1
|
Kumar P, Holland DA, Secrist K, Taskar P, Dotson B, Saleh-Birdjandi S, Adewunmi Y, Doering J, Mantis NJ, Volkin DB, Joshi SB. Evaluating the Compatibility of New Recombinant Protein Antigens (Trivalent NRRV) with a Mock Pentavalent Combination Vaccine Containing Whole-Cell Pertussis: Analytical and Formulation Challenges. Vaccines (Basel) 2024; 12:609. [PMID: 38932338 PMCID: PMC11209613 DOI: 10.3390/vaccines12060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Introducing new recombinant protein antigens to existing pediatric combination vaccines is important in improving coverage and affordability, especially in low- and middle-income countries (LMICs). This case-study highlights the analytical and formulation challenges encountered with three recombinant non-replicating rotavirus vaccine (NRRV) antigens (t-NRRV formulated with Alhydrogel® adjuvant, AH) combined with a mock multidose formulation of a pediatric pentavalent vaccine used in LMICs. This complex formulation contained (1) vaccine antigens (i.e., whole-cell pertussis (wP), diphtheria (D), tetanus (T), Haemophilus influenza (Hib), and hepatitis B (HepB), (2) a mixture of aluminum-salt adjuvants (AH and Adju-Phos®, AP), and (3) a preservative (thimerosal, TH). Selective, stability-indicating competitive immunoassays were developed to monitor binding of specific mAbs to each antigen, except wP which required the setup of a mouse immunogenicity assay. Simple mixing led to the desorption of t-NRRV antigens from AH and increased degradation during storage. These deleterious effects were caused by specific antigens, AP, and TH. An AH-only pentavalent formulation mitigated t-NRRV antigen desorption; however, the Hib antigen displayed previously reported AH-induced instability. The same rank-ordering of t-NRRV antigen stability (P[8] > P[4] > P[6]) was observed in mock pentavalent formulations and with various preservatives. The lessons learned are discussed to enable future multidose, combination vaccine formulation development with new vaccine candidates.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David A. Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Kathryn Secrist
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Poorva Taskar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Brandy Dotson
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Soraia Saleh-Birdjandi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Yetunde Adewunmi
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY 12208, USA
| | - Jennifer Doering
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY 12208, USA
| | - Nicholas J. Mantis
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY 12208, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
2
|
Wang J, Hu X, Wu J, Lin X, Chen R, Lu C, Song X, Leng Q, Li Y, Kuang X, Li J, Yao L, Tang X, Ye J, Zhang G, Sun M, Zhou Y, Li H. ML241 Antagonizes ERK 1/2 Activation and Inhibits Rotavirus Proliferation. Viruses 2024; 16:623. [PMID: 38675964 PMCID: PMC11054276 DOI: 10.3390/v16040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming 650118, China; (J.W.); (X.H.); (J.W.); (X.L.); (R.C.); (C.L.); (X.S.); (Q.L.); (Y.L.); (X.K.); (J.L.); (L.Y.); (X.T.); (J.Y.); (G.Z.); (M.S.)
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming 650118, China; (J.W.); (X.H.); (J.W.); (X.L.); (R.C.); (C.L.); (X.S.); (Q.L.); (Y.L.); (X.K.); (J.L.); (L.Y.); (X.T.); (J.Y.); (G.Z.); (M.S.)
