1
|
McCartney F, Caisse P, Dumont C, Brayden DJ. Labrafac TM MC60 is an efficacious intestinal permeation enhancer for macromolecules: Comparisons with Labrasol® ALF in ex vivo and in vivo rat studies. Int J Pharm 2024; 661:124353. [PMID: 38909926 DOI: 10.1016/j.ijpharm.2024.124353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Labrafac™ MC60 (glycerol monocaprylocaprate) is a lipid-based excipient used in oral formulations as a solubiliser. Due to the high proportions of established permeability enhancers, caprylate (C8) and caprate (C10), in Labrafac™ MC60, we hypothesised that it might behave as an intestinal permeation enhancer. We therefore evaluated this using two paracellular markers (ex vivo) and insulin (in vivo) as model molecules. Ex vivo studies were conducted in isolated muscle-stripped rat colonic mucosae mounted in Ussing chambers. Apical addition of Labrafac™ MC60 (8, 12, and 16 mg/ml) enhanced the apparent permeability coefficients (Papp) of [14C] mannitol and FITC-dextran 4 kDa (FD4) across colonic mucosae. Similar effects were observed in isolated jejunal mucosae, but at higher concentrations (40 mg/ml). The enhancing capacity of Labrafac™ MC60 was transient due to reversibility of reductions in transepithelial electrical resistance (TEER) upon wash-out and effects on fluxes were molecular weight-dependent (MW) as suggested by fluxes of a set of high MW FITC-dextrans. The permeability enhancing effects of Labrafac™ MC60 ex vivo were maintained in the presence of simulated intestinal fluids, FaSSIF and FaSSCoF, in both jejunal and colonic mucosae, respectively. Following intra-intestinal regional instillations to rats, the relative bioavailability of 50 IU/kg insulin ad-mixed with Labrafac™ MC60 was 5 % in jejunum (40 mg/ml) and 6 % in colon (8 mg/ml). When Labrafac™ MC60 was combined with PEG-60 hydrogenated castor oil (1 % v/v), this further increased the bioavailability of insulin to 8 % in jejunum. Absorption enhancement was also maintained in the presence of FaSSIF in jejunal instillations. Histology after 120 min exposure to Labrafac™ MC60 in vivo for both jejunum and colon was similar to untreated control. Labrafac™ MC60 therefore acts as a non-damaging intestinal permeation enhancer for macromolecules and can be considered as another excipient in screening programmes to develop orally administered macromolecules.
Collapse
Affiliation(s)
- Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Camille Dumont
- Gattefossé SAS, 36, Chemin de Genas, Saint-Priest, France
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Maher S, Geoghegan C, Brayden DJ. Safety of surfactant excipients in oral drug formulations. Adv Drug Deliv Rev 2023; 202:115086. [PMID: 37739041 DOI: 10.1016/j.addr.2023.115086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Surfactants are a diverse group of compounds that share the capacity to adsorb at the boundary between distinct phases of matter. They are used as pharmaceutical excipients, food additives, emulsifiers in cosmetics, and as household/industrial detergents. This review outlines the interaction of surfactant-type excipients present in oral pharmaceutical dosage forms with the intestinal epithelium of the gastrointestinal (GI) tract. Many surfactants permitted for human consumption in oral products reduce intestinal epithelial cell viability in vitro and alter barrier integrity in epithelial cell monolayers, isolated GI tissue mucosae, and in animal models. This suggests a degree of mis-match for predicting safety issues in humans from such models. Recent controversial preclinical research also infers that some widely used emulsifiers used in oral products may be linked to ulcerative colitis, some metabolic disorders, and cancers. We review a wide range of surfactant excipients in oral dosage forms regarding their interactions with the GI tract. Safety data is reviewed across in vitro, ex vivo, pre-clinical animal, and human studies. The factors that may mitigate against some of the potentially abrasive effects of surfactants on GI epithelia observed in pre-clinical studies are summarised. We conclude with a perspective on the overall safety of surfactants in oral pharmaceutical dosage forms, which has relevance for delivery system development.