1
|
Kulkarni VR, Bashyal S, Nair VV, Duggal I, Maniruzzaman M. Single-Step Extrusion Process for Formulation Development of Self-Emulsifying Granules for Oral Delivery of a BCS Class IV Drug. Mol Pharm 2024. [PMID: 39377300 DOI: 10.1021/acs.molpharmaceut.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This study aimed to develop and optimize formulations containinga BCS Class IV drug by improving its solubility and permeability. Herein development of self-emulsifying solid lipid matrices was investigated as carrier systems for a BCS Class IV model drug. Self-emulsifying drug delivery systems (SEDDS) have been extensively investigated for formulating drugs with poor water solubility. However, manufacturing SEDDS is challenging. These systems usually have low drug-loading capacities, and the incorporated drugs tend to recrystallize during storage, which severely impacts the storage stability in vitro and performance in vivo. Moreover, they require greater amounts (>80%) of lipid carriers, cosolvents, surfactants, and other excipients to keep them from recrystallizing. This in turn is again challenging for high-dose drugs as it affects the size of the final drug product (tablets and capsules). Also, the final liquid nature of the formulation affects the handling and processability of the formulation, which poses challenges during the manufacturing and packaging steps. In this work, we have studied the feasibility of a single-step extrusion process to formulate and optimize solid self-emulsifying granules with a relatively higher drug loading of Ritonavir (RTV), a BCS Class IV drug. Further, we have compared the performance of using these granules as the feedstock for direct powder extrusion-based 3D printing as opposed to the use of physical blends. The stability and solubility-permeability advantage of these granules was also evaluated where SEDDS showed about 27 and 20 fold increase in apparent solublity and permeability compared to bulk drug, respectively. Combining the capabilities of HME to form drug-loaded homogeneous granules as a continuous process along with application of direct printing extruiosn (DPE) 3D printing improves the drug delivery prospects for such candidates.
Collapse
Affiliation(s)
- Vineet R Kulkarni
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Santosh Bashyal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Łyszczarz E, Sosna O, Srebro J, Rezka A, Majda D, Mendyk A. Electrospun Amorphous Solid Dispersions with Lopinavir and Ritonavir for Improved Solubility and Dissolution Rate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1569. [PMID: 39404296 PMCID: PMC11478052 DOI: 10.3390/nano14191569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Lopinavir (LPV) and ritonavir (RTV) are two of the essential antiretroviral active pharmaceutical ingredients (APIs) characterized by poor solubility. Hence, attempts have been made to improve both their solubility and dissolution rate. One of the most effective approaches used for this purpose is to prepare amorphous solid dispersions (ASDs). To our best knowledge, this is the first attempt aimed at developing ASDs via the electrospinning technique in the form of fibers containing LPV and RTV. In particular, the impact of the various polymeric carriers, i.e., Kollidon K30 (PVP), Kollidon VA64 (KVA), and Eudragit® E100 (E100), as well as the drug content as a result of the LPV and RTV amorphization were investigated. The characterization of the electrospun fibers included microscopic, DSC, and XRD analyses, the assessment of their wettability, and equilibrium solubility and dissolution studies. The application of the electrospinning process led to the full amorphization of both the APIs, regardless of the drug content and the type of polymer matrix used. The utilization of E100 as a polymeric carrier for LPV and KVA for RTV, despite the beads-on-string morphology, had a favorable impact on the equilibrium solubility and dissolution rate. The results showed that the electrospinning method can be successfully used to manufacture ASDs with poorly soluble APIs.
