablet disintegration performance was systematically studied. GDC-0334: copovidone (PVPVA) 60: 40 ASD prepared by spray drying was selected as the model ASD system. The effects of ASD loading, filler type and ratio, disintegrant type and level were then investigated using tablets made by direct compression process. Tablet disintegration time increased with the increase of ASD loading, especially when ASD loading exceeded 50 %. At the same tablet solid fraction, when lactose was used as the soluble filler, faster tablet disintegration was observed compared to the tablets with mannitol as the soluble filler. Among the three tested disintegrants, croscarmellose sodium performed the best in facilitating the ASD tablet disintegration, followed by sodium starch glycolate, and crospovidone was the poorest. When croscarmellose sodium was used as the disintegrant, 5 % level was sufficient to enable ASD tablet disintegration at 60 % ASD loading and further increase of croscarmellose sodium level to 8 % did not provide additional benefit. Water uptake experiments were performed on selected tablets and the results demonstrated a positive correlation with tablet disintegration time, indicating water penetration is a major contributing step for the disintegration of our ASD tablets. Overall, this work provides a rationale for excipient selection and insights into building a platform formulation approach for developing immediate-release ASD tablets.
Collapse
Affiliation(s)
- Wei Zhang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Prajwal Thool
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin W Weitz
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Helen Hou
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
3
|
Yasin H, Al-Tabakha MMA, Chan SY. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics 2024; 16:1285. [PMID: 39458614 PMCID: PMC11510916 DOI: 10.3390/pharmaceutics16101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The pharmacy profession has undergone significant changes driven by advancements in patient care and healthcare systems. The FDA approval of Spritam® (levetiracetam), the first 3D-printed drug, has sparked increased interest in the use of Fused Deposition Modeling (FDM) 3D printing for pharmaceutical applications, particularly in the production of polypills. METHODS This review provides an overview of FDM 3D printing in the development of pharmaceutical dosage forms, focusing on its operation, printing parameters, materials, additives, advantages, and limitations. Key aspects, such as the ability to personalize medication and the challenges associated with the technique, including drug stability at high temperatures, are discussed. RESULTS Fourteen studies relevant to FDM 3D-printed polypills were analyzed from an initial pool of 60. The increasing number of publications highlights the growing global interest in this technology, with the UK contributing the highest number of studies. CONCLUSIONS FDM 3D printing offers significant potential for personalized medicine by enabling precise control over dosage forms and tailoring treatments to individual patient needs. However, limitations such as high printing temperatures and the lack of standardized GMP guidelines for large-scale production must be addressed to fully realize its potential in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Haya Yasin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moawia M. A. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
4
|
Veronica N, Lee ESM, Heng PWS, Liew CV. Functionality of wet-granulated disintegrant in comparison to directly incorporated disintegrant in a poorly water-soluble tablet matrix. Int J Pharm 2024; 661:124467. [PMID: 39004293 DOI: 10.1016/j.ijpharm.2024.124467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Tablet disintegration is crucial for drug release and subsequent systemic absorption. Although factors affecting the disintegrant's functionality have been extensively studied, the impact of wet granulation on the performance of disintegrants in a poorly water-soluble matrix has received much less attention. In this study, the disintegrants, crospovidone (XPVP), croscarmellose sodium (CCS) and sodium starch glycolate (SSG), were wet-granulated with dibasic calcium phosphate dihydrate as the poorly water-soluble matrix and polyvinylpyrrolidone as the binder. The effect of wet granulation was studied by evaluating tablet tensile strength and disintegratability. Comparison between tablets with granulated or ungranulated disintegrants as well those without disintegrants were also made. Different formulations showed different degrees of sensitivity to changes in tablet tensile strength and disintegratability post-wet granulation. Tablet tensile strength decreased for tablets with granulated disintegrant XPVP or CCS, but to a smaller extent for SSG. While tablets with granulated XPVP or CCS had increased disintegration time, the increment was lesser than for SSG, suggesting that wet granulation impacted a swelling disintegrant more. The findings showed that tablets with wet-granulated disintegrant had altered the disintegrant's functionality. These findings could provide better insights into changes in the disintegrant's functionality after wet granulation.
Collapse
Affiliation(s)
- Natalia Veronica
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Erinn Si Min Lee
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore; Airlangga University, Kampus C Mulyorejo, Surabaya 60115, Indonesia
| | - Celine Valeria Liew
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore; School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia(1).
| |
Collapse
|
5
|
Salish K, Thool P, Qin Y, Yawman PD, Zhang S, Mao C. A two-phase flow model simulating water penetration into pharmaceutical tablets. Int J Pharm 2024; 660:124383. [PMID: 38925240 DOI: 10.1016/j.ijpharm.2024.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
The purpose of the study is introduce a two-phase flow model to simulate water penetration into pharmaceutical tablets. This model was built by integrating Darcy's law with the continuity principle, on the premise that water penetration was driven by capillary actions. Notably, this model concerned both the ingress of water (wetting phase) and simultaneous displacement of air (non-wetting phase). Due to the interference of the two fluids, the relative permeability and capillary pressure vary during water penetration. Evolution of these parameters was incorporated in the model. Calibration of the model by water penetration experiments of the microcrystalline cellulose (MCC) tablet yielded an average pore radius of 42 nm. This derived result was corroborated by FIB-SEM analysis revealing the presence of extensive microporosity within MCC particles with an average radius of ∼30 nm. Further validation was achieved through close resemblance between the simulated and experimental water penetration profiles of MCC tablets possessing different porosities. Overall, this study underscored the advantage of the two-phase flow model over single-phase flow models, by capturing the dependence of permeability and capillary pressure on water saturation. Therefore it holds promise for an enhanced description of water penetration into tablets.
Collapse
Affiliation(s)
- Karthik Salish
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, United States
| | - Prajwal Thool
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, United States
| | - Yuri Qin
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Phillip D Yawman
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Shawn Zhang
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Chen Mao
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, United States.
| |
Collapse
|
6
|
Jadiya S, Upmanyu N, Sathiyanarayanan A, Jain V, Dubey R, Buwade P. Formulation and Development of Novel Sulfasalazine Bilayer Tablets for The Treatment of Arthritis Associated With IBD: In-vitro and In-vivo Investigations. J Pharm Sci 2024; 113:1919-1926. [PMID: 38401631 DOI: 10.1016/j.xphs.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Sulfasalazine needs frequent daily dosing and the administration of numerous tablets per day pose challenges to patient compliance, contributing to increased adverse effects and difficulties in disease control. These inconveniences result in less effective treatment for arthritis associated with inflammatory bowel disease i.e. ulcerative colitis etc. To improve drug bioavailability, a delayed-release mechanism that releases the drug at the colon is necessary. To develop and optimize colon-targeted controlled release bilayer tablets coated with pH-dependent polymers. The bilayer tablets containing the immediate release part and sustained release part were developed. The tablets were coated with enteric-coated with Eudragit® S-100 and l-100 to achieve release in the colon. Granule properties and tablets were evaluated. The physicochemical parameters of the tablets were evaluated including, stability study, and drug release in 0.1 N HCl (pH 1.2), pH 6.8 phosphate buffer, pH 7.4 phosphate buffer for 2, 1, and up to 24 h respectively. Radiographic imaging and in vivo pharmacokinetic studies were also done in Rabbits. The bilayer tablets containing immediate and sustained release were successfully developed for the colon targeting. The granule properties were found within the acceptable range indicating good flow properties. The physicochemical properties of the tablets were also found acceptable. The tablets did not show release in 0.1 N HCl and 6.8 phosphate buffer but drug release was found under control in the 7.4 pH buffer. Sulfasalazine coated bilayer tablets were found stable and no significant changes were observed in the stability studies. Based on the X-ray studies, the formulated tablet remained discernible in the stomach, small intestine, and colon for a duration of up to 24 h. Finally, by the 32nd hour, the tablet was no longer visible in the X-ray examination, leading to the conclusion of complete drug release. The drug concentration in plasma remained within the therapeutic range for up to 24 h in vivo. These novel formulations present substantial advantages, providing prolonged targeted drug release and reducing systemic adverse effects. The results suggest promising potential for treating arthritis in Inflammatory bowel disease (IBD) patients, offering a solution to current delivery systems.