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Caroline Geoghegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Spoorthi Shetty S, Halagali P, Johnson AP, Spandana KMA, Gangadharappa HV. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int J Biol Macromol 2023:125114. [PMID: 37263330 DOI: 10.1016/j.ijbiomac.2023.125114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Diabetes Mellitus is characterized by a hyperglycemic condition which can either be caused by the destruction of the beta cells or by the resistance developed against insulin in the cells. Insulin is a peptide hormone that regulates the metabolism of carbohydrates, proteins, and fats. Type 1 Diabetes Mellitus needs the use of Insulin for efficient management. However invasive methods of administration may lead to reduced adherence by the patients. Hence there is a need for a non-invasive method of administration. Oral Insulin has several merits over the conventional method including patient compliance, and reduced cost, and it also mimics endogenous insulin and hence reaches the liver by the portal vein at a higher concentration and thereby showing improved efficiency. However oral Insulin must pass through several barriers in the gastrointestinal tract. Some strategies that could be utilized to bypass these barriers include the use of permeation enhancers, absorption enhancers, use of suitable polymers, use of suitable carriers, and other agents. Several formulation types have been explored for the oral delivery of Insulin like hydrogels, capsules, tablets, and patches which have been described briefly by the article. A lot of attempts have been made for developing oral insulin delivery however none of them have been commercialized due to numerous shortcomings. Currently, there are several formulations from the companies that are still in the clinical phase, the success or failure of some is yet to be seen in the future.
Collapse
Affiliation(s)
- S Spoorthi Shetty
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - K M Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
4
|
Tran H, ElSayed MEH. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin Drug Deliv 2022; 19:163-178. [PMID: 35255753 DOI: 10.1080/17425247.2022.2051476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The oral delivery of peptides offers advantages over the injectable route of administration due to patient convenience. However, oral delivery remains challenging due to physiological barriers. Numerous formulation technologies have been developed to overcome these challenges, and understanding the advantages and limitations of each technology is important for the development of new delivery systems to enable oral delivery of peptides designed for parenteral administration. AREAS COVERED This review summarizes key learnings from the use of permeation enhancers (PEs) for oral peptide delivery associated with solid dosage form optimization to maximize the PE effect. Furthermore, we will highlight the most recent emerging delivery strategies to improve oral peptide bioavailability such as nanoparticles, self-emulsifying drug delivery systems, gut shuttles, and ingestible devices. In addition, advantages and limitations of these technologies will be compared with the permeation enhancer technology. EXPERT OPINION Despite the success of permeation enhancer technology in the FDA approved oral peptide products for gastric and intestinal delivery, oral peptide delivery is still facing the immense challenge of low-to-single digit oral bioavailability and the impact of food and water intake on oral absorption. Optimization of drug product attributes such as dissolution kinetics is critical to overcome spreading and dilution effects in vivo to improve permeation enhancer efficacy. The next frontiers to substantially increase oral bioavailability and transform injectable peptides to oral deliverables may be ingestible devices and gut shuttles. In addition, ingestible devices may have potential to overcome the impact of food on oral bioavailability. However, clinical studies are necessary to inform the safety and efficacy of these emerging technologies.