Collapse
Affiliation(s)
- Ewelina Łyszczarz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Oskar Sosna
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Justyna Srebro
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Doctoral School of Medicinal and Health Sciences, Jagiellonian University Medical College, Św. Łazarza 16, 31-530 Cracow, Poland
| | - Aleksandra Rezka
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Dorota Majda
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
3
|
Desai HH, T M Serajuddin A. Development of lipid-based SEDDS using digestion products of long-chain triglyceride for high drug solubility: Formulation and dispersion testing. Int J Pharm 2024; 654:123953. [PMID: 38417725 DOI: 10.1016/j.ijpharm.2024.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
A self-emulsifying drug delivery system (SEDDS) containing long chain lipid digestion products (LDP) and surfactants was developed to increase solubility of two model weakly basic drugs, cinnarizine and ritonavir, in the formulation. A 1:1.2 w/w mixture of glyceryl monooleate (Capmul GMO-50; Abitec) and oleic acid was used as the digestion product, and a 1:1 w/w mixture of Tween 80 and Cremophor EL was the surfactant used. The ratio between LDP and surfactant was 1:1 w/w. Since the commercially available Capmul GMO-50 is not pure monoglyceride and contained di-and-triglycerides, the digestion product used would provide 1:2 stoichiometric molar ratio of monoglyceride and fatty acid after complete digestion in gastrointestinal fluid. Both cinnarizine and ritonavir had much higher solubility in oleic acid (536 and 72 mg/g, respectively) than that in glyceryl monooleate and glyceryl trioleate. Therefore, by incorporating oleic acid in place of glyceryl trioleate in the formulation, the solubility of cinnarizine and ritonavir could be increased by 5-fold and 3.5-fold, respectively, as compared to a formulation without the fatty acid. The formulation dispersed readily in aqueous media, and adding 3 mM sodium taurocholate, which is generally present in GI fluid, remarkably improved the dispersibility of SEDDS and reduced particle size of dispersions. Thus, the use of digestion products of long-chain triglycerides as components of SEDDS can enhance the drug loading of weakly basic compounds and increase dispersibility in GI fluids.
Collapse
Affiliation(s)
- Heta H Desai
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Present Address: Pace Life Sciences, 19 Presidential Way, Woburn, MA 01801, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
4
|
Nair AR, Vullendula SKA, Yarlagadda DL, Bheemisetty B, Dengale SJ, Bhat K. Physicochemical interaction of rifampicin and ritonavir-lopinavir solid dispersion: an in-vitro and ex-vivo investigation. Drug Dev Ind Pharm 2024; 50:192-205. [PMID: 38305806 DOI: 10.1080/03639045.2024.2309508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To investigate the in-situ physicochemical interaction of Rifampicin and Ritonavir - Lopinavir Solid dispersion administered for the treatment of comorbid conditions i.e. Tuberculosis and HIV/AIDS. METHODS pH-shift dissolution of Rifampicin (RIF) in presence of Ritonavir-Lopinavir solid dispersion (RL-SD) was carried out in USP phosphate buffer 6.8 and FaSSIF. Equilibrium and amorphous solubility were determined for the drugs. Pure drugs, their physical mixtures, and pH-shifted co-precipitated samples were characterized using DSC, PXRD, and FTIR. Fluorescence spectroscopy was used to investigate drug-rich and drug-lean phases. In-vitro and ex-vivo flux studies were also carried out. RESULTS The results showed significant differences in the solubility and dissolution profiles of RTV and LOP in the presence of RIF, while RIF profile remained unchanged. Amorphicity, intermolecular interaction and aggregate formation in pH-shifted samples were revealed in DSC, XRD and FTIR analysis. Fluorescence spectroscopy confirmed the formation of drug-rich phase upon pH-shift. In-vitro and ex-vivo flux studies revealed significant reduction in the flux of all the drugs when studied in presence of second drug. CONCLUSION RIF, RTV and LOP in presence of each other on pH-shift, results in co-precipitation in the amorphous form (miscible) which leads to reduction in the highest attainable degree of supersaturation. This reduction corresponds to the mole fraction of the RIF, RTV and LOP within the studied system. These findings suggest that the concomitant administration of these drugs may lead to physicochemical interactions and possible ineffective therapy.