| |
Collapse
|
3
|
Kumar P, Wang M, Kumru OS, Hickey JM, Sanmiguel J, Zabaleta N, Vandenberghe LH, Joshi SB, Volkin DB. Correlating physicochemical and biological properties to define critical quality attributes of a rAAV vaccine candidate. Mol Ther Methods Clin Dev 2023; 30:103-121. [PMID: 37746246 PMCID: PMC10512015 DOI: 10.1016/j.omtm.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 09/26/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vector's physicochemical properties and biological potency. To this end, we evaluated an rAAV-based coronavirus disease 2019 (COVID-19) vaccine candidate that encodes the Spike antigen (AC3) and is produced by a commercially viable process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3, including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates, and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented, and data were correlated with the physicochemical analyses on thermally stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and, importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccine candidates as well as specifically for the rAAV vaccine application under study.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Michael Wang
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
4
|
Jerajani K, Wan Y, Hickey JM, Kumru OS, Sharma N, Pullagurla SR, Ogun O, Mapari S, Whitaker N, Brendle S, Christensen ND, Batwal S, Mahedvi M, Rao H, Dogar V, Chandrasekharan R, Shaligram U, Joshi SB, Volkin DB. Analytical and Preformulation Characterization Studies of Human Papillomavirus Virus-Like Particles to Enable Quadrivalent Multi-Dose Vaccine Formulation Development. J Pharm Sci 2022; 111:2983-2997. [PMID: 35914546 DOI: 10.1016/j.xphs.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
Introducing multi-dose formulations of Human Papillomavirus (HPV) vaccines will reduce costs and enable improved global vaccine coverage, especially in low- and middle-income countries. This work describes the development of key analytical methods later utilized for HPV vaccine multi-dose formulation development. First, down-selection of physicochemical methods suitable for multi-dose formulation development of four HPV (6, 11, 16, and 18) Virus-Like Particles (VLPs) adsorbed to an aluminum adjuvant (Alhydrogel®, AH) was performed. The four monovalent AH-adsorbed HPV VLPs were then characterized using these down-selected methods. Second, stability-indicating competitive ELISA assays were developed using HPV serotype-specific neutralizing mAbs, to monitor relative antibody binding profiles of the four AH-adsorbed VLPs during storage. Third, concentration-dependent preservative-induced destabilization of HPV16 VLPs was demonstrated by addition of eight preservatives found in parenterally administered pharmaceuticals and vaccines, as measured by ELISA, dynamic light scattering, and differential scanning calorimetry. Finally, preservative stability and effectiveness in the presence of vaccine components were evaluated using a combination of RP-UHPLC, a microbial growth inhibition assay, and a modified version of the European Pharmacopoeia assay (Ph. Eur. 5.1.3). Results are discussed in terms of analytical challenges encountered to identify and develop high-throughput methods that facilitate multi-dose formulation development of aluminum-adjuvanted protein-based vaccine candidates.
Collapse
Affiliation(s)
- Kaushal Jerajani
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ying Wan
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Nitya Sharma
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Oluwadara Ogun
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Shweta Mapari
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Neal Whitaker
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sarah Brendle
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Neil D Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | - Harish Rao
- Serum Institute of India Pvt. Ltd., Pune, India
| | - Vikas Dogar
- Serum Institute of India Pvt. Ltd., Pune, India
| | | | | | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
5
|
McAdams D, Estrada M, Holland D, Singh J, Sawant N, Hickey JM, Kumar P, Plikaytis B, Joshi SB, Volkin DB, Sitrin R, Cryz S, White JA. Concordance of in vitro and in vivo measures of non-replicating rotavirus vaccine potency. Vaccine 2022; 40:5069-5078. [PMID: 35871866 PMCID: PMC9405915 DOI: 10.1016/j.vaccine.2022.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022]
Abstract
Rotavirus infections remain a leading cause of morbidity and mortality among infants residing in low- and middle-income countries. To address the large need for protection from this vaccine-preventable disease we are developing a trivalent subunit rotavirus vaccine which is currently being evaluated in a multinational Phase 3 clinical trial for prevention of serious rotavirus gastroenteritis. Currently, there are no universally accepted in vivo or in vitro models that allow for correlation of field efficacy to an immune response against serious rotavirus gastroenteritis. As a new generation of non-replicating rotavirus vaccines are developed the lack of an established model for evaluating vaccine efficacy becomes a critical issue related to how vaccine potency and stability can be assessed. Our previous publication described the development of an in vitro ELISA to quantify individual vaccine antigens adsorbed to an aluminum hydroxide adjuvant to address the gap in vaccine potency methods for this non-replicating rotavirus vaccine candidate. In the present study, we report on concordance between ELISA readouts and in vivo immunogenicity in a guinea pig model as it relates to vaccine dosing levels and sensitivity to thermal stress. We found correlation between in vitro ELISA values and neutralizing antibody responses engendered after animal immunization. Furthermore, this in vitro assay could be used to demonstrate the effect of thermal stress on vaccine potency, and such results could be correlated with physicochemical analysis of the recombinant protein antigens. This work demonstrates the suitability of the in vitro ELISA to measure vaccine potency and the correlation of these measurements to an immunologic outcome.