Collapse
|
5
|
Tucker TJ, Embrey MW, Alleyne C, Amin RP, Bass A, Bhatt B, Bianchi E, Branca D, Bueters T, Buist N, Ha SN, Hafey M, He H, Higgins J, Johns DG, Kerekes AD, Koeplinger KA, Kuethe JT, Li N, Murphy B, Orth P, Salowe S, Shahripour A, Tracy R, Wang W, Wu C, Xiong Y, Zokian HJ, Wood HB, Walji A. A Series of Novel, Highly Potent, and Orally Bioavailable Next-Generation Tricyclic Peptide PCSK9 Inhibitors. J Med Chem 2021; 64:16770-16800. [PMID: 34704436 DOI: 10.1021/acs.jmedchem.1c01599] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as 2, we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as 44 demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation. We demonstrated target engagement and LDL lowering in cynomolgus monkeys essentially identical to those observed with the clinically approved, parenterally dosed antibodies. These molecules represent the first report of highly potent and orally bioavailable macrocyclic peptide PCSK9 inhibitors with overall profiles favorable for potential development as once-daily oral lipid-lowering agents. In this manuscript, we detail the design criteria and multiparameter optimization of this novel series of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Thomas J Tucker
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Mark W Embrey
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Candice Alleyne
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Rupesh P Amin
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Alan Bass
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Bhavana Bhatt
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Elisabetta Bianchi
- Peptides and Small Molecule Research and Development Department, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Danila Branca
- Peptides and Small Molecule Research and Development Department, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Tjerk Bueters
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Nicole Buist
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Sookhee N Ha
- Department of Modeling and Informatics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Mike Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Huaibing He
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - John Higgins
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Douglas G Johns
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Angela D Kerekes
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Kenneth A Koeplinger
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Jeffrey T Kuethe
- Department of Process Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Nianyu Li
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - BethAnn Murphy
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Peter Orth
- Department of Structural Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Scott Salowe
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Aurash Shahripour
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Rodger Tracy
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Weixun Wang
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Chengwei Wu
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Yusheng Xiong
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Hratch J Zokian
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Harold B Wood
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Abbas Walji
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| |
Collapse
|
6
|
Noh G, Keum T, Bashyal S, Seo JE, Shrawani L, Kim JH, Lee S. Recent progress in hydrophobic ion-pairing and lipid-based drug delivery systems for enhanced oral delivery of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00549-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
8
|
Pandya AK, Patravale VB. Computational avenues in oral protein and peptide therapeutics. Drug Discov Today 2021; 26:1510-1520. [PMID: 33684525 DOI: 10.1016/j.drudis.2021.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/12/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
Proteins and peptides are amongst the most sought-after biomolecules because of their exceptional potential to cater to a vast range of diseases. Although widely studied and researched, the oral delivery of these biomolecules remains a challenge. Alongside formulation strategies, approaches to overcome the inherent barriers for peptide absorption are being designed at the molecular level to establish a sound rationale and to achieve higher bioavailability. Computer-aided drug design (CADD) is a modern in silico approach for developing successful bio-formulations. CADD enables intricate study of the biomolecules in conjunction with their target sites or receptors at the molecular level. Knowledge of the molecular interactions of proteins and peptides makes way for the pre-screening of suitable formulation components and facilitates their delivery.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
9
|
Saeed HK, Sutar Y, Patel P, Bhat R, Mallick S, Hatada AE, Koomoa DLT, Lange I, Date AA. Synthesis and Characterization of Lipophilic Salts of Metformin to Improve Its Repurposing for Cancer Therapy. ACS OMEGA 2021; 6:2626-2637. [PMID: 33553880 PMCID: PMC7859945 DOI: 10.1021/acsomega.0c04779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological evidence has accentuated the repurposing of metformin hydrochloride for cancer treatment. However, the extreme hydrophilicity and poor permeability of metformin hydrochloride are responsible for its poor anticancer activity in vitro and in vivo. Here, we report the synthesis and characterization of several lipophilic metformin salts containing bulky anionic permeation enhancers such as caprate, laurate, oleate, cholate, and docusate as counterions. Of various counterions tested, only docusate was able to significantly improve the lipophilicity and lipid solubility of metformin. To evaluate the impact of the association of anionic permeation enhancers with metformin, we checked the in vitro anticancer activity of various lipophilic salts of metformin using drug-sensitive (MYCN-2) and drug-resistant (SK-N-Be2c) neuroblastoma cells as model cancer cells. Metformin hydrochloride showed a very low potency (IC50 ≈ >100 mM) against MYCN-2 and SK-N-Be2c cells. Anionic permeation enhancers showed a considerably higher activity (IC50 ≈ 125 μM to 1.6 mM) against MYCN-2 and SK-N-Be2c cells than metformin. The association of metformin with most of the bulky anionic agents negatively impacted the anticancer activity against MYCN-2 and SK-N-Be2c cells. However, metformin docusate showed 700- to 4300-fold improvement in anticancer potency compared to metformin hydrochloride and four- to five-fold higher in vitro anticancer activity compared to sodium docusate, indicating a synergistic association between metformin and docusate. A similar trend was observed when we tested the in vitro activity of metformin docusate, sodium docusate, and metformin hydrochloride against hepatocellular carcinoma (HepG2) and triple-negative breast cancer (MDA-MB-231) cells.