Collapse
Affiliation(s)
- Athira R Nair
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sai Krishna Anand Vullendula
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Dani Lakshman Yarlagadda
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Brahmam Bheemisetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Swapnil J Dengale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Aulifa DL, Al Shofwan AA, Megantara S, Fakih TM, Budiman A. Elucidation of Molecular Interactions Between Drug-Polymer in Amorphous Solid Dispersion by a Computational Approach Using Molecular Dynamics Simulations. Adv Appl Bioinform Chem 2024; 17:1-19. [PMID: 38282640 PMCID: PMC10821732 DOI: 10.2147/aabc.s441628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction Amorphous drug dispersion is frequently used to enhance the solubility and dissolution of poorly water-soluble drugs, thereby improving their oral bioavailability. The dispersion of these drugs into polymer matrix can inhibit their recrystallization. The inter-molecular interactions between drug and polymer plays a role in the improvement of the dissolution rate, solubility, and physical stability of drug. Aim This study aims to investigate the formation and interactions of ritonavir (RTV)/poloxamer (PLX) amorphous formulation using a computational approach via molecular dynamics (MD) simulations, which mimicked solvent evaporation and melt-quenching method. Methods TheRoot Mean Square Deviation (RMSD) value, Root Mean Square Fluctuation (RMSF), Radial Distribution Function (RDF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA), and hydrogen bond interactions were analyzed to determine interaction mechanisms between RTV and PLX in amorphous solid dispersion. Results The pi-alkyl bonds between RTV and PLX were formed after simulations of solvent evaporation, while the hydrogen bond interactions of RTV-PLX was observed during melt method simulations. These results indicate the successful formulation of amorphous solid dispersion (ASD) from RTV and PLX. The RMSD values obtained from the solvent evaporation, melt-cooling-A, melt-cooling-B, and melt-cooling-C methods were 3.33 Å, 1.97 Å, 1.30 Å, and 1.29 Å, respectively, while the average RMSF values were 2.65 Å, 1.04 Å, 1.05 Å, and 1.07 Å, respectively. This indicates that the suppression of translational motion of RTV from the melt method can be stronger than solvent evaporation caused by the intermolecular interactions of RTV-PLX. Conclusion MD simulations helped in understanding the formation and interaction mechanisms of ASD formulations that were difficult to detect by experimental approaches.
Collapse
Affiliation(s)
- Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Adnan Aly Al Shofwan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
6
|
Hatipoglu MK, Zaker Y, Willett DR, Gupta N, Rodriguez JD, Patankar S, Capella P, Yilmaz H. Old Polymorph, New Technique: Assessing Ritonavir Crystallinity Using Low-Frequency Raman Spectroscopy. Anal Chem 2023; 95:15325-15332. [PMID: 37796650 DOI: 10.1021/acs.analchem.3c02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Two decades ago, postmarket discovery of a second crystal form of ritonavir with lower solubility had major implications for drug manufacturers and patients. Since then, ritonavir has been reformulated via the hot-melt-extrusion process in an amorphous form. Here, quantitative low- and mid-frequency Raman spectroscopy methods were developed to characterize polymorphs, form I and form II, in commercial ritonavir 100 mg oral tablets as an alternate analysis approach compared to X-ray powder diffraction (XRPD). Crystallization in three lots of ritonavir products obtained from four separate manufacturers was assessed after storage under accelerated conditions at 40 °C and 75% relative humidity (RH). Results were compared with quantitative XRPD methods developed and validated according to ICH Q2 (R1) guidelines. In a four-week open-dish study, form I crystallization occurred in two of the four products and form II crystallization was detected in another ritonavir product. The limits of detection for XRPD, low-frequency Raman (LFR), and mid-frequency Raman (MFR) were determined to be 0.7, 0.8, and 0.5% for form I and 0.6, 0.6, and 1% for form II, respectively. Root-mean-squared-error of predictions were 0.6-1.0 and 0.6-2.5% for LFR- and MFR-based partial least-squares models. Further, ritonavir polymorphs could also be identified and detected directly from ritonavir tablets using transmission LFR. In summary, LFR was applied for the assessment of polymorphism in real-world samples. While providing analytical performance similar to conventional techniques, LFR reduced the single measurement time from 66 min (XRPD) to 10 s (LFR) without the need for tedious sample preparation procedures.