Collapse
Affiliation(s)
| | - Neeraj Upmanyu
- School of Pharmacy & Research, People's University, Bhopal, India; Sagar Institute of Research and Technology-Pharmacy, Sanjeev Agrawal Global Educational University, Sahara Bypass Road, Bhopal, India.
| | - Arulmozhi Sathiyanarayanan
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Vishal Jain
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rupal Dubey
- School of Pharmacy & Research, People's University, Bhopal, India
| | - Puja Buwade
- School of Pharmacy & Research, People's University, Bhopal, India
| |
Collapse
|
7
|
Otu DAB, Owusu FWA, Boakye-Gyasi ME, Johnson R, Acquah PGJ, Edzor-Agbo Y, Bayor MT, Archer MA. Biogenic Waste from Two Varieties of Plantain in Ghana Contain Pectin with Potential Binding Properties in Conventional Tablets. ScientificWorldJournal 2024; 2024:5461358. [PMID: 38915814 PMCID: PMC11196187 DOI: 10.1155/2024/5461358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Pharmaceutical formulations have traditionally relied on plants and their derivatives for various APIs and excipients. In Ghana, the widespread utilization of plantains, irrespective of their ripeness, generates significant waste at every stage of processing, posing disposal issues. Fascinatingly, these wastes, often discarded, possess significant economic potential and can be recycled into valuable raw materials or products. Pectin, a polysaccharide that occurs naturally, has seen a surge in interest in recent times. It has found widespread use in the pharmaceutical sector, particularly as a binding agent in tablet formulations. This study aimed to evaluate pectin from two popular plantain varieties, Apem (M) and Apantu (T) at different ripening stages, for pharmaceutical use as a binding agent in immediate-release tablets. The ripening stages selected were the matured-green (G), half-ripe (H), and full-ripe (R). Acid (D) and alkaline (L) mediums of extraction were employed for each ripening stage for both varieties. Wet granulation method was used to prepare the granules using paracetamol as a model drug, and their flow properties were subsequently assessed. Postcompression tests including, hardness, friability, weight uniformity, disintegration, assay, and in vitro dissolution were also assessed. Granules from all formulation batches had good flow properties indicated by their angle of repose (14.93 ± 1.41-21.80 ± 1.41), Hausner ratio (0.96 ± 0.27-1.22 ± 0.02), and compressibility (%) (7.69 ± 0.002-20.51 ± 0.002). All the tablets passed the uniformity of weight with none deviating by ±5%. The hardness of all the formulated tablets ranged between 3.96 ± 0.32 and 13.21 ± 0.36, while the friability for all tablets was below 1%. The drug content was between 100.1 ± 0.23% and 103.4 ± 0.01%. Tablets formulated with pectin as a binding agent at concentrations of 10% w/v and 15% w/v successfully met the disintegration test criteria for immediate release tablets. However, those prepared with a concentration of 20% w/v (MGL, MHD, MHL, MRD, MRL, TGL, THD, THL, and TRL) did not pass the disintegration test. Consequently, all batches of tablets successfully met the dissolution test requirement (Diss, Q > 75%), except for the batches that did not pass the disintegration test (Diss, Q < 75%). Ultimately, pectins extracted from the peels of Apem and Apantu at different ripening stages using acid and alkaline extraction can be commercially exploited as pharmaceutical binders at varying concentrations in immediate-release tablets.
Collapse
Affiliation(s)
- Desmond Asamoah Bruce Otu
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frederick William Akuffo Owusu
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mariam El Boakye-Gyasi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael Johnson
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince George Jnr Acquah
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yayra Edzor-Agbo
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Marcel Tunkumgnen Bayor
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mary-Ann Archer
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
8
|
Maclean N, Armstrong JA, Carroll MA, Salehian M, Mann J, Reynolds G, Johnston B, Markl D. Flexible modelling of the dissolution performance of directly compressed tablets. Int J Pharm 2024; 656:124084. [PMID: 38580072 DOI: 10.1016/j.ijpharm.2024.124084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In this study, a compartmental disintegration and dissolution model is proposed for the prediction and evaluation of the dissolution performance of directly compressed tablets. This dissolution model uses three compartments (Bound, Disintegrated, and Dissolved) to describe the state of each particle of active pharmaceutical ingredient. The disintegration of the tablet is captured by three fitting parameters. Two disintegration parameters, β0 and βt,0, describe the initial disintegration rate and the change in disintegration rate, respectively. A third parameter, α, describes the effect of the volume of dissolved drug on the disintegration process. As the tablet disintegrates, particles become available for dissolution. The dissolution rate is determined by the Nernst-Brunner equation, whilst taking into account the hydrodynamic effects within the vessel of a USP II (paddle) apparatus. This model uses the raw material properties of the active pharmaceutical ingredient (solubility, particle size distribution, true density), lending it towards early development activities during which time the amount of drug substance available may be limited. Additionally, the strong correlations between the fitting parameters and the tablet porosity indicate the potential to isolate the manufacturing effects and thus implement the model as part of a real-time release testing strategy for a continuous direct compression line.
Collapse
Affiliation(s)
- Natalie Maclean
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John A Armstrong
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mark A Carroll
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohammad Salehian
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Blair Johnston
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Daniel Markl
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
9
|
Juan C, Gallo L, Gonzalez Vidal N. Development of Losartan Orally Disintegrating Tablets by Direct Compression: a Cost-Effective Approach to Improve Paediatric Patient's Compliance. AAPS PharmSciTech 2024; 25:79. [PMID: 38589718 DOI: 10.1208/s12249-024-02796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
The development of suitable dosage forms is essential for an effective pharmacological treatment in children. Orally disintegrating tablets (ODTs) are attractive dosage forms that avoid swallowing problems, ensure dosage accuracy and are easy to administer as they disintegrate in the oral cavity. This study aimed to develop ODTs containing losartan potassium (LP) for the treatment of arterial hypertension in children. The ODTs, produced by the cost-effective manufacturing process of direct compression, consisted of a mixture of diluent, superdisintegrant, glidant and lubricant. Five superdisintegrants (croscarmellose sodium, two grades of crospovidone, sodium starch glycolate and pregelatinized starch) were tested (at two concentrations), and combined with three diluents (mannitol, lactose and sorbitol). Thus, thirty formulations were evaluated based on disintegration time, hardness and friability. Two formulations, exhibiting the best results concerning disintegration time (< 30 s), hardness and friability (≤ 1.0%), were selected as the most promising ones for further evaluation. These ODTs presented favourable drug-excipient compatibility, tabletability and flow properties. The in vitro dissolution studies demonstrated 'very rapid' drug release. Preliminary stability studies highlighted the requirement of a protective packaging. All quality properties retained appropriate results after 12 months of storage in airtight containers. In conclusion, the ODTs were successfully developed and characterised, suggesting a potential means to accomplish a final prototype that enables an improvement in childhood arterial hypertension treatment.
Collapse
Affiliation(s)
- Candela Juan
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Loreana Gallo
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI, UNS-CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Noelia Gonzalez Vidal
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Cho WH, Yoo W, Yoo B. Effect of Thickened Beverage and Swallowing Aid Jelly Used for Dysphagic Patients on the Disintegration of Orally Administered Tablets. Clin Nutr Res 2024; 13:89-95. [PMID: 38784854 PMCID: PMC11109931 DOI: 10.7762/cnr.2024.13.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Thickened beverages or swallowing aid jelly (SAJ), commonly used as tablet-swallowing aids for dysphagic patients, may influence the disintegration of orally administered tablets. With this in mind, we evaluated the disintegration times of therapeutic tablets immersed in thickened beverages or SAJ compared to immersion in ones without them. Thickened beverages and SAJs were prepared with various beverages (water, orange juice, and milk) using food thickeners and SAJ powders marketed in Korea. The tablet disintegration times were the same in thickened beverages and SAJs, and there was no statistically significant difference associated with the thickness levels of the thickened beverages. The disintegration times of Tylenol immersed in orange juice or milk were slightly higher compared to those immersed in water. Moreover, there was no difference in disintegration time when using the thickened beverages and SAJs. The disintegration times of Aspirin were similar in all of the thickened beverages or SAJs, and there were no differences between non-immersed and immersed tablets. These results demonstrate that the disintegration of Tylenol and Aspirin is not greatly affected by immersion in any of the thickened beverages and SAJs.
Collapse
Affiliation(s)
- Won Hyeong Cho
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Korea
| | | | - Byoungseung Yoo
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Korea
| |
Collapse
|
11
|
Waldner S, Wendelspiess E, Detampel P, Schlepütz CM, Huwyler J, Puchkov M. Advanced analysis of disintegrating pharmaceutical compacts using deep learning-based segmentation of time-resolved micro-tomography images. Heliyon 2024; 10:e26025. [PMID: 38384517 PMCID: PMC10878950 DOI: 10.1016/j.heliyon.2024.e26025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.
Collapse
Affiliation(s)
- Samuel Waldner
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Erwin Wendelspiess
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | | | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
12
|
Yang Y, Gengji J, Gong T, Zhang Z, Deng L. Time-Lapse Macro Imaging with Dissolution Tests for Exploring the Interrelationship Between Disintegration and Dissolution Behaviors of Solid Dosages. Pharm Res 2024; 41:387-400. [PMID: 38243127 DOI: 10.1007/s11095-024-03655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVE This study aims to establish a Flow-through Visualization Dissolution System (FVDS) that combines time-lapse macro-imaging and a flow-through cell to simultaneously elucidate dissolution and disintegration profiles. METHODS Three cefaclor extended-release tablets (CEC-1, CEC-2, CEC-3) from different manufacturers were subjected to dissolution tests using both the US Pharmacopeia basket method and the FVDS method. Two dissolution media plans were implemented in FVDS: i) Plan I involved dissolution in pH1.0 medium for 12 h; ii) Plan II initiated dissolution in pH1.0 medium for 1 h, followed by pH6.8 phosphate buffer for 11 h. The resulting dissolution data were fitted using classic mathematical models. Pixel information was further extracted from images obtained using FVDS and plotted over time. RESULTS The basket method showed the cumulative dissolution of all three tablets in pH1.0, pH4.0 and water reached 80% within 6 h, but remained below 60% in the pH6.8 medium. The f2 values indicated CEC-2 was similar to CEC-1 in the pH4.0 medium, pH6.8 medium and water. Using FVDS with medium plan II, the cumulative dissolution of CEC-1 and CEC-2 reached about 80% showing similarity, while no similarity was observed between CEC-3 and CEC-1. The f2 factor of the percentage area change profiles also showed consistent results in the dissolution profile of medium plan II. However, FVDS with medium plan I cannot distinguish between CEC-2 and CEC-3. CONCLUSION FVDS offers an alternative to traditional dissolution methods by integrating imaging analysis as a complementary tool to disintegration and dissolution testing methods.