Collapse
Affiliation(s)
- David McAdams
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States
| | - Marcus Estrada
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States.
| | - David Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Jasneet Singh
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States
| | - Nishant Sawant
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Brian Plikaytis
- BioStat Consulting, LLC, 10429, Big Canoe, Jasper, GA 30143-5125, United States
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States.
| | - Robert Sitrin
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States.
| | - Stan Cryz
- PATH, 2201 Westlake Ave, Seattle, WA 98122, United States.
| | | |
Collapse
|
6
|
Pullagurla SR, Kumar P, Ogun O, Kumru OS, Hamidi A, Hoeksema F, Yallop C, Bines JE, Volkin DB, Joshi SB. Modeling the long-term 2-8 °C stability profiles of a live, rotavirus vaccine candidate (RV3-BB) in various liquid formulations via extrapolations of real-time and accelerated stability data. Biologicals 2021; 75:21-28. [PMID: 34924260 DOI: 10.1016/j.biologicals.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
To accelerate the formulation development of live-virus vaccine (LVV) candidates, more rapid approaches to rank-order formulations and estimate their real-time storage stability losses are needed. In this case-study, we utilize new and previously described stability data of a live, rotavirus vaccine candidate (RV3-BB) in three different liquid formulations to model and compare predicted vs. experimental RV3-BB stability profiles. Linear-regression extrapolations of limited real-time (2-8 °C) stability data and Arrhenius modeling of accelerated (15, 25, 37 °C) stability data provided predictions of RV3-BB real-time stability profiles (2-8 °C, 24 months). Good correlations of modeled versus experimental stability data to rank-order the RV3-BB formulations were achieved by employing (1) a high-throughput RT-qPCR assay to measure viral titers, (2) additional assay replicates and stability time-points, and (3) a -80 °C control for each formulation to benchmark results at each stability time-point and temperature. Instead of accumulating two-year, 2-8 °C storage stability data, the same rank-ordering of the three RV3-BB formulations could have been achieved by modeling 37°, 25°, 15° (and 2-8 °C) stability data over 1, 3 and 12 months, respectively. The results of this case-study are discussed in the context of accelerating LVV formulation development by expeditiously identifying stable formulations, estimating their shelf-lives, and determining vaccine vial monitoring (VVM) designations.
Collapse
Affiliation(s)
- Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Oluwadara Ogun
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States
| | - Ahd Hamidi
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL Leiden, the Netherlands
| | - Femke Hoeksema
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL Leiden, the Netherlands
| | - Christopher Yallop
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL Leiden, the Netherlands
| | - Julie E Bines
- Murdoch Children's Research Institute, Department of Paediatrics University of Melbourne, Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia, 3052
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States.
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, United States.
| |
Collapse
|
7
|
Interaction of Aluminum-adjuvanted Recombinant P[4] Protein Antigen With Preservatives: Storage Stability and Backbone Flexibility Studies. J Pharm Sci 2021; 111:970-981. [PMID: 34758340 DOI: 10.1016/j.xphs.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
Eight antimicrobial preservatives used in parenteral multidose formulations (thimerosal, 2-phenoxy ethanol, phenol, benzyl alcohol, m-cresol, chlorobutanol, methyl paraben, propyl paraben) were examined for their effects on the storage stability (4 °C, 25 °C) of an Alhydrogel® (AH) adjuvanted formulation of the non-replicating rotavirus vaccine (NRRV) recombinant P[4] protein antigen. The stability of AH-adsorbed P[4] was monitored for antigen-antibody binding, conformational stability, and antigen-adjuvant interaction via competitive ELISA, DSC, and SDS-PAGE, respectively. There was an unexpected correlation between increasing storage stability of the AH-adsorbed P[4] and preservative hydrophobicity (log P) (e.g., the parabens and chlorobutanol were least destabilizing). We used hydrogen exchange-mass spectrometry (HX-MS) to better understand the destabilizing effects of temperature and preservative on backbone flexibility of AH-adsorbed P[4]. Thimerosal addition immediately increased the backbone flexibility across much of the AH-adsorbed P[4] protein backbone (except the N-terminal P2 region and residues G17-Y38), and further increase in P[4] backbone flexibility was observed after storage (4 °C, 4 weeks). HX-MS analysis of AH-adsorbed P[4] stored for 4 weeks at 25 °C revealed structural alterations in some regions of the epitope involved in P[4] specific mAb binding. These combined results are discussed in terms of a generalized workflow for multi-dose vaccine formulation development for recombinant protein antigens.