Collapse
Affiliation(s)
- Manolya K Hatipoglu
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri 63110, United States
| | - Yeakub Zaker
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri 63110, United States
| | - Daniel R Willett
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri 63110, United States
| | - Nirzari Gupta
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri 63110, United States
| | - Jason D Rodriguez
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri 63110, United States
| | - Suhas Patankar
- Division of Immediate & Modified Release Products II, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Peter Capella
- Division of Immediate & Modified Release Products II, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Huzeyfe Yilmaz
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Wu H, Wang Z, Zhao Y, Gao Y, Wang L, Zhang H, Bu R, Ding Z, Han J. Effect of Different Seed Crystals on the Supersaturation State of Ritonavir Tablets Prepared by Hot-Melt Extrusion. Eur J Pharm Sci 2023; 185:106440. [PMID: 37004961 DOI: 10.1016/j.ejps.2023.106440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Hot-melt extrusion (HME) is a technology increasingly common for the commercial production of pharmaceutical amorphous solid dispersions (ASDs), especially for poorly water-soluble active pharmaceutical ingredients (APIs). However, recrystallization of the APIs during dissolution must be prevented to maintain the supersaturation state enabled by ASD. Unfortunately, the amorphous formulation may be contaminated by seed crystals during the HME manufacturing process, which could lead to undesirable crystal growth during the dissolution process. In this study, the dissolution behavior of ritonavir ASD tablets prepared using both Form I and Form II polymorphs was examined, and the effects of different seed crystals on crystal growth rates were investigated. The aim was to understand how the presence of seed crystals can impact the dissolution of ritonavir, and to determine the optimal polymorph and seeding conditions for the production of ASDs. The results showed that both Form I and Form II ritonavir tablets had similar dissolution profiles, which were also similar to the reference listed drug (RLD). However, it was observed that the presence of seed crystals, particularly the metastable Form I seed, led to more precipitation compared to the stable Form II seed in all formulations. The Form I crystals that precipitated from the supersaturated solution were easily dispersed in the solution and could serve as seeds to facilitate crystal growth. On the other hand, Form II crystals tended to grow more slowly and presented as aggregates. The addition of both Form I and Form II seeds could affect their precipitation behaviors, and the amount and form of the seeds had significant effects on the precipitation process of the RLD tablets, as are the tablets prepared with different polymorphs. In conclusion, the study highlights the importance of minimizing the contamination risk of seed crystals during the manufacturing process and selecting the appropriate polymorph for the production of ASDs.
Collapse
|
8
|
Wu H, Wang Z, Zhao Y, Gao Y, Zhang H, Wang L, Wang Z, Han J. Effect of Span 20 Feeding Zone in the Twin Screw Extruder on the Properties of Amorphous Solid Dispersion of Ritonavir. Pharmaceutics 2023; 15:pharmaceutics15020441. [PMID: 36839764 PMCID: PMC9960583 DOI: 10.3390/pharmaceutics15020441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A ternary amorphous solid dispersion (ASD) system consisting of drug/polymer/surfactant is receiving increased attention to improve the oral bioavailability of poorly water-soluble drugs. The effect of polymers has been extensively studied, while the impact of surfactants has not yet to be studied to the same extent. Challenging questions to be answered are whether the surfactants should be added with the drug or separately and the resulting differences between the two operating processes. By adjusting the liquid feeding zone for Span 20 in the hot-melt twin screw extruder equipment, we investigated the effect of Span 20 on the properties of the polyvinylpyrrolidone/vinyl acetate (PVPVA)-based ASD formulations of ritonavir. We found that with the delayed feeding positions of Span 20 in the twin screw extruder, the ability of the ternary ASDs to maintain the supersaturation of the milled extrudates was observed to be significantly enhanced. Furthermore, adding surfactant after a thorough mixing of polymer and drug could decrease the molecular mobility of ternary ASD formulations. In addition, the effects of Span 20 on the complex viscosity and structure of PVPVA were also investigated. The delayed addition of Span 20 could improve the complex viscosity of PVPVA, thus leading to the drug precipitation inhibition. In conclusion, the delayed addition of Span 20 in the twin screw extruder and prolonging the mixing time of the drug and polymer may be critical to the maintenance of supersaturation.
Collapse
Affiliation(s)
- Hengqian Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng 252059, China
| | - Yanna Zhao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lili Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhe Wang
- Anhui Biochem Biopharmaceutical Co., Ltd., Hefei 230088, China
| | - Jun Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng 252059, China
- Correspondence: ; Tel.: +86-0635-8239136
| |
Collapse
|
9
|
Recent Advances in Amorphous Solid Dispersions: Preformulation, Formulation Strategies, Technological Advancements and Characterization. Pharmaceutics 2022; 14:pharmaceutics14102203. [PMID: 36297638 PMCID: PMC9609913 DOI: 10.3390/pharmaceutics14102203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are among the most popular and widely studied solubility enhancement techniques. Since their inception in the early 1960s, the formulation development of ASDs has undergone tremendous progress. For instance, the method of preparing ASDs evolved from solvent-based approaches to solvent-free methods such as hot melt extrusion and Kinetisol®. The formulation approaches have advanced from employing a single polymeric carrier to multiple carriers with plasticizers to improve the stability and performance of ASDs. Major excipient manufacturers recognized the potential of ASDs and began introducing specialty excipients ideal for formulating ASDs. In addition to traditional techniques such as differential scanning calorimeter (DSC) and X-ray crystallography, recent innovations such as nano-tomography, transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray microscopy support a better understanding of the microstructure of ASDs. The purpose of this review is to highlight the recent advancements in the field of ASDs with respect to formulation approaches, methods of preparation, and advanced characterization techniques.