Collapse
Affiliation(s)
- Yichen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gengji
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Loke YH, Chew YL, Janakiraman AK, Lee SK, Uddin ABMH, Goh CF, Kee PE, Ng HS, Ming LC, Liew KB. Development of a novel direct compressible co-processed excipient and its application for formulation of Mirtazapine orally disintegrating tablets. Drug Dev Ind Pharm 2024; 50:36-44. [PMID: 38149637 DOI: 10.1080/03639045.2023.2294095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Orally disintegrating tablets (ODTs) are designed to dissolve in the oral cavity within 3 min, providing a convenient option for patients as they can be taken without water. Direct compression is the most common method used for ODTs formulations. However, the availability of single composite excipients with desirable characteristics such as good compressibility, fast disintegration, and a good mouthfeel suitable for direct compression is limited. OBJECTIVE This research was proposed to develop a co-processed excipient composed of xylitol, mannitol, and microcrystalline cellulose for the formulation of ODTs. METHODS A total of 11 formulations of co-processed excipients with different ratios of ingredients were prepared, which were then compressed into ODTs, and their characteristics were thoroughly examined. The primary focus was on evaluating the disintegration time and hardness of the tablets, as these factors are important in ensuring the ODTs meet the desired criteria. The model drug, Mirtazapine was then incorporated into the chosen optimized formulation. RESULTS The results showed that the formulation comprised of 10% xylitol, 10% mannitol and 80% microcrystalline cellulose demonstrated the fastest disintegration time (1.77 ± 0.119 min) and sufficient hardness (3.521 ± 0.143 kg) compared to the other formulations. Furthermore, the drug was uniformly distributed within the tablets and fully released within 15 min. CONCLUSION Therefore, the developed co-processed excipients show great potential in enhancing the functionalities of ODTs, offering a promising solution to improve the overall performance and usability of ODTs in various therapeutic applications.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - A B M Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Choon Fu Goh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Phei Er Kee
- Centre for Research and Graduate Studies, University of Cyberjaya, Cyberjaya, Malaysia
| | - Hui Suan Ng
- UCSI-Cheras Low Carbon Innovation Hub Research Consortium, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Malaysia
| |
Collapse
|
14
|
Ferdoush S, Kzam SB, Martins PHC, Dewanckele J, Gonzalez M. Fast time-resolved micro-CT imaging of pharmaceutical tablets: Insights into water uptake and disintegration. Int J Pharm 2023; 648:123565. [PMID: 37918497 PMCID: PMC10786181 DOI: 10.1016/j.ijpharm.2023.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
We use dynamic micro-computed tomography (micro-CT) with a high temporal resolution to visualize water penetration through the porous network of immediate-release pharmaceutical solid tablets and characterize dynamic swelling and disintegration mechanisms. We process the micro-CT images using two theoretical scenarios that reflect different paths of pore structure evolution: a scenario where tablet porosity remains constant during the swelling process and a scenario where the tablet porosity progressively diminishes and eventually closes during the swelling process. We calculate the time evolution of the volume of water absorbed by the tablet and, specifically, absorbed by the excipients and the pore structure, as well as the formation and evolution of cracks. In turn, the three-dimensional disintegration pattern of the tablets is reconstructed. Restricting attention to the limiting scenario where tablet porosity is assumed fixed during the swelling process, we couple liquid penetration due to capillary pressure described by the Lucas-Washburn theory with the first-order swelling kinetics of the excipients to provide a physical interpretation of the experimental observations. We estimate model parameters that are in agreement with values reported in the literature, and we demonstrate that water penetration is dominated by intra-particle porosity rather than inter-particle porosity.
Collapse
Affiliation(s)
- Shumaiya Ferdoush
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Bu Kzam
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Pedro H C Martins
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Thio DR, Aguilera Q, Yeoh JKX, Sia Heng PW, Chan LW. An evaluation of microcrystalline cellulose attributes affecting compaction-induced pellet coat damage through a multi-faceted analysis. Int J Pharm 2023; 643:123245. [PMID: 37467819 DOI: 10.1016/j.ijpharm.2023.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Pellet coat damage in multi-unit pellet system (MUPS) tablets has previously been studied and addressed with limited success. The effects of lactose filler material attributes on pellet coat damage have been relatively well-studied but a similar understanding of microcrystalline cellulose (MCC) is lacking notwithstanding its high cushioning potential. Hence, the relationships between MCC attributes and pellet coat damage were investigated. Single pellet in minitablets (SPIMs) were used to isolate pellet-filler effects and reveal the under-unexplored impact of risk factors found in MUPS tablets. MUPS tablets and SPIMs were prepared with various grades of MCC and pellets with an ethylcellulose or acrylic coat at various compaction pressures. Subsequently, the extent of pellet coat damage was determined by dissolution test and quantified using two indicators to differentiate the nature of the damage. A multi-faceted analytical approach incorporated linear regression, correlations and a classification and regression tree algorithm and evaluated how MCC attributes, such as flowability, particle size and plastic deformability, exert various influences on the extent of ethylcellulose and acrylic pellet coat damage. This analysis improved the understanding of the different mechanisms by which pellet coat damage to these two polymer types occurs which can help enhance future pellet coat damage mitigation strategies.
Collapse
Affiliation(s)
- Daniel Robin Thio
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Quinton Aguilera
- Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6DE, UK
| | - Janice Ke Xin Yeoh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
16
|
Ozon EA, Iuga IDM, Mititelu M, Musuc AM, Manolescu BN, Petrescu S, Cusu JP, Rusu A, Surdu VA, Oprea E, Neacșu SM, Karampelas O, Elian V. Pharmacotechnical, Physico-Chemical, and Antioxidant Evaluation of Newly Developed Capsule Formulations. Int J Mol Sci 2023; 24:11426. [PMID: 37511185 PMCID: PMC10379583 DOI: 10.3390/ijms241411426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The excess of free radicals causes numerous imbalances in the body that lead to premature aging, the degradation of internal structures, and the appearance of numerous pathologies responsible for the increased risk of premature death. The present work aims to evaluate the physical, chemical, pharmacotechnical, and antioxidant activity of newly achieved capsule formulations. These two formulations were F1a.i., which contains melatonin:biotin:coenzyme Q10 (weight ratio of 1:2:60), and F2a.i., which contains quercetin:resveratrol:biotin:coenzyme Q10 (weight ratio of 10:10:1:10). The adequate selection of the excipient types and amounts for final capsule formulations (F1c.c., F2c.c.) was based on preformulation studies performed on the powders containing active ingredients. The antioxidant activity assessed using three methods (ABTS, DPPH, and FRAP) compared with acid ascorbic as a positive control demonstrated that the F2c.c. formulation possesses the strongest antioxidant capacity. The results confirmed the suitable formulation and the accurate selection of the types and amounts of active ingredients, as well as the auxiliary excipients used in newly developed capsule formulations as supplements with an excellent antioxidant effect on the human body.
Collapse
Affiliation(s)
- Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Bogdan Nicolae Manolescu
- "C. Nenitescu" Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, University "Politehnica" of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Simona Petrescu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jeanina Pandele Cusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| | | | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases "Carol Davila" University of Medicine and Pharmacy, INDNBM N.C. Paulescu, 5-7 Ion Movila Street, 030167 Bucharest, Romania
| |
Collapse
|
17
|
Bordawekar MS, Pudipeddi M, Ruegger CE, Dhareshwar SS. Formulation Intervention to Overcome Decreased Kinetic Solubility of a Low T g Amorphous Drug. AAPS PharmSciTech 2023; 24:149. [PMID: 37420118 DOI: 10.1208/s12249-023-02601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/30/2023] [Indexed: 07/09/2023] Open
Abstract
This technical note investigated the loss of dissolution rate during accelerated stability studies with a dry blend capsule formulation containing an amorphous salt of drug NVS-1 (Tg 76°C). After 6 m at 40°C/75%RH, dissolution of NVS-1 was ≤40% of initial value. Scanning electron microscope characterization of the undissolved capsule contents from samples stored at 50°C/75%RH for 3 weeks showed agglomeration with a distinct "melt and fuse" morphology of particles. At elevated temperature and humidity conditions, undesired sintering among the amorphous drug particles was observed. Humidity plasticizes the drug as the stability temperature (T) gets closer to the glass transition temperature (Tg) of the amorphous salt (i.e., smaller Tg-T); a decreased viscosity favors viscoplastic deformation and sintering of drug particles. When moisture is adsorbed onto agglomerated drug particles, partial dissolution of the drug forms a viscous surface layer, further reducing the rate of dissolution media penetration into the bulk solid, hence the slower dissolution rate. Formulation intervention focused on the use of L-HPC and fumed silica as disintegrant and glidant and the removal of the hygroscopic crospovidone. Reformulation improved dissolution performance at short-term accelerated stability conditions of 50°C (± 75%RH); however, sintering to a lesser extent was still observed at high humidity, impacting the dissolution rate. We infer reducing the impact of moisture at high humidity conditions in a formulation with a 34% drug load is challenging. Future formulation efforts will focus on the addition of water scavengers, reducing drug load by ~50% to physically separate drug particles by water-insoluble excipients, and optimizing disintegrant levels.
Collapse
Affiliation(s)
- Mangesh S Bordawekar
- Technical Portfolio and Project Management, Technical Research and Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, 07936, USA
| | - Madhu Pudipeddi
- Technical Research and Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, 07936, USA
- Prelude Therapeutics, 200 Powder Mill Road, Wilmington, Delaware, 19803, USA
| | - Colleen E Ruegger
- Technical Portfolio and Project Management, Technical Research and Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, 07936, USA
| | - Sundeep S Dhareshwar
- Global Program Management, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, 07936, USA.
| |
Collapse
|
18
|
José de Alencar Danda L, Christinne Rocha de Medeiros Schver G, Lamartine Soares Sobrinho J, Lee PI, Felts de La Roca Soares M. Amorphous solid dispersions in high-swelling, low-substituted hydroxypropyl cellulose for enhancing the delivery of poorly soluble drugs. Int J Pharm 2023:123122. [PMID: 37307959 DOI: 10.1016/j.ijpharm.2023.123122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Amorphous solid dispersions (ASDs) based on water-insoluble hydrophilic polymers can sustain supersaturation in their kinetic solubility profiles (KSPs) compared to soluble carriers. However, in the limit of very high swelling capacity, the achievable extent of drug supersaturation has not been fully examined. This study explores the limiting supersaturation behavior of ASDs of poorly soluble indomethacin (IND) and posaconazole (PCZ) based on a high-swelling excipient, low-substituted hydroxypropyl cellulose (L-HPC). Using IND as a reference, we showed that the rapid initial supersaturation buildup in the KSP of IND ASD can be simulated through sequential IND infusion steps, however at large times the KSP of IND release from ASD appears more sustained than direct IND infusion. This has been attributed to potential trapping of seed crystals generated in the L-HPC gel matrix thus limiting their growth and rate of desupersaturation. Similar result is also expected in PCZ ASD. Furthermore, the current drug loading process for ASD preparation resulted in the agglomeration of L-HPC based ASD particles, producing granules of up to 300-500µm (cf. 20µm individual particle), with distinct kinetic solubility profiles. This feature makes L-HPC particularly suitable as ASD carriers for fine tuning of supersaturation to achieve enhanced bioavailability for poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | - Ping I Lee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | | |
Collapse
|
19
|
Díaz-Torres E, Suárez-González J, Monzón-Rodríguez CN, Santoveña-Estévez A, Fariña JB. Characterization and Validation of a New 3D Printing Ink for Reducing Therapeutic Gap in Pediatrics through Individualized Medicines. Pharmaceutics 2023; 15:1642. [PMID: 37376090 DOI: 10.3390/pharmaceutics15061642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
3D printing technology can be used to develop individualized medicines in hospitals and pharmacies, allowing a high degree of personalization and the possibility to adjust the dose of the API based on the quantity of material extruded. The main goal of incorporating this technology is to have a stock of API-load print cartridges that could be used at different storage times and for different patients. However, it is necessary to study the extrudability, stability, and buildability of these print cartridges during storage time. A paste-like formulation containing hydrochlorothiazide as a model drug was prepared and distributed in five print cartridges, each of which was studied for different storage times (0 h-72 h) and conditions, for repeated use on different days. For each print cartridge, an extrudability analysis was performed, and subsequently, 100 unit forms of 10 mg hydrochlorothiazide were printed. Finally, various dosage units containing different doses were printed, taking into account the optimized printing parameters based on the results of the extrudability analysis carried out previously. An appropriate methodology for the rapid development of appropriate SSE 3DP inks for pediatrics was established and evaluated. The extrudability analysis and several parameters allowed the detection of changes in the mechanical behavior of the printing inks, the pressure interval of the steady flow, and the selection of the volume of ink to be extruded to obtain each of the required doses. The print cartridges were stable for up to 72 h after processing, and orodispersible printlets containing 6 mg to 24 mg of hydrochlorothiazide can be produced using the same print cartridge and during the same printing process with guaranteed content and chemical stability. The proposed workflow for the development of new printing inks containing APIs will allow the optimization of feedstock material and human resources in pharmacy or hospital pharmacy services, thus speeding up their development and reducing costs.
Collapse
Affiliation(s)
- Eduardo Díaz-Torres
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
| | - Javier Suárez-González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - Cecilia N Monzón-Rodríguez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Ana Santoveña-Estévez
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| | - José B Fariña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Campus de Anchieta, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n., 38200 La Laguna, Tenerife, Spain
| |
Collapse
|
20
|
Warnken Z, Trementozzi A, Martins PP, Parkeh J, Koleng JJ, Smyth HDC, Brunaugh A. Development of Low-Cost, Weight-Adjustable Clofazimine Mini-Tablets for Treatment of Tuberculosis in Pediatrics. Eur J Pharm Sci 2023; 187:106470. [PMID: 37207942 DOI: 10.1016/j.ejps.2023.106470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Clofazimine (CFZ) is an important component of the World Health Organization's (WHO) recommended all-oral drug regimen for treatment of multi-drug resistant tuberculosis (MDR-TB). However, the lack of a dividable oral dosage form has limited the use of the drug in pediatric populations, who may require lowering of the dose to reduce the likelihood of adverse drug events. In this study, pediatric-friendly CFZ mini-tablets were prepared from micronized powder via direct compression. Rapid disintegration and maximized dissolution in GI fluids was achieved using an iterative formulation design process. Pharmacokinetic (PK) parameters of the optimized mini-tablets were obtained in Sprague-Dawley rats and compared against an oral suspension of micronized CFZ particles to examine the effect of processing and formulation on the oral absorption of the drug. Differences in maximum concentration and area under the curve between the two formulations were non-significant at the highest dosing level tested. Variability between rats prevented bioequivalence from being determined according to guidelines outlined by the Food and Drug Administration (FDA). These studies provide an important proof-of-concept for an alternative, low-cost formulation and processing approach for the oral delivery of CFZ in manner that is suitable for children as young as 6 months of age.
Collapse
Affiliation(s)
- Zachary Warnken
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712
| | | | | | - Jagruti Parkeh
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712
| | - John J Koleng
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712
| | - Hugh D C Smyth
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712; University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave, Austin, TX, USA, 78712
| | - Ashlee Brunaugh
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712; University of Michigan, College of Pharmacy, Department of Pharmaceutical Sciences, 428 Church St, Ann Arbor, MI, USA, 48109.
| |
Collapse
|
21
|
Lee J, Goodwin DJ, Dhenge RM, Nassar J, Bano G, Zeitler JA. Enhanced in-situ liquid transport investigation setup for pharmaceutical tablet disintegration analysis using terahertz radiation. Int J Pharm 2023; 635:122726. [PMID: 36812951 DOI: 10.1016/j.ijpharm.2023.122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
The disintegration process of pharmaceutical solid dosage forms commences on contact with the dissolution medium and continues with subsequent spontaneous imbibition of the medium in the tablet matrix. Identifying the location of the liquid front in situ during imbibition, therefore, plays a significant role in understanding and modelling the disintegration process. Terahertz pulsed imaging (TPI) technology can be used to investigate this process by its ability to penetrate and identify the liquid front in pharmaceutical tablets. However, previous studies were limited to samples suitable for a flow cell environment, i.e. flat cylindrical disk shapes; thus, most commercial tablets could only be measured with prior destructive sample preparation. This study presents a new experimental setup named open immersion to measure a wide range of pharmaceutical tablets in their intact form. Besides, a series of data processing techniques to extract subtle features of the advancing liquid front are designed and utilised, effectively increasing the maximum thickness of tablets that can be analysed. We used the new method and successfully measured the liquid ingress profiles for a set of oval convex tablets prepared from a complex eroding immediate-release formulation.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, UK
| | - Daniel J Goodwin
- GSK Ware Research and Development, Park Road, SG12 0DP, Ware, UK
| | - Ranjit M Dhenge
- GSK Ware Research and Development, Park Road, SG12 0DP, Ware, UK
| | - Joelle Nassar
- GSK Ware Research and Development, Park Road, SG12 0DP, Ware, UK
| | - Gabriele Bano
- GSK Ware Research and Development, Park Road, SG12 0DP, Ware, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, UK.
| |
Collapse
|
22
|
Scheller L, Bachmann S, Zorn T, Hanio S, Gbureck U, Fatouros D, Pöppler AC, Meinel L. Solid microemulsion preconcentrates on pH responsive metal-organic framework for tableting. Eur J Pharm Biopharm 2023; 186:105-111. [PMID: 36963469 DOI: 10.1016/j.ejpb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Poorly water-soluble drugs are frequently formulated with lipid-based formulations including microemulsions and their preconcentrates. We detailed the solidification of drug-loaded microemulsion preconcentrates with the acid-sensitive metal-organic framework ZIF-8 by X-ray powder diffraction and solid-state nuclear magnetic resonance spectroscopy. Adsorption and desorption dynamics were analyzed by fluorescence measurement, high-performance liquid chromatography, dynamic light scattering and 1H-DOSY experiments using the model compounds Nile Red, Vitamin K1, and Lumefantrine. Preconcentrates and drugs were successfully loaded onto ZIF-8 while preserving its crystal structure. The solid powder was pressable to tablets or 3D-printed into oral dosage forms. At low pH, colloidal solutions readily formed, solubilizing the poorly water-soluble compounds. The use of stimuli-responsive metal organic frameworks as carriers for the oral delivery of lipid-based formulations points towards solid dosage forms readily forming colloidal microemulsions.
Collapse
Affiliation(s)
- Lena Scheller
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Stephanie Bachmann
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Theresa Zorn
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Simon Hanio
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Wuerzburg, Pleicherwall, 2, DE-97070 Wuerzburg, Germany
| | - Dimitrios Fatouros
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Strasse, 2, 97080 Wuerzburg, Germany.
| |
Collapse
|
23
|
Alalaiwe A, Alsenaidy MA, Almalki ZS, Fayed MH. Development and Optimization of Sildenafil Orodispersible Mini-Tablets (ODMTs) for Treatment of Pediatric Pulmonary Hypertension Using Response Surface Methodology. Pharmaceutics 2023; 15:pharmaceutics15030923. [PMID: 36986784 PMCID: PMC10056513 DOI: 10.3390/pharmaceutics15030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The availability of age-appropriate oral dosage forms for pediatric patients has remained a challenge. Orodispersible mini-tablets (ODMTs) are a promising delivery system for pediatric patients. The purpose of this work was the development and optimization of sildenafil ODMTs as a new dosage form for the treatment of pulmonary hypertension in children using a design-of-experiment (DoE) approach. A two-factor, three levels (32) full-factorial design was employed to obtain the optimized formulation. The levels of microcrystalline cellulose (MCC; 10–40% w/w) and partially pre-gelatinized starch (PPGS; 2–10% w/w) were set as independent formulation variables. In addition, mechanical strength, disintegration time (DT), and percent drug release were set as critical quality attributes (CQAs) of sildenafil ODMTs. Further, formulation variables were optimized using the desirability function. ANOVA analysis proved that MCC and PPGS had a significant (p < 0.05) impact on CQAs of sildenafil ODMTs with a pronounced influence of PPGS. The optimized formulation was achieved at low (10% w/w) and high (10% w/w) levels of MCC and PPGS, respectively. The optimized sildenafil ODMTs showed crushing strength of 4.72 ± 0.34 KP, friability of 0.71 ± 0.04%, DT of 39.11 ± 1.03 s, and sildenafil release of 86.21 ± 2.41% after 30 min that achieves the USP acceptance criteria for ODMTs. Validation experiments have shown that the acceptable prediction error (<5%) indicated the robustness of the generated design. In conclusion, sildenafil ODMTs have been developed as a suitable oral formulation for the treatment of pediatric pulmonary hypertension using the fluid bed granulation process and the DoE approach.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ziyad S. Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohamed H. Fayed
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
- Correspondence:
| |
Collapse
|
24
|
Ahmed TA, Alotaibi HA, Almehmady AM, Safo MK, El-Say KM. Influences of Glimepiride Self-Nanoemulsifying Drug Delivery System Loaded Liquisolid Tablets on the Hypoglycemic Activity and Pancreatic Histopathological Changes in Streptozotocin-Induced Hyperglycemic Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223966. [PMID: 36432252 PMCID: PMC9695338 DOI: 10.3390/nano12223966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
The development of an oral anti-diabetic medication characterized by enhanced hypoglycemic activity is in high demand. The goal was to study the hypoglycemic activity and pancreatic histopathology after the black-seed-based self-nanoemulsifying drug delivery system (SNEDDS) loaded with glimepiride liquisolid tablets to diabetic rats. The solubility of glimepiride in various vehicles was investigated. An optimization SNEDDS formulation was developed using a mixture of the experimental design approach. Box-Behnken design (BBD) was used to develop glimepiride liquisolid tablets utilizing Avicel PH 101 and Neusilin as a carrier mixture and FujiSil as a coating material. The quality attributes of the prepared tablets were assessed. Following the administration of the optimized tablets to diabetic rats, the pharmacodynamics and histopathological changes were investigated and compared to a commercial drug product. Results revealed that the optimized SNEDDS formulation that contains 15.43% w/w black seed oil, 40% w/w Tween 80, and 44.57% w/w Polyethylene glycol 400 showed an average droplet size of 34.64 ± 2.01 nm and a drug load of 36.67 ± 3.13 mg/mL. The optimized tablet formulation contained 0.31% Avicel in the carrier mixture, a 14.99 excipient ratio, and 8% superdisintegrant. Pre- and post-compression properties were satisfactory, and the optimized glimepiride liquisolid tablet showed a two-fold increase in dissolution. The optimized tablet demonstrated superior pharmacodynamics. The pancreatic tissues of the group treated with the optimized tablet displayed normal histological structure. The obtained data offered a commercially viable alternative for manufacturing solid dosage forms containing water-insoluble drugs, but additional clinical research is required.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-2-640-0000 (ext. 22250)
| | - Hanadi A. Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Parameter optimization in a continuous direct compression process of commercially batch-produced bisoprolol tablets. Int J Pharm 2022; 628:122355. [DOI: 10.1016/j.ijpharm.2022.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
26
|
Janssen PH, Berardi A, Kok JH, Thornton AW, Dickhoff BH. The impact of lactose type on disintegration: An integral study on porosity and polymorphism. Eur J Pharm Biopharm 2022; 180:251-259. [DOI: 10.1016/j.ejpb.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
|
27
|
Iwata H, Hayashi Y, Hasegawa A, Terayama K, Okuno Y. Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning. Int J Pharm X 2022; 4:100135. [PMID: 36325273 PMCID: PMC9619299 DOI: 10.1016/j.ijpx.2022.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Convolutional Neural Networks (CNNs) are image analysis techniques that have been applied to image classification in various fields. In this study, we applied a CNN to classify scanning electron microscopy (SEM) images of pharmaceutical raw material powders to determine if a CNN can evaluate particle morphology. We tested 10 pharmaceutical excipients with widely different particle morphologies. SEM images for each excipient were acquired and divided into training, validation, and test sets. Classification models were constructed by applying transfer learning to pretrained CNN models such as VGG16 and ResNet50. The results of a 5-fold cross-validation showed that the classification accuracy of the CNN model was sufficiently high using either pretrained model and that the type of excipient could be classified with high accuracy. The results suggest that the CNN model can detect differences in particle morphology, such as particle size, shape, and surface condition. By applying Grad-CAM to the constructed CNN model, we succeeded in finding particularly important regions in the particle image of the excipients. CNNs have been found to have the potential to be applied to the identification and characterization of raw material powders for pharmaceutical development.
Collapse
Affiliation(s)
- Hiroaki Iwata
- Graduate School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshihiro Hayashi
- Graduate School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan,Pharmaceutical Technology Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1, Shimoumezawa Namerikawa-shi, Toyama 936-0857, Japan,Correspondence to: Y. Hayashi, Pharmaceutical Technology Division, Nichi-Iko Pharmaceutical Co., Ltd.; 205-1, Shimoumezawa Namerikawa-shi, Toyama 936-0857, Japan.
| | - Aki Hasegawa
- Graduate School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan,RIKEN Center for Computational Science, Kobe 650-0047, Japan,Correspondence to: Y. Okuno, Graduate School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
28
|
Fredholt F, Di Meo C, Sloth S, Müllertz A, Berthelsen R. Direct visualizing of paracetamol immediate release tablet disintegration in vivo and in vitro. Eur J Pharm Biopharm 2022; 180:63-70. [PMID: 36122785 DOI: 10.1016/j.ejpb.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
The purpose of the present study was to study tablet disintegration by direct visualization, in vivo and in vitro. Based on literature data, a standard conventional paracetamol (CP) tablet, Panodil®, and a rapidly absorbed paracetamol (RP) tablet, Panodil® Zapp, were chosen as model systems to study tablet disintegration in the human stomach. Based on the obtained in vivo results, an in vitro disintegration method was designed to reproduce the visualized disintegration process occurring in the human stomach. For the clinical study, CP and RP tablets fastened to digital endoscopic camera capsules were administered to fasted human volunteers (n=4). The disintegration time and process were visualized by the real time video recordings, using the endoscopic camera capsule. The average disintegration time was found to be 26 ± 13 min and 10 ± 7 min, for CP (n=4) and RP (n=4) tablets, respectively. It was possible to reproduce the in vivo disintegration data in vitro using a USP 2 dissolution apparatus with 250 mL of viscous Fasted State Simulated Gastric Fluid (vFaSSGF*), simulating the rheological profile of human fasted state gastric fluid following administration of a glass of water. The viscosity of the simulated fasted state gastric fluid was found to have a large impact on the disintegration time of the tested immediate release tablets. Therefore, it is recommended to mimic gastric fluid viscosity during in vitro tablet disintegration studies.