Collapse
Affiliation(s)
- Hiwa K. Saeed
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Yogesh Sutar
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Pratikkumar Patel
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Roopal Bhat
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
- Department
of Pharmaceutics, Shree Chanakya Education
Society’s Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Sudipta Mallick
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Alyssa E. Hatada
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Dana-Lynn T. Koomoa
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Ingo Lange
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| | - Abhijit A. Date
- Department
of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo Hawaii 96720, United States
| |
Collapse
|
10
|
Dumont C, Jannin V, Miolane C, Lelong Q, Valour JP, Urbaniak S, Fessi H, Bourgeois S. A proof-of-concept for developing oral lipidized peptide Nanostructured Lipid Carrier formulations. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Kataoka M, Ohi Y, Sakanoue K, Minami K, Higashino H, Yamashita S. Impact of Dietary Intake of Medium-Chain Triacylglycerides on the Intestinal Absorption of Poorly Permeable Compounds. Mol Pharm 2019; 17:212-218. [DOI: 10.1021/acs.molpharmaceut.9b00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan
| | - Yuriko Ohi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan
| | - Kana Sakanoue
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
12
|
Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: Ex vivo and in vivo rat studies. J Control Release 2019; 310:115-126. [PMID: 31401199 DOI: 10.1016/j.jconrel.2019.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023]
Abstract
Labrasol® ALF (Labrasol®), is a non-ionic surfactant excipient primarily used as a solubilising agent. It was investigated here as an intestinal permeation enhancer in isolated rat colonic mucosae in Ussing chamber and in rat in situ intestinal instillations. Labrasol® comprises mono-, di- and triglycerides and mono- and di- fatty acid esters of polyethylene glycol (PEG)-8 and free PEG-8, with caprylic (C8)- and capric acid (C10) as the main fatty acids. Source components of Labrasol® as well as Labrasol® modified with either C8 or C10 as the sole fatty acid components were also tested to determine which element of Labrasol® was responsible for its permeability-enhancing properties. Labrasol® (4, 8 mg/mL) enhanced the transport of the paracellular markers, [14C] mannitol, FITC-dextran 4000, and FITC-insulin across colonic mucosae. The enhancement was non-damaging, transient, and molecular weight-dependent. The PEG ester fraction of Labrasol® also had enhancing properties. When insulin was administered with Labrasol® in instillations, it had a relative bioavailability of 7% in jejunum and 12% in colon. C8- and C10 versions of Labrasol® and the PEG ester fraction also induced similar bioavailability values in jejunal instillations: 6, 5 and 7% respectively. Inhibition of lipases in instillations did not reduce the efficacy of Labrasol®, suggesting that its mechanism as a PE is not simply due to liberated medium chain fatty acids. Labrasol® acts as an efficacious intestinal permeation enhancer and has potential for use in oral formulations of macromolecules and BCS Class III molecules.