Collapse
|
8
|
Dalvie NC, Brady JR, Crowell LE, Tracey MK, Biedermann AM, Kaur K, Hickey JM, Kristensen DL, Bonnyman AD, Rodriguez-Aponte SA, Whittaker CA, Bok M, Vega C, Mukhopadhyay TK, Joshi SB, Volkin DB, Parreño V, Love KR, Love JC. Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus. Microb Cell Fact 2021; 20:94. [PMID: 33933073 PMCID: PMC8088319 DOI: 10.1186/s12934-021-01583-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. RESULTS We describe a holistic approach for the molecular design of recombinant protein antigens-considering both their manufacturability and antigenicity-informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. CONCLUSIONS This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joseph R Brady
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Laura E Crowell
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mary Kate Tracey
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew M Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - D Lee Kristensen
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexandra D Bonnyman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Marina Bok
- Instituto de Virología E Innovaciones Tecnológicas, IVIT, CONICET-INTA, Hurlingham,, Buenos Aires, Argentina
| | - Celina Vega
- Instituto de Virología E Innovaciones Tecnológicas, IVIT, CONICET-INTA, Hurlingham,, Buenos Aires, Argentina
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - Viviana Parreño
- Instituto de Virología E Innovaciones Tecnológicas, IVIT, CONICET-INTA, Hurlingham,, Buenos Aires, Argentina
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Kaur K, Xiong J, Sawant N, Agarwal S, Hickey JM, Holland DA, Mukhopadhyay TK, Brady JR, Dalvie NC, Tracey MK, Love KR, Love JC, Weis DD, Joshi SB, Volkin DB. Mechanism of Thimerosal-Induced Structural Destabilization of a Recombinant Rotavirus P[4] Protein Antigen Formulated as a Multi-Dose Vaccine. J Pharm Sci 2021; 110:1054-1066. [PMID: 33278412 PMCID: PMC7884053 DOI: 10.1016/j.xphs.2020.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
In a companion paper, a two-step developability assessment is presented to rapidly evaluate low-cost formulations (multi-dose, aluminum-adjuvanted) for new subunit vaccine candidates. As a case study, a non-replicating rotavirus (NRRV) recombinant protein antigen P[4] was found to be destabilized by the vaccine preservative thimerosal, and this effect was mitigated by modification of the free cysteine (C173S). In this work, the mechanism(s) of thimerosal-P[4] protein interactions, along with subsequent effects on the P[4] protein's structural integrity, are determined. Reversible complexation of ethylmercury, a thimerosal degradation byproduct, with the single cysteine residue of P[4] protein is demonstrated by intact protein mass analysis and biophysical studies. A working mechanism involving a reversible S-Hg coordinate bond is presented based on the literature. This reaction increased the local backbone flexibility of P[4] within the helical region surrounding the cysteine residue and then caused more global destabilization, both as detected by HX-MS. These effects correlate with changes in antibody-P[4] binding parameters and alterations in P[4] conformational stability due to C173S modification. Epitope mapping by HX-MS demonstrated involvement of the same cysteine-containing helical region of P[4] in antibody-antigen binding. Future formulation challenges to develop low-cost, multi-dose formulations for new recombinant protein vaccine candidates are discussed.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Jian Xiong
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Nishant Sawant
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David A Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Joseph R Brady
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Neil C Dalvie
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mary Kate Tracey
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kerry R Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - J Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - David D Weis
- Department of Chemistry and R.N. Adams Institute of Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
10
|
Sawant N, Kaur K, Holland DA, Hickey JM, Agarwal S, Brady JR, Dalvie NC, Tracey MK, Velez-Suberbie ML, Morris SA, Jacob SI, Bracewell DG, Mukhopadhyay TK, Love KR, Love JC, Joshi SB, Volkin DB. Rapid Developability Assessments to Formulate Recombinant Protein Antigens as Stable, Low-Cost, Multi-Dose Vaccine Candidates: Case-Study With Non-Replicating Rotavirus (NRRV) Vaccine Antigens. J Pharm Sci 2021; 110:1042-1053. [PMID: 33285182 PMCID: PMC7884052 DOI: 10.1016/j.xphs.2020.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
A two-step developability assessment workflow is described to screen variants of recombinant protein antigens under various formulation conditions to rapidly identify stable, aluminum-adjuvanted, multi-dose vaccine candidates. For proof-of-concept, a series of sequence variants of the recombinant non-replicating rotavirus (NRRV) P[8] protein antigen (produced in Komagataella phaffii) were compared in terms of primary structure, post-translational modifications, antibody binding, conformational stability, relative solubility and preservative compatibility. Based on these results, promising P[8] variants were down-selected and the impact of key formulation conditions on storage stability was examined (e.g., presence or absence of the aluminum-adjuvant Alhydrogel and the preservative thimerosal) as measured by differential scanning calorimetry (DSC) and antibody binding assays. Good correlations between rapidly-generated developability screening data and storage stability profiles (12 weeks at various temperatures) were observed for aluminum-adsorbed P[8] antigens. These findings were extended and confirmed using variants of a second NRRV antigen, P[4]. These case-study results with P[8] and P[4] NRRV variants are discussed in terms of using this vaccine formulation developability workflow to better inform and optimize formulation design with a wide variety of recombinant protein antigens, with the long-term goal of rapidly and cost-efficiently identifying low-cost vaccine formulations for use in low and middle income countries.