Collapse
|
10
|
Bhanushali JS, Dhiman S, Nandi U, Bharate SS. Molecular interactions of niclosamide with hydroxyethyl cellulose in binary and ternary amorphous solid dispersions for synergistic enhancement of water solubility and oral pharmacokinetics in rats. Int J Pharm 2022; 626:122144. [PMID: 36029996 DOI: 10.1016/j.ijpharm.2022.122144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
The cellulose-based polymers are extensively employed in oral formulations for addressing ADMET issues of API. Herein, we report the synergistic effect of hydroxyethyl cellulose in solubility/dissolution enhancement of BCS class II, anthelmintic drug niclosamide. The low solubility and poor oral bioavailability are the primary reasons for its high daily dose. The amorphous solid dispersions (ASDs) developed herein demonstrated reproducible solubility and dissolution enhancement in smaller-to-pilot batches. The significant boost in niclosamide solubility in HEC-based binary SD was rationalized as a result of intermolecular H-bonding as indicated by in-silico studies and further supported by characterization data. HEC is plausibly inhibiting the precipitation of drug and thereby enabling high dissolution and permeation across the membrane. The comparative oral pharmacokinetics in Wistar rats at 25 mg/kg provided 4.4-fold higher plasma exposure of niclosamide in SD formulation SB-ASD-N2 over the plain drug. The results presented herein warrant validation of this ASD under clinical settings. Teaser Amorphous solid dispersions of niclosamide.
Collapse
Affiliation(s)
- Jigar S Bhanushali
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sumit Dhiman
- PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Utpal Nandi
- PK-PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
11
|
Formulation and In Vitro Characterization of a Vacuum-Dried Drug–Polymer Thin Film for Intranasal Application. Polymers (Basel) 2022; 14:polym14142954. [PMID: 35890730 PMCID: PMC9320708 DOI: 10.3390/polym14142954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Intranasal drug applications show significant therapeutic potential for diverse pharmaceutical modalities. Because the formulation applied to the nasal cavity is discharged to the pharyngeal side by mucociliary clearance, the formulation should be dissolved effectively in a limited amount of mucus within its retention time in the nasal cavity. In this study, to develop novel formulations with improved dissolution behavior and compatibility with the intranasal environment, a thin-film formulation including drug and polymer was prepared using a vacuum-drying method. The poorly water-soluble drugs ketoprofen, flurbiprofen, ibuprofen, and loxoprofen were dissolved in a solvent comprising water and methanol, and evaporated to obtain a thin film. Physical analyses using differential scanning calorimetry (DSC), powder X-ray diffraction analysis (PXRD), and scanning electron microscopy SEM revealed that the formulations were amorphized in the film. The dissolution behavior of the drugs was investigated using an in vitro evaluation system that mimicked the intranasal physiological environment. The amorphization of drugs formulated with polymers into thin films using the vacuum-drying method improved the dissolution rate in artificial nasal fluid. Therefore, the thin film developed in this study can be safely and effectively used for intranasal drug application.