Collapse
|
13
|
Puga AM, Lopez-Oliva S, Trives C, Partearroyo T, Varela-Moreiras G. Effects of Drugs and Excipients on Hydration Status. Nutrients 2019; 11:nu11030669. [PMID: 30897748 PMCID: PMC6470661 DOI: 10.3390/nu11030669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Despite being the most essential nutrient, water is commonly forgotten in the fields of pharmacy and nutrition. Hydration status is determined by water balance (the difference between water input and output). Hypohydration or negative water balance is affected by numerous factors, either internal (i.e., a lack of thirst sensation) or external (e.g., polypharmacy or chronic consumption of certain drugs). However, to date, research on the interaction between hydration status and drugs/excipients has been scarce. Drugs may trigger the appearance of hypohydration by means of the increase of water elimination through either diarrhea, urine or sweat; a decrease in thirst sensation or appetite; or the alteration of central thermoregulation. On the other hand, pharmaceutical excipients induce alterations in hydration status by decreasing the gastrointestinal transit time or increasing the gastrointestinal tract rate or intestinal permeability. In the present review, we evaluate studies that focus on the effects of drugs/excipients on hydration status. These studies support the aim of monitoring the hydration status in patients, mainly in those population segments with a higher risk, to avoid complications and associated pathologies, which are key axes in both pharmaceutical care and the field of nutrition.
Collapse
Affiliation(s)
- Ana M Puga
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Sara Lopez-Oliva
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Carmen Trives
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Teresa Partearroyo
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
| | - Gregorio Varela-Moreiras
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, CEU San Pablo University, 28668 Madrid, Spain.
- Spanish Nutrition Foundation (FEN), 28010 Madrid, Spain.
| |
Collapse
|
14
|
Berthelsen R, Klitgaard M, Rades T, Müllertz A. In vitro digestion models to evaluate lipid based drug delivery systems; present status and current trends. Adv Drug Deliv Rev 2019; 142:35-49. [PMID: 31265861 DOI: 10.1016/j.addr.2019.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
During the past two decades, a range of in vitro models simulating the digestion processes occurring in the stomach and small intestine have been developed to characterize lipid based drug delivery systems (LbDDSs). This review describes the presently existing range of in vitro digestion models and their use in the field of oral drug delivery. The models are evaluated in terms of their suitability to assess LbDDSs, and their ability to produce in vitro - in vivo correlations (IVIVCs). While the pH-stat lipolysis model is by far the most commonly utilized in vitro digestion model in relation to characterizing LbDDSs, a series of recent studies have shown a lack of IVIVCs limiting its future use. Presently, no single in vitro digestion model exists which is able to predict the in vivo performance of various LbDDSs. However, recent research has shown the potential of combined digestion-permeation models as well as species specific digestion models.
Collapse
Affiliation(s)
- Ragna Berthelsen
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Mette Klitgaard
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anette Müllertz
- University of Copenhagen, Department of Pharmacy, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Mahmood A, Bernkop-Schnürch A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv Drug Deliv Rev 2019; 142:91-101. [PMID: 29981355 DOI: 10.1016/j.addr.2018.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Since the development of self-emulsifying drug delivery systems (SEDDS) in 1980's, they attract the attention of researchers in order to confront the challenge of poor water-solubility of orally given drugs. Within recent years, SEDDS were also discovered for oral administration of hydrophilic macromolecular drugs such as peptides, proteins, polysaccharides and pDNA. Due to hydrophobic ion pairing (HIP) with oppositely charged lipophilic auxiliary agents the resulting complexes can be incorporated in the lipophilic phase of SEDDS. Depending on the solubility of the complex in the SEDDS pre-concentrate and in the release medium drug release can be adjusted on purpose by choosing more or less lipophilic auxiliary agents in appropriate quantities for HIP. Within the oily droplets formed in the GI-tract drugs are protected towards degradation by proteases and nucleases and thiol-disulfide exchange reactions with dietary proteins. The oily droplets can be made mucoadhesive or highly mucus permeating depending on their target site. Furthermore, even their cellular uptake properties can be tuned by adjusting their zeta potential or decorating them with cell penetrating peptides. The potential of SEDDS for oral administration of hydrophilic macromolecular drugs could meanwhile be demonstrated via various in vivo studies showing a bioavailability at least in the single digit percentage range. Owing to these properties advanced SEDDS turned out to be a game changing approach for the oral administration of hydrophilic macromolecular drugs.
