1
|
Poostiyan N, Barati M, Shahmoradi Z, Saber M. Clinical and Dermoscopic Comparison of the Efficacy and Safety of 5% Fluorouracil Topical Cream and 1% Niacinamide Topical Gel in the Treatment of Actinic Keratosis: A Randomized Controlled Trial. J Cosmet Dermatol 2024:e16676. [PMID: 39587989 DOI: 10.1111/jocd.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Actinic keratosis (AK) is a common skin condition treated by dermatologists; however, the effectiveness, superiority, and potential side effects of current treatment protocols are still debated. AIM This study aimed to compare the effectiveness and safety of 5% fluorouracil topical cream and 1% niacinamide topical gel in patients with AK. METHODS In a randomized clinical trial, 26 patients with 95 AK lesions were assigned to receive either 5% fluorouracil topical cream twice daily for 4 weeks or 1% niacinamide topical gel twice daily for 3 months. Photography and dermoscopy before and after treatment were used to evaluate the outcomes. RESULTS The study included 26 patients who underwent randomization and treatment. Analysis of the improvement response after treatment through photography and dermoscopy scores, as well as patients' perspectives, showed that the fluorouracil group had significantly better outcomes than the niacinamide group. However, treatment complications including burning, itching, and erythema were significantly more frequent in the fluorouracil group than in the niacinamide group. CONCLUSIONS Although 5% fluorouracil cream is more effective than 1% niacinamide gel in treating AK lesions, it is also associated with more frequent side effects.
Collapse
Affiliation(s)
- Nazila Poostiyan
- Department of Dermatology, Skin Diseases and Leishmaniasis Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Barati
- Department of Dermatology, Skin Diseases and Leishmaniasis Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zabiholah Shahmoradi
- Department of Dermatology, Skin Diseases and Leishmaniasis Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Saber
- Department of Dermatology, Skin Diseases and Leishmaniasis Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Duan Q, Ye Z, Zhou K, Wang F, Lian C, Shang Y, Liu H. An Investigation into the Transdermal Behavior of Active Ingredients by Combination of Experiments and Multiscale Simulations. J Phys Chem B 2024; 128:6327-6337. [PMID: 38913878 DOI: 10.1021/acs.jpcb.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Transdermal behavior is a critical aspect of studying delivery systems and evaluating the efficacy of cosmetics. However, existing methods face challenges such as lengthy experiments, high cost, and limited model accuracy. Therefore, developing accurate transdermal models is essential for formulation development and effectiveness assessment. In this study, we developed a multiscale model to describe the transdermal behavior of active ingredients in the stratum corneum. Molecular dynamics simulations were used to construct lipid bilayers and determine the diffusion coefficients of active ingredients in different regions of these bilayers. These diffusion coefficients were integrated into a multilayer lipid pathway model using finite element simulations. The simulation results were in close agreement with our experimental results for three active ingredients (mandelic acid (MAN), nicotinamide (NIC), and pyruvic acid (PYR)), demonstrating the effectiveness of our multiscale model