Collapse
Affiliation(s)
- Nishant Sawant
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David A Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Joseph R Brady
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C Dalvie
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Kate Tracey
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Lourdes Velez-Suberbie
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Stephen A Morris
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Shaleem I Jacob
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Kerry R Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
11
|
Effect of Aluminum Adjuvant and Preservatives on Structural Integrity and Physicochemical Stability Profiles of Three Recombinant Subunit Rotavirus Vaccine Antigens. J Pharm Sci 2019; 109:476-487. [PMID: 31589875 PMCID: PMC6941222 DOI: 10.1016/j.xphs.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
A nonreplicating rotavirus vaccine (NRRV) containing 3 recombinant fusion proteins adsorbed to aluminum adjuvant (Alhydrogel [AH]) is currently in clinical trials. The compatibility and stability of monovalent NRRV antigen with key components of a multidose vaccine formulation were examined using physicochemical and immunochemical methods. The extent and strength of antigen-adjuvant binding were diminished by increasing phosphate concentration, and acceptable levels were identified along with alternate buffering agents. Addition of the preservative thimerosal destabilized AH-adsorbed P2-VP8-P[8] as measured by differential scanning calorimetry. Over 3 months at 4°C, AH-adsorbed P2-VP8-P[8] was stable, whereas at 25°C and 37°C, instability was observed which was greatly accelerated by thimerosal addition. Loss of antibody binding (enzyme-linked immunosorbent assay) correlated with loss of structural integrity (differential scanning calorimetry, fluorescence spectroscopy) with concomitant nonnative disulfide bond formation (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and Asn deamidation (liquid chromatography -mass spectrometry peptide mapping). An alternative preservative (2-phenoxyethanol) showed similar antigen destabilization. Due to limited availability, only key assays were performed with monovalent P2-VP8-P[4] and P2-VP8-P[6] AH-adsorbed antigens, and varying levels of preservative incompatibility were observed. In summary, monovalent AH-adsorbed NRRV antigens stored at 4°C showed good stability without preservatives; however, future formulation development efforts are required to prepare a stable, preservative-containing, multidose NRRV formulation.
Collapse
|
12
|
Agarwal S, Sahni N, Hickey JM, Robertson GA, Sitrin R, Cryz S, Joshi SB, Volkin DB. Characterizing and Minimizing Aggregation and Particle Formation of Three Recombinant Fusion-Protein Bulk Antigens for Use in a Candidate Trivalent Rotavirus Vaccine. J Pharm Sci 2019; 109:394-406. [PMID: 31400346 PMCID: PMC6941221 DOI: 10.1016/j.xphs.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
In a companion paper, the structural integrity, conformational stability, and degradation mechanisms of 3 recombinant fusion-protein antigens comprising a non-replicating rotavirus (NRRV) vaccine candidate (currently being evaluated in early-stage clinical trials) are described. In this work, we focus on the aggregation propensity of the 3 NRRV antigens coupled to formulation development studies to identify common frozen bulk candidate formulations. The P2-VP8-P[8] antigen was most susceptible to shaking and freeze-thaw-induced aggregation and particle formation. Each NRRV antigen formed aggregates with structurally altered protein (with exposed apolar regions and intermolecular β-sheet) and dimers containing a non-native disulfide bond. From excipient screening studies with P2-VP8-P[8], sugars or polyols (e.g., sucrose, trehalose, mannitol, sorbitol) and various detergents (e.g., Pluronic F-68, polysorbate 20 and 80, PEG-3350) were identified as stabilizers against aggregation. By combining promising additives, candidate bulk formulations were optimized to not only minimize agitation-induced aggregation, but also particle formation due to freeze-thaw stress of P2-VP8-P[8] antigen. Owing to limited material availability, stabilization of the P2-VP8-P[4] and P2-VP8-P[6] was confirmed with the lead candidate P2-VP8-P[8] formulations. The optimization of these bulk NRRV candidate formulations is discussed in the context of subsequent drug product formulations in the presence of aluminum adjuvants.
Collapse
Affiliation(s)
- Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Neha Sahni
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - George A Robertson
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Robert Sitrin
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Stanley Cryz
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|