Collapse
Affiliation(s)
- Arshad Mahmood
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad 22060, Pakistan
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
16
|
Liu J, Werner U, Funke M, Besenius M, Saaby L, Fanø M, Mu H, Müllertz A. SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats. Int J Pharm 2019; 560:377-384. [PMID: 30790612 DOI: 10.1016/j.ijpharm.2019.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
To face the challenges of oral delivery of peptide and protein (P/P) drugs, self-emulsifying drug delivery systems (SEDDSs) containing monoacyl phosphatidylcholine (MAPC), Labrasol (LAB) and medium-chain (MC) monoglycerides as permeation enhancers (PEs) were evaluated for their effect on intestinal absorption of insulin. In this study, insulin was complexed with phosphatidylcholine (SPC) to form an insulin-SPC complex (ins-SPC) with increased lipophilicity. The following three SEDDSs: MCT(MAPC) (MC triglycerides and MAPC included), MCT(RH40) (MC triglycerides and Kolliphor® RH40 included) and LCT(MAPC) (long-chain triglycerides and MAPC included) were loading with ins-SPC (4% or 8% w/w of SPC). Three SEDDSs generated emulsions with droplet sizes between 50 and 470 nm and with zeta potentials between -5 to -25 mV in a simulated intestinal medium. Mucus-secreting Caco-2/HT29-MTX-E12 co-culture and Caco-2 monolayers were used as in vitro cell transport models to investigate insulin permeability. In comparison to insulin HBSS solution, MCT(MAPC) significantly increased the insulin permeability across co-culture and Caco-2 monolayers (2.0-2.5 × 10-7 cm/s). In an intra-jejunal (i.j.) instillation model in rats, MCT(RH40) significantly decreased the rat blood glucose after 0.5 h by 17.0 ± 2.5% and for MCT(MAPC), it was 23.6 ± 10.6%. Furthermore, a lipase inhibitor orlistat was incorporated into MCT(MAPC) to evaluate the effect of lipid digestion on insulin absorption. Results indicated that the incorporation of orlistat did not significantly alter the in vivo insulin absorption. Overall, the SEDDS MCT(MAPC) composed of natural PEs (MAPC and MC glycerides) and synthetic PE (LAB) significantly increased the intestinal absorption of insulin upon i.j. instillation. Although it is not possible to conclude if a single PE is dominating the intestinal absorption of insulin, MCT(MAPC) seems to have the potential for oral insulin delivery.
Collapse
Affiliation(s)
- Jingying Liu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ulrich Werner
- Diabetes Division in Research and Development, Sanofi-Aventis Deutschland GmbH, K703 65926 Frankfurt, Germany
| | - Mario Funke
- Diabetes Division in Research and Development, Sanofi-Aventis Deutschland GmbH, K703 65926 Frankfurt, Germany
| | - Melissa Besenius
- Diabetes Division in Research and Development, Sanofi-Aventis Deutschland GmbH, K703 65926 Frankfurt, Germany
| | - Lasse Saaby
- Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mathias Fanø
- Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019; 11:pharmaceutics11010041. [PMID: 30669434 PMCID: PMC6359609 DOI: 10.3390/pharmaceutics11010041] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022] Open
Abstract
The application of permeation enhancers (PEs) to improve transport of poorly absorbed active pharmaceutical ingredients across the intestinal epithelium is a widely tested approach. Several hundred compounds have been shown to alter the epithelial barrier, and although the research emphasis has broadened to encompass a role for nanoparticle approaches, PEs represent a key constituent of conventional oral formulations that have progressed to clinical testing. In this review, we highlight promising PEs in early development, summarize the current state of the art, and highlight challenges to the translation of PE-based delivery systems into safe and effective oral dosage forms for patients.
Collapse
|