Collapse
|
12
|
Yang R, Zhang GGZ, Kjoller K, Dillon E, Purohit HS, Taylor LS. Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm 2022; 619:121708. [PMID: 35364219 DOI: 10.1016/j.ijpharm.2022.121708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
Abstract
Amorphous-amorphous phase separation (AAPS) is an important phase transition process for amorphous solid dispersion (ASD) performance both in terms of drug release as well as physical and chemical stability during storage. Addition of surfactants to ASD systems can impact both of these processes. One possible mechanism through which surfactants affect ASD performance is via their impact on AAPS. Unfortunately, despite their increasing usage in ASD formulations, the effect of surfactant on AAPS is still poorly understood, and there are limited analytical techniques that provide microstructural and composition information about phase separated ASDs. In this study, the impact of four surfactants (sodium dodecyl sulfate, Tween 80, Span 20 and Span 85) on water-induced phase separation in ASDs formulated with ritonavir and polyvinylpyrrolidone/vinyl acetate (PVPVA) was investigated using a variety of orthogonal analytical methods. Transparent films of ASDs with different compositions were prepared by spin coating. Fluorescence confocal microscopy in combination with an in situ humidity chamber was used to monitor the kinetics and morphology of phase separation following exposure to high relative humidity. Optical photothermal IR analysis of phase separated films enabled characterization of domain composition and surfactant distribution. Liquid-liquid phase separation concentration, zeta potential and solution nuclear magnetic resonance spectroscopy measurements enabled interpretation of interaction with and partition of surfactants into the drug-rich phase. It was found that phase separation kinetics and morphology were notably changed by the surfactants. Further, the surfactants showed different affinities for the drug-rich versus the aqueous/polymer-rich phases. The employed analytical techniques were found to be complementary in providing insight into surfactant location in phase separated systems. This study highlights the complexity of phase separation, especially in the presence of surfactants, and provides a foundation to understand the impact of AAPS on ASD performance.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Geoff G Z Zhang
- Drug Product Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Kevin Kjoller
- Photothermal Spectroscopy Corp, Santa Barbara, CA 93101, USA
| | - Eoghan Dillon
- Photothermal Spectroscopy Corp, Santa Barbara, CA 93101, USA
| | - Hitesh S Purohit
- Drug Product Development, AbbVie Inc., North Chicago, IL 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Patel NG, Serajuddin ATM. Moisture sorption by polymeric excipients commonly used in amorphous solid dispersion and its effect on glass transition temperature: I. Polyvinylpyrrolidone and related copolymers. Int J Pharm 2022; 616:121532. [PMID: 35121046 DOI: 10.1016/j.ijpharm.2022.121532] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
Moisture plays a critical role in the stability of amorphous solid dispersions (ASD) as it can lower the glass transition temperature (Tg) and thereby increase molecular mobility resulting in drug crystallization. A systematic study on moisture sorption by four polyvinylpyrrolidone (PVP) having different molecular weights (Kollidon® 12, 17, 30, and 90) and two related copolymers (Kollidon® VA64; Soluplus®) was conducted at 25 and 40 °C as a function of relative humidity to determine effects of absorbed moisture on Tg and potential stability of ASDs. A VTI dynamic moisture sorption analyzer was used, where experimental conditions were first established such that equilibrium was reached and there was no significant hysteresis loop between sorption and desorption isotherms. The PVPs had identical moisture sorption profiles and were highly hygroscopic, reaching 22-24% and 41-42% w/w moisture at 25 °C/60% RH and 25 °C/80% RH, respectively. Kollidon® VA64 and Soluplus® were relatively less hygroscopic, reaching, respectively, about half and one-fourth the moisture content of PVPs at 25 °C/60% RH. Moisture sorption at 40 °C was relatively lower than that at 25 °C. The high moisture sorption drastically decreased Tg of polymers, which roughly agreed with theoretical calculations based on the Gordon-Taylor/Kelley-Bueche equation, although deviation occurred, possibly due to hydrogen bonding between polymer and moisture.
Collapse
Affiliation(s)
- Nirali G Patel
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
14
|
Chaudhari KR, Savjani JK, Savjani KT, Shah H. Improved Pharmaceutical Properties of Ritonavir through Co-crystallization Approach with Liquid Assisted Grinding Method. Drug Dev Ind Pharm 2022; 47:1633-1642. [PMID: 35156497 DOI: 10.1080/03639045.2022.2042553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ritonavir is a BCS class II antiretroviral agent which shows poor aqueous solubility and low oral bioavailability. The cocrystallization approach was selected to overcome these problems and to improve the physicochemical and mechanical properties of Ritonavir. The novel pharmaceutical Ritonavir-L-tyrosine cocrystals (RTC at a molar ratio of 1:1) were synthesized using the liquid assisted grinding (LAG) method. The possibility of molecular interactions between drug and coformer were studied using Gold software version 5.2. The newly formed crystalline solid phase was characterized through Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Solid-State Nuclear magnetic resonance (SSNMR). The improved pharmaceutical properties were confirmed by solubility, dissolution, and powder compaction study. The prepared cocrystals exhibited an 11.24-fold increase in solubility and a 3.73-fold increase in % of drug release at 1 h compared to pure drug. Tabletability and compaction behaviour of the pure drug and cocrystal with added excipients assessed. The tabletability profile of cocrystals showed enhanced tabletting performance as compared to pure drug. The stability studies revealed that cocrystals were stable for at least one month when stored at 40 °C/75% RH and 25 °C/60% RH conditions. The cocrystallization approach was found to be very promising and showed an overall improved performance of Ritonavir.
Collapse
Affiliation(s)
| | - Jignasa K Savjani
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | | | - Harsh Shah
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201, USA
| |
Collapse
|
15
|
Alvarenga BRD, Moseson DE, Carneiro RL, Taylor LS. Impact of Polymer Type on Thermal Degradation of Amorphous Solid Dispersions Containing Ritonavir. Mol Pharm 2022; 19:332-344. [PMID: 34910485 DOI: 10.1021/acs.molpharmaceut.1c00823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-temperature exposure during hot melt extrusion processing of amorphous solid dispersions may result in thermal degradation of the drug. Polymer type may influence the extent of degradation, although the underlying mechanisms are poorly understood. In this study, the model compound, ritonavir (Tm = 126 °C), undergoes thermal degradation upon high-temperature exposure. The extent of degradation of ritonavir in amorphous solid dispersions (ASDs) formulated with poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone) vinyl acetate copolymer (PVP/VA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and hydroxypropyl methylcellulose (HPMC) following isothermal heating and hot melt extrusion was evaluated, and mechanisms related to molecular mobility and intermolecular interactions were assessed. Liquid chromatography-mass spectrometry (LC-MS/MS) studies were used to determine the degradation products and pathways and ultimately the drug-polymer compatibility. The dominant degradation product of ritonavir was the result of a dehydration reaction, which then catalyzed a series of hydrolysis reactions to generate additional degradation products, some newly reported. This reaction series led to accelerated degradation rates with protic polymers, HPMCAS and HPMC, while ASDs with aprotic polymers, PVP and PVP/VA, had reduced degradation rates. This work has implications for understanding mechanisms of thermal degradation and drug-polymer compatibility with respect to the thermal stability of amorphous solid dispersions.
Collapse
Affiliation(s)
- Benedito Roberto de Alvarenga
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Federal University of São Carlos, Rod Washington Luís km 235, ZIP 13560-905 São Carlos, SP, Brazil
| | - Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Renato Lajarim Carneiro
- Department of Chemistry, Federal University of São Carlos, Rod Washington Luís km 235, ZIP 13560-905 São Carlos, SP, Brazil
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Kapourani A, Tzakri T, Valkanioti V, Kontogiannopoulos KN, Barmpalexis P. Drug crystal growth in ternary amorphous solid dispersions: Effect of surfactants and polymeric matrix-carriers. Int J Pharm X 2021; 3:100086. [PMID: 34151251 PMCID: PMC8193146 DOI: 10.1016/j.ijpx.2021.100086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023] Open
Abstract
The present study evaluates the crystal growth rate of amorphous drugs when dispersed in different ternary polymeric amorphous solid dispersions (ASDs) in the presence of surfactants. Specifically, ternary ASDs of aprepitant (APT, selected as a model drug) were prepared via melt-quench cooling by evaluating three commonly used ASDs matrix/carriers, namely hydroxypropyl cellulose (HPC), poly(vinylpyrrolidone) (PVP) and the copolymer Soluplus® (SOL), and two suitable surfactants, namely d-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P407). Results showed that all components were completely miscible (verified via hot stage polarized microscopy) and both surfactants were acting as plasticizers to the API. APT's crystal growth rate was increased in the presence of both P407 and TPGS, while PVP was identified as the matrix/carrier with the greatest impact API's crystal growth rate inhibition. Interestingly, TPGS presented a noticeable synergistic effect when combined with PVP resulting in a further reduction of APT's crystal growth rate. Furthermore, evaluation of APT's nucleation induction time in dissolution medium (PBS pH 6.8) revealed PVP as the most effective crystallization inhibitor, whereas the addition of TPGS showed to improve PVP's ability to inhibit APT's recrystallization. Finally, the formation of intermolecular interactions in the ternary APT-PVP-TPGS provided an explanation for the observed PVP-TPGS synergistic effects, with molecular dynamics simulations being able to unravel the type and extent of these interactions on a theoretical basis.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Theodora Tzakri
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasiliki Valkanioti
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|