Collapse
Affiliation(s)
- Freja Fredholt
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Camilla Di Meo
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stine Sloth
- Gastro Unit, Division of Endoscopy, Borgmester Ib Huuls vej 1, Hospital Herlev, Copenhagen University, DK-2730 Herlev, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Arora S, Sangwan A, Kaur H, Singh J. Simultaneous axial and radial swelling studies from 2D stereozoom images of tablet compacts composed of superdisintegrants. J Microsc 2022; 288:16-27. [PMID: 35919950 DOI: 10.1111/jmi.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Swelling-based disintegration is considered important for drug release from tablets and can be modified with excipients called tablet disintegrants. Swelling of tablets occurs axially and radially, and most researchers have observed both these events separately using 2D images. In the current work, we have studied these events simultaneously instead of separately under a stereo microscope for tablet compacts composed of high proportions of disintegrants (sodium starch glycolate, SSG; and croscarmellose sodium, CCS), using water as the disintegrating medium. A hypothesis is proposed for the measurements of radial and axial swellings from a single 2D image, as horizontal lengths based on the Hipparchus trigonometric function for a right-angle triangle. All predicted axial and radial lengths (as per proposed hypothesis) are found validated with respect to vernier caliper measurements for dry-tablet compacts with a minute error of 3.809%. The axial swelling is ∼5-folds more than that of radial swelling on the basis of normalized lengths. No particular trend can be spotted exclusively in favor of a superdisintegrant, however, the CCS-based tablets have shown higher swelling as compared to SSG-based tablets. From the current studies, it is evident that both axial and radial dimensions are obtainable from single 2D stereozoom images and can be successfully implemented for swelling studies of tablets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sagar Arora
- Post-Graduate Institute of Pharmaceutical Sciences (formerly College of Pharmacy), University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Aarti Sangwan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Harmeet Kaur
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jasbir Singh
- Post-Graduate Institute of Pharmaceutical Sciences (formerly College of Pharmacy), University of Health Sciences, Rohtak, Haryana, 124001, India
| |
Collapse
|
30
|
Suzuki K, Yoshiki M, Nishikawa N, Harada T, Fujita Y, Terui Y, Yoshida T, Tomita T. Visualizing fluid transport inside orally disintegrating tablets and changes in tablets using real-time X-ray radiography and X-ray computed tomography. Drug Dev Ind Pharm 2022; 48:301-309. [PMID: 35913028 DOI: 10.1080/03639045.2022.2108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the disintegration of wet- and dry-compressed orally disintegrating (OD) tablets, with synchrotron radiation as the X-ray source. SIGNIFICANCE Pharmaceutical tablets are vital for treatment of various diseases. Therefore, they are constantly developed to ensure desirable characteristics. In particular, OD tablets need to disintegrate immediately after absorbing saliva. How these tablets absorb saliva is key to enhancing rapid product development. Recently, absorption processes have been investigated using various non-invasive techniques, including X-ray radiography and X-ray computed tomography. However, X-ray radiography studies on how water without a contrast agent is absorbed, moves, and causes a tablet to swell are scarce. Use of a contrast agent is associated with some shortcomings, including complex data analysis in some instances, alterations in the viscosity of water, and potential influence on fluid transport inside the tablet, thus possibly affecting the disintegration process. METHODS Real-time X-ray radiography was used to monitor the disintegration of various tablets, while X-ray computed tomography and software were used to create 3D images. RESULTS We demonstrated how pure water penetrated the wet-compressed tablet faster than inside the dry-compressed tablet, and how the latter swelled more. X-ray computed tomography showed the presence of voids in the tablets following water absorption. CONCLUSION Our methods are promising for non-destructive fluid absorption and transport investigations inside OD tablets.
Collapse
Affiliation(s)
- Kazuhiro Suzuki
- Semiconductor Evaluation Laboratory, Evaluation and Analysis Technology Center, Toshiba Nanoanalysis Corporation; 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki, 212-8583, Japan
| | - Masahiko Yoshiki
- Functional Materials Laboratory, Corporate Research & Development Center, Research & Development Division, Toshiba Corporation; 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki, 212-8582, Japan
| | - Norio Nishikawa
- Semiconductor Evaluation Laboratory, Evaluation and Analysis Technology Center, Toshiba Nanoanalysis Corporation; 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki, 212-8583, Japan
| | - Tsutomu Harada
- Division of Pharmaceutics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University; 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yoshiaki Fujita
- Laboratory of Pharmaceutical Sciences, Department of Drug Information, School of Pharmacy, Showa University; 1-5-8, Hatanodai, Shinagawa-ku, Tokyo,142-8555, Japan
| | - Yuji Terui
- Engineering Planning Department, Planning Division, Toshiba Nanoanalysis Corporation; 8, Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa, 235-8522, Japan
| | - Takayuki Yoshida
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Teikyo Heisei University; 4-21-2, Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| | - Takashi Tomita
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Teikyo Heisei University; 4-21-2, Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| |
Collapse
|
31
|
Sharifi N, Mortazavi SA, Rabbani S, Torshabi M, Talimi R, Haeri A. Fast dissolving nanofibrous mats for diclofenac sodium delivery: Effects of electrospinning polymer and addition of super-disintegrant. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Chaiya P, Okonogi S, Phaechamud T. Stereomicroscope with Imaging Analysis: A Versatile Tool for Wetting, Gel Formation and Erosion Rate Determinations of Eutectic Effervescent Tablet. Pharmaceutics 2022; 14:1280. [PMID: 35745851 PMCID: PMC9228642 DOI: 10.3390/pharmaceutics14061280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Wettability, gel formation and erosion behaviors could influence the drug release pattern of solid dosage forms. Typically, these parameters are evaluated using a variety of techniques. Nonetheless, there has been no previous research on versatile tool development for evaluating several tablet characteristics with a single tool. The aim of this study was to develop the versatile tool for measuring various physical properties of eutectic effervescent tablets and also investigate the relationship between these parameters with parameters from drug dissolution. Ibuprofen (IBU)-poloxamer 407 (P407) eutectic effervescent tablets were fabricated with a direct compression method. Their wetting properties, gel formation and erosion behaviors were investigated using a stereomicroscope with imaging analysis in terms of the liquid penetration distance, gel thickness and erosion boundary diameter, respectively. In addition, the dissolution rate (k) and disintegration time of eutectic effervescent tablets in 0.1 N HCl buffer pH 1.2 were also determined. Incorporation of P407 into the IBU tablet improved the tablet wetting properties with increasing liquid penetration distance under stereoscope. CO2 liberation from effervescent agents promoted tablet surface roughness from matrix erosion. The relationship between observed physical properties and disintegration and dissolution parameters suggested that the combination of erosion by effervescent agents and gel formation by P407 had a potential influence on dissolution enhancement of the formulation. Therefore, a developed stereomicroscope with an imaging analysis technique was exhibited as an alternative versatile tool for determining the wetting properties, gel formation and erosion behaviors of pharmaceutical solid dosage forms.
Collapse
Affiliation(s)
- Pornsit Chaiya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Siriporn Okonogi
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Phaechamud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
33
|
Wu JX, Balantic E, van den Berg F, Rantanen J, Nissen B, Friderichsen AV. A generalized image analytical algorithm for investigating tablet disintegration. Int J Pharm 2022; 623:121847. [PMID: 35643346 DOI: 10.1016/j.ijpharm.2022.121847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
Commonly used methods for analyzing tablet disintegration are based on visual observations and can thus be user-dependent. To address this, a generally applicable image analytical algorithm has been developed for machine vision-based quantification of tablet disintegration. The algorithm has been tested with a conventional immediate release tablet, as well as model compacts disintegrating mainly through erosion, and finally, with a polymeric slow-release system. Despite differences in disintegration mechanisms between these compacts, the developed image analytical algorithm demonstrated its general applicability through quantifying the extent of disintegration without adaptation of image analytical parameters. The reproducibility of the approach was estimated with commercial tablets, and further, it could differentiate a range of different model compacts. The developed image analytical algorithm mimics the human decision-making processes and the current experience-based visual evaluation of disintegration time. In doing so the algorithmic method allows a user-independent approach for development of the optimal tablet formulation as well as gaining an understanding on how the selection of excipients and manufacturing processes ultimately influences tablet disintegration.
Collapse
Affiliation(s)
- Jian X Wu
- Oral Delivery Technologies, Research & Early Development, Novo Nordisk A/S, Denmark.
| | - Emma Balantic
- Oral Formulation Research, Research & Early Development, Novo Nordisk A/S, Denmark
| | - Frans van den Berg
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Birgitte Nissen
- Oral Formulation Research, Research & Early Development, Novo Nordisk A/S, Denmark
| | | |
Collapse
|
34
|
Pettinau F, Manca I, Manca I, Pittau B. Rapid Approach for Pharmaceutical Quality Evaluation and Comparison. ChemistrySelect 2022. [DOI: 10.1002/slct.202200712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesca Pettinau
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Barbara Pittau
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| |
Collapse
|
35
|
Three-Dimensional Printing of a Container Tablet: A New Paradigm for Multi-Drug-Containing Bioactive Self-Nanoemulsifying Drug-Delivery Systems (Bio-SNEDDSs). Pharmaceutics 2022; 14:pharmaceutics14051082. [PMID: 35631668 PMCID: PMC9147480 DOI: 10.3390/pharmaceutics14051082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
This research demonstrates the use of fused deposition modeling (FDM) 3D printing to control the delivery of multiple drugs containing bioactive self-nano emulsifying drug-delivery systems (SNEDDSs). Around two-thirds of the new chemical entities being introduced in the market are associated with some inherent issues, such as poor solubility and high lipophilicity. SNEDDSs provide for an innovative and easy way to develop a delivery platform for such drugs. Combining this platform with FDM 3D printing would further aid in developing new strategies for delivering poorly soluble drugs and personalized drug-delivery systems with added therapeutic benefits. This study evaluates the performance of a 3D-printed container system containing curcumin (CUR)- and lansoprazole (LNS)-loaded SNEDDS. The SNEDDS showed 50% antioxidant activity (IC50) at concentrations of around 330.1 µg/mL and 393.3 µg/mL in the DPPH and ABTS radical scavenging assay, respectively. These SNEDDSs were loaded with no degradation and leakage from the 3D-printed container. We were able to delay the release of the SNEDDS from the hollow prints while controlling the print wall thickness to achieve lag phases of 30 min and 60 min before the release from the 0.4 mm and 1 mm wall thicknesses, respectively. Combining these two innovative drug-delivery strategies demonstrates a novel option for tackling the problems associated with multi-drug delivery and delivery of drugs susceptible to degradation in, i.e., gastric pH for targeting disease conditions throughout the gastrointestinal tract (GIT). It is also envisaged that such delivery systems reported herein can be an ideal solution to deliver many challenging molecules, such as biologics, orally or near the target site in the future, thus opening a new paradigm for multi-drug-delivery systems.
Collapse
|
36
|
Technical insight into potential functional-related characteristics (FRCs) of sodium starch glycolate, croscarmellose sodium and crospovidone. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
|
38
|
Floryanzia S, Ramesh P, Mills M, Kulkarni S, Chen G, Shah P, Lavrich D. Disintegration Testing Augmented by Computer Vision Technology. Int J Pharm 2022; 619:121668. [PMID: 35304245 DOI: 10.1016/j.ijpharm.2022.121668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023]
Abstract
Oral solid dosage forms, specifically immediate release tablets, are prevalent in the pharmaceutical industry. Disintegration testing is often the first step of commercialization and large-scale production of these dosage forms. Current disintegration testing in the pharmaceutical industry, according to United States Pharmacopeia (USP) chapter <701>, only gives information about the duration of the tablet disintegration process. This information is subjective, variable, and prone to human error due to manual or physical data collection methods via the human eye or contact disks. To lessen the data integrity risk associated with this process, efforts have been made to automate the analysis of the disintegration process using digital lens and other imaging technologies. This would provide a non-invasive method to quantitatively determine disintegration time through computer algorithms. The main challenges associated with developing such a system involve visualization of tablet pieces through cloudy and turbid liquid. The Computer Vision for Disintegration (CVD) system has been developed to be used along with traditional pharmaceutical disintegration testing devices to monitor tablet pieces and distinguish them from the surrounding liquid. The software written for CVD utilizes data captured by cameras or other lenses then uses mobile SSD and CNN, with an OpenCV and FRCNN machine learning model, to analyze and interpreted the data. This technology is capable of consistently identifying tablets with ≥ 99.6% accuracy. Not only is the data produced by CVD more reliable, but it opens the possibility of a deeper understanding of disintegration rates and mechanisms in addition to duration.
Collapse
Affiliation(s)
- Sydney Floryanzia
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, USA; North Carolina State University, Raleigh, NC 27695
| | - Preethi Ramesh
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, USA; Syracuse University, Syracuse, NY 13244
| | - Madeline Mills
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, USA; Purdue University, West Lafayette, IN 47907
| | - Sanjana Kulkarni
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, USA; California Institute of Technology, Pasadena, CA 91125
| | - Grace Chen
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, USA.
| | - Prashant Shah
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, USA
| | - David Lavrich
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA, USA
| |
Collapse
|
39
|
Investigation of polyvinyl alcohol-polyethylene glycol graft copolymer as an advanced functional polymer in the development of perampanel orodispersible film. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Tablet Disintegration and Dispersion under In Vivo-like Hydrodynamic Conditions. Pharmaceutics 2022; 14:pharmaceutics14010208. [PMID: 35057103 PMCID: PMC8779444 DOI: 10.3390/pharmaceutics14010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Disintegration and dispersion are functional properties of tablets relevant for the desired API release. The standard disintegration test (SDT) described in different pharmacopoeias provides only limited information on these complex processes. It is considered not to be comparable to the biorelevant conditions due to the frequent occurrence of high hydrodynamic forces, among other reasons. In this study, 3D tomographic laser-induced fluorescence imaging (3D Tomo-LIF) is applied to analyse tablet disintegration and dispersion. Disintegration time (DT) and time-resolved particle size distribution in close proximity to the tablet are determined in a continuously operated flow channel, adjustable to very low fluid velocities. A case study on tablets of different porosity, which are composed of pharmaceutical polymers labelled with a fluorescent dye, a filler, and disintegrants, is presented to demonstrate the functionality and precision of the novel method. DT results from 3D Tomo-LIF are compared with results from the SDT, confirming the analytical limitations of the pharmacopoeial disintegration test. Results from the 3D Tomo-LIF method proved a strong impact of fluid velocity on disintegration and dispersion. Generally, shorter DTs were determined when cross-linked sodium carboxymethly cellulose (NaCMCXL) was used as disintegrant compared to polyvinyl polypyrrolidone (PVPP). Tablets containing Kollidon VA64 were found to disintegrate by surface erosion. The novel method provides an in-depth understanding of the functional behaviour of the tablet material, composition and structural properties under in vivo-like hydrodynamic forces regarding disintegration and the temporal progress of dispersion. We consider the 3D Tomo-LIF in vitro method to be of improved biorelevance in terms of hydrodynamic conditions in the human stomach.
Collapse
|
41
|
Ruhil S, Dahiya M, Kaur H, Singh J. New insights into the disintegration mechanism and disintegration profiling of rapidly disintegrating tablets (RDTs) by thermal imaging. Int J Pharm 2022; 611:121283. [PMID: 34775042 DOI: 10.1016/j.ijpharm.2021.121283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022]
Abstract
In current studies, the disintegration process of tablets has been studied by thermal imaging. The study covers two major aspects; first, new revelations in the mechanism of tablet disintegration, and second, the development of disintegration test as a multi-point test by new thermometric and non-thermometric methods. The study has been carried out on fexofenadine rapidly disintegrating tablets (FEX RDTs) in a dark room cabinet fitted with a Fluke thermal imager and using water as the disintegration medium. The studies exhibit the existence of endothermic peaks during the early penetration of water in FEX RDTs. These endotherms are prominent at the starting point when the disintegration has just started, or the tablet has been just exposed to the water. Such endotherms have not been reported earlier for tablets and can be considered as a part of the wicking mechanism during disintegration. In later stages, when the water has completely wet the tablet, the endotherms are superimposed by exotherms. The endotherms or exotherms have also been used as a measurement of disintegration in the form of a new thermometric parameter, "area under temperature curve" (AUTC). Non-thermometric disintegration profiling by residual and subtraction methods is also performed. Among these, disintegration by the residual method, i.e., disintegration (residual) is newly introduced. In the end, the principal component analysis (PCA) describes the relationship between various disintegration methods, particle size distribution, and dissolution. PCA reveals that AUTC is the best method for studying the disintegration behavior of FEX RDTs.
Collapse
Affiliation(s)
- Sarda Ruhil
- Post-Graduate Institute of Pharmaceutical Sciences (formerly College of Pharmacy), University of Health Sciences, Rohtak 124001, Haryana, India
| | - Monika Dahiya
- Post-Graduate Institute of Pharmaceutical Sciences (formerly College of Pharmacy), University of Health Sciences, Rohtak 124001, Haryana, India
| | - Harmeet Kaur
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Jasbir Singh
- Post-Graduate Institute of Pharmaceutical Sciences (formerly College of Pharmacy), University of Health Sciences, Rohtak 124001, Haryana, India.
| |
Collapse
|
42
|
Okekunle MO, Akin-Ajani OD, Ekpukpon BL, Odeku OA, Olu-Owolabi BI, Adebowale KO. Intra and Extra-granular Disintegrant Properties of Modified Underutilised Red Lima Bean Starch in Paracetamol Tablet Formulation. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Apeji YE, Ariko NA, Olayemi OJ, Olowosulu AK, Oyi AR. Optimization of the Extragranular Excipient Composition of Paracetamol Tablet formulation using the Quality by Design Approach. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
44
|
Anuschek M, Bawuah P, Zeitler JA. Terahertz time-domain spectroscopy for powder compact porosity and pore shape measurements: An error analysis of the anisotropic bruggeman model. Int J Pharm X 2021; 3:100079. [PMID: 34027385 PMCID: PMC8120941 DOI: 10.1016/j.ijpx.2021.100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
Terahertz time-domain spectroscopy (THz-TDS) is a novel technique which has been applied for pore structure analysis and porosity measurements. For this, mainly the anisotropic Bruggeman (AB-EMA) model is applied to correlate the effective refractive index (n eff) of a tablet and the porosity as well as to evaluate the pore shape based on the depolarisation factor L. This paper investigates possible error sources of the AB-EMA for THz-TDS based tablet analysis. The effect of absorption and tablet anisotropy - changes of pore shape with porosity and density distribution - have been investigated. The results suggest that high tablet absorption has a negligible effect on the accuracy of the AB-EMA. In regards of tablet anisotropy the accuracy of the porosity determination is not impaired significantly. However, density distribution and variations in the pore shape with porosity resulted in an unreliable extraction of the tablet pore shape. As an extension of the AB-EMA a new concept was introduced to convert the model into bounds for L. This new approach was found useful to investigate tablet pore shape but also the applicability of the AB-EMA for an unknown set of data.
Collapse
Key Words
-
ϵ
˜
eff
, Effective complex dielectric permittivity
-
ϵ
˜
s
, Complex dielectric permittivity of the solid fract
-
n
˜
, Complex refractive index
- AB-EMA, Anisotropic Bruggemen model
- API, Active pharmaceutical ingredient
- Anisotropy
- Bruggeman model
- D, Tablet diameter
- Density distribution
- H, Tablet thickness
- Ibu, Ibuprofen formulation
- L, Depolarisation factor
- L1, Depolarisation factor at the lowest porosity
- Lac, Lactose
- Lfit, Estimation of the depolarisation factor based on a fitting model
- Ll/u, Lower/upper bound of the depolarisation factor
- Lmax/min, Maximal/minimal depolarisation factor in the simulation of a tablet set
- M, Tablet mass
- MCC, Microcrystalline cellulose
- Pharmaceutical tablet
- Pore structure
- RMSE, Root-mean squared error
- THz-TDS, Terahertz time-domain spectroscopy
- Terahertz
- a1, Gradient of the depolarisation factor as a function of porosity
- a2, Y-intercept of the depolarisation factor as a function of porosity
- c, Speed of light
- f, Porosity
- f1, Lowest porosity in a set of tablets
- n, Refractive index
- neff, 1, Effective refractive index at the lowest porosity
- neff, Effective refractive index
- neff, l/u, Lower/upper Wiener bound for neff
- neff, l/u, Lower/upper margin for ns
- ns, Intrinsic refractive index of the solid fraction
- ns, c, ns estimated with accounting for absorption
- ns, fit, Estimation of the intrinsic refractive index based on a fitting model
- p, Polar axis of a spheroid, parallel to the wavevector
- q, r, Equatorial axes of a spheroid, perpendicular to the wavevector
- tablename Str, Starch
- αeff, Effective absorption coefficient
- κ, Extinction coefficient
- κeff, Effective extinction coefficient
Collapse
Affiliation(s)
- Moritz Anuschek
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstraße, Munich, Germany
| | - Prince Bawuah
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| |
Collapse
|
45
|
Hayashi Y, Nakano Y, Marumo Y, Kumada S, Okada K, Onuki Y. Application of machine learning to a material library for modeling of relationships between material properties and tablet properties. Int J Pharm 2021; 609:121158. [PMID: 34624447 DOI: 10.1016/j.ijpharm.2021.121158] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
This study investigates the usefulness of machine learning for modeling complex relationships in a material library. We tested 81 types of active pharmaceutical ingredients (APIs) and their tablets to construct the library, which included the following variables: 20 types of API material properties, one type of process parameter (three levels of compression pressure), and two types of tablet properties (tensile strength (TS) and disintegration time (DT)). The machine learning algorithms boosted tree (BT) and random forest (RF) were applied to analysis of our material library to model the relationships between input variables (material properties and compression pressure) and output variables (TS and DT). The calculated BT and RF models achieved higher performance statistics compared with a conventional modeling method (i.e., partial least squares regression), and revealed the material properties that strongly influence TS and DT. For TS, true density, the tenth percentile of the cumulative percentage size distribution, loss on drying, and compression pressure were of high relative importance. For DT, total surface energy, water absorption rate, polar surface energy, and hygroscopicity had significant effects. Thus, we demonstrate that BT and RF can be used to model complex relationships and clarify important material properties in a material library.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Pharmaceutical Technology Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1, Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan; Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Yuri Nakano
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| | - Yuki Marumo
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| | - Shungo Kumada
- Pharmaceutical Technology Division, Nichi-Iko Pharmaceutical Co., Ltd., 205-1, Shimoumezawa, Namerikawa-shi, Toyama 936-0857, Japan
| | - Kotaro Okada
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| | - Yoshinori Onuki
- Department of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
| |
Collapse
|
46
|
Yarangsee C, Wattanaarsakit P, Sirithunyalug J, Leesawat P. Particle Engineering of Chitosan and Kaolin Composite as a Novel Tablet Excipient by Nanoparticles Formation and Co-Processing. Pharmaceutics 2021; 13:pharmaceutics13111844. [PMID: 34834259 PMCID: PMC8618914 DOI: 10.3390/pharmaceutics13111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Chitosan is not a common excipient for direct compression due to poor flowability and inadequate compressibility. Co-processing of chitosan and kaolin is a challenging method to overcome the limitations of the individual excipients. The purpose of the present study was to develop co-processed chitosan–kaolin by the spray drying technique (rotary atomizer spray dryer) and to characterize the excipient properties. The formation of chitosan nanoparticles was the major factor for desirable tablet hardness. The ratio of chitosan/tripolyphosphate of 10:1 and 20:1 had a significant effect on hardness. The successful development of co-processed chitosan–kaolin as a novel tablet excipient was obtained from a feed formulation composed of chitosan and kaolin at a ratio of 55:45 and the optimum chitosan/tripolyphosphate ratio of 20:1. Co-processing altered the physical properties of co-processed chitosan–kaolin in such a way that it enhanced the flowability and tableting performance compared to the physical mixture.
Collapse
Affiliation(s)
- Chonwipa Yarangsee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.Y.); (J.S.)
| | - Phanphen Wattanaarsakit
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.Y.); (J.S.)
| | - Phuriwat Leesawat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.Y.); (J.S.)
- Correspondence: ; Tel.: +66-53-944342
| |
Collapse
|
47
|
Terukina T, Takizawa T, Iioka S, Suzuki F, Kanazawa T, Kondo H. Characterization of the viscoelasticity of disintegrants by dynamic rheological analysis. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Efficient development of sorafenib tablets with improved oral bioavailability enabled by coprecipitated amorphous solid dispersion. Int J Pharm 2021; 610:121216. [PMID: 34688849 DOI: 10.1016/j.ijpharm.2021.121216] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022]
Abstract
An amorphous solid dispersion (ASD) of sorafenib (SOR) in hydroxypropyl methylcellulose acetate succinate (HPMC-AS), prepared by coprecipitation, was used to develop an immediate release tablet with improved oral bioavailability. An ASD of 40% drug loading with HPMC-AS (M grade), which exhibited superior physical stability and enhanced dissolution, was selected for tablet development. Systematic characterization of powder properties of the ASD led to the choice of the dry granulation process to overcome poor flowability of the ASD. The designed tablet formulation was evaluated using a material-sparing and expedited approach to optimize compaction conditions for manufacturing ASD tablets with low friability and rapid disintegration. The resulting SOR ASD tablets exhibited approximately 50% higher relative bioavailability in dogs than the marketed SOR tablet product, Nexavar®.
Collapse
|
49
|
An ultrasonographic assisted investigation for the enhancement of duodenal/cecal motility of mosapride through a surfactant-based triple solid dispersion: In-vitro, in-vivo assessment of tablet formulation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Suzuki N, Fukui K, Otaka K, Suzuki T, Fukami T. Monitoring of Cocrystal Dissociation during the Wet Granulation Process in the Presence of Disintegrants by Using Low-Frequency Raman Spectroscopy. Chem Pharm Bull (Tokyo) 2021; 69:877-885. [PMID: 34470952 DOI: 10.1248/cpb.c21-00302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the effect of three coformers and five disintegrants in the granulation formulation on the dissociation of cocrystal during the granulation process by monitoring wet granulation with probe-type low-frequency Raman (LF-Raman) spectroscopy. As model cocrystals, paracetamol (APAP)-oxalic acid (OXA), APAP-maleic acid (MLA), and APAP-trimethylglycine (TMG) were used. The monitoring of the granulation recipe containing cocrystals during wet granulation was performed over time with high-performance LF-Raman spectrometry and the dissociation rate was calculated from the results of multivariate analysis of LF-Raman spectra. The dissociation rate decreased in the order of APAP-TMG, APAP-OXA, and APAP-MLA, showing the same order as observed in Powder X-ray diffraction measurements. Furthermore, to compare the effect of disintegrants on the dissociation rate of APAP-OXA, LF-Raman monitoring was performed for the granulation recipes containing five typical disintegrants (two low-substitution hydroxypropyl cellulose (HPC), cornstarch (CSW), carmellose sodium (CMC), and crospovidone (CRP)). The dissociation rate of APAP-OXA decreased in the order of CSW, HPCs, CMC, and CRP. This difference in the dissociation rate of APAP-OXA was thought to be due to the disintegration mechanism of the disintegrants and the water absorption ratio, which was expected to affect the water behavior on the disintegrant surface during wet granulation. These results suggested that probe-type LF-Raman spectroscopy is useful to monitor the dissociation behavior of cocrystals during wet granulation and can compare the relative stability of cocrystal during wet granulation between different formulations.
Collapse
Affiliation(s)
- Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University
| | - Kanako Fukui
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Koki Otaka
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Toyofumi Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| |
Collapse
|