1
|
Rezaei N, Dormiani K, Kiani-Esfahani A, Mirdamadian S, Rahmani M, Jafarpour F, Nasr-Esfahani MH. Characterization and functional evaluation of goat PDX1 regulatory modules through comparative analysis of conserved interspecies homologs. Sci Rep 2024; 14:26755. [PMID: 39500950 PMCID: PMC11538457 DOI: 10.1038/s41598-024-77614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
PDX1 is a crucial transcription factor in pancreas development and mature β-cell function. However, the regulation of PDX1 expression in larger animals mirroring human pancreas morphogenesis and endocrine maturation remains poorly understood. Therefore, we conducted a comparative analysis to characterize regulatory regions of goat PDX1 gene and assessed their transcriptional activity by transient transfection of several transgenic EGFP constructs in β- and non-β cell lines. We recognized several highly conserved regions encompassing the promoter and cis-regulatory elements (Area I-IV) at 5' flanking sequence of the genes. Within the promoter, we identified that a key E-box and nearby CAAT element synergistically drive transcription, constituting the basal promoter of goat PDX1 gene. Furthermore, each recognized regulatory area separately enhances this basal promoter activity in β-cells compared to non-β cells; however, cooperatively, they exhibit a bifunctional regulatory effect on transcription. Additionally, the intact ~ 3 kb upstream region (Area I-III) functions as the most efficient reporter transgene in vitro and shows islet-specific expression in native rat pancreas. Together, our findings suggest that the regulation of goat PDX1 gene is governed by conserved regions similar to other mammals, while both structurally and functionally, these regions exhibit a closer resemblance to those found in humans.
Collapse
Affiliation(s)
- Naeimeh Rezaei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Abbas Kiani-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Mirdamadian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Eliason S, Hong L, Sweat Y, Chalkley C, Cao H, Liu Q, Qi H, Xu H, Zhan F, Amendt BA. Extracellular vesicle expansion of PMIS-miR-210 expression inhibits colorectal tumour growth via apoptosis and an XIST/NME1 regulatory mechanism. Clin Transl Med 2022; 12:e1037. [PMID: 36116139 PMCID: PMC9482803 DOI: 10.1002/ctm2.1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high mortality rate, and therapeutic approaches to treat these cancers are varied and depend on the metabolic state of the tumour. Profiles of CRC tumours have identified several biomarkers, including microRNAs. microRNA-210 (miR-210) levels are directly correlated with CRC survival. miR-210 expression is higher in metastatic colon cancer cells versus non-metastatic and normal colon epithelium. Therefore, efficient methods to inhibit miR-210 expression in CRC may provide new advances in treatments. METHODS Expression of miRs was determined in several metastatic and non-metastatic cell lines. miR-210 expression was inhibited using PMIS-miR-210 in transduced cells, which were transplanted into xenograft mice. In separate experiments, CRC tumours were allowed to grow in xenograft mice and treated with therapeutic injections of PMIS-miR-210. Molecular and biochemical experiments identified several new pathways targeted by miR-210 inhibition. RESULTS miR-210 inhibition can significantly reduce tumour growth of implanted colon cancer cells in xenograft mouse models. The direct administration of PMIS-miR-210 to existing tumours can inhibit tumour growth in both NSG and Foxn1nu/j mouse models and is more efficacious than capecitabine treatments. Tumour cells further transfer the PMIS-miR-210 inhibitor to neighbouring cells by extracellular vesicles to inhibit miR-210 throughout the tumour. miR-210 inhibition activates the cleaved caspase 3 apoptotic pathway to reduce tumour formation. We demonstrate that the long non-coding transcript XIST is regulated by miR-210 correlating with decreased XIST expression in CRC tumours. XIST acts as a competing endogenous RNA for miR-210, which reduces XIST levels and miR-210 inhibition increases XIST transcripts in the nucleus and cytoplasm. The increased expression of NME1 is associated with H3K4me3 and H3K27ac modifications in the NME1 proximal promoter by XIST. CONCLUSION Direct application of the PMIS-miR-210 inhibitor to growing tumours may be an effective colorectal cancer therapeutic.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Liu Hong
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Yan Sweat
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Camille Chalkley
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Huojun Cao
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Qi Liu
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hank Qi
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hongwei Xu
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Fenghuang Zhan
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Brad A. Amendt
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| |
Collapse
|
3
|
Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022; 183:114161. [PMID: 35183657 PMCID: PMC9724629 DOI: 10.1016/j.addr.2022.114161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Electrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production. However, immunogenicity, off-target effects, and low delivery efficiencies slow the progression of gene delivery strategies to clinical settings. The delivery of genetic material from electrospun fibers overcomes such limitations by allowing for localized, tunable delivery of genetic material. However, the process of electrospinning is harsh, and care must be taken to retain genetic material bioactivity. This review presents an up-to-date summary of strategies to incorporate genetic material onto or within electrospun fiber platforms to improve delivery efficiency and enhance the regenerative potential of electrospun fibers for various tissue engineering applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Divya Mohanraj
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Derek W Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
4
|
Andersson KE, Christ GJ, Davies KP, Rovner ES, Melman A. Gene Therapy for Overactive Bladder: A Review of BK-Channel α-Subunit Gene Transfer. Ther Clin Risk Manag 2021; 17:589-599. [PMID: 34113116 PMCID: PMC8187094 DOI: 10.2147/tcrm.s291798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 01/04/2023] Open
Abstract
A need exists for local (ie, bladder-specific) interventions to treat overactive bladder (OAB) with low risk of unwanted postprocedural outcomes. Gene therapy targeted to leverage endogenous physiology in bladder cells may assist in restoring normal cell and organ function. Herein, we review the potential promise of gene therapy for treating OAB, focusing on gene transfer of URO-902, a non-viral naked plasmid DNA expressing the big potassium (BK) channel. We searched PubMed for articles concerning functional aspects of the BK channel and its potential use for gene transfer as local OAB treatment. Results from preclinical, phase 1, and phase 2 studies of URO-902 for erectile dysfunction and phase 1 studies of URO-902 for OAB are included. The BK channel has been extensively studied; however, URO-902 is the first gene therapy used in clinical trials directed toward treating OAB via the BK channel. In both URO-902 studies, there were no serious adverse events considered treatment related and no adverse events leading to early withdrawal. Both studies included secondary efficacy endpoints with promising results suggesting improvement in OAB symptoms, and quality of life, with use of URO-902 versus placebo. Gene therapy involving the BK channel, such as gene transfer with URO-902, has demonstrated promising safety and efficacy results in women with OAB. Findings warrant further investigation of the use of URO-902 for OAB treatment.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - George Joseph Christ
- Department of Biomedical Engineering, University of Virginia Medical School, Charlottesville, VA, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | - Eric S Rovner
- Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| | - Arnold Melman
- Department of Urology, Albert Einstein College of Medicine, Ardsley, NY, USA
| |
Collapse
|
5
|
Feng Z, Lin S, McDonagh A, Yu C. Natural Hydrogels Applied in Photodynamic Therapy. Curr Med Chem 2020; 27:2681-2703. [PMID: 31622196 DOI: 10.2174/0929867326666191016112828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 01/11/2023]
Abstract
Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.
Collapse
Affiliation(s)
- Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiying Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | - Chen Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Yamada Y, Somiya K, Miyauchi A, Osaka H, Harashima H. Validation of a mitochondrial RNA therapeutic strategy using fibroblasts from a Leigh syndrome patient with a mutation in the mitochondrial ND3 gene. Sci Rep 2020; 10:7511. [PMID: 32371897 PMCID: PMC7200808 DOI: 10.1038/s41598-020-64322-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
We report on the validation of a mitochondrial gene therapeutic strategy using fibroblasts from a Leigh syndrome patient by the mitochondrial delivery of therapeutic mRNA. The treatment involves delivering normal ND3 protein-encoding mRNA as a therapeutic RNA to mitochondria of the fibroblasts from a patient with a T10158C mutation in the mtDNA coding the ND3 protein, a component of the mitochondrial respiratory chain complex I. The treatment involved the use of a liposome-based carrier (a MITO-Porter) for delivering therapeutic RNA to mitochondria via membrane fusion. The results confirmed that the mitochondrial transfection of therapeutic RNA by the MITO-Porter system resulted in a decrease in the levels of mutant RNA in mitochondria of diseased cells based on reverse transcription quantitative PCR. An evaluation of mitochondrial respiratory activity by respirometry also showed that transfection using the MITO-Porter resulted in an increase in maximal mitochondrial respiratory activity in the diseased cells.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Kana Somiya
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Akihiko Miyauchi
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
7
|
Yamada Y. [A Nanocarrier System for Mitochondrial Delivery Targeted to a Pancreatic Beta Cell]. YAKUGAKU ZASSHI 2019; 139:41-45. [PMID: 30606927 DOI: 10.1248/yakushi.18-00163-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The destruction of β cells of pancreatic islets results in a reduced level of insulin secretion, thus resulting in the onset of diabetes. Diabetes caused by such a decrease in insulin secretion has been reported to be associated with mitochondrial dysfunction. Because of this, mitochondrial therapy would be expected to be a useful and productive strategy for the treatment of this disease. We previously reported the development of a MITO-Porter, a liposome-based nanocarrier that permits macromolecular cargos to be delivered into mitochondria via membrane fusion. In this presentation, we present our current findings on the development of a mitochondrial nanocarrier system aimed at the development of a novel method for treating and preventing diabetes. The system includes "a nanocarrier system for nucleic acids targeted to pancreatic β cells", and "an in vivo system for the delivery of nucleic acids targeting the pancreas". In this presentation, we propose the use of a "mitochondrial nanocarrier system" as a novel method for the treatment and prevention of diabetes, and discuss the contribution of mitochondrial nanocarrier systems to innovative drug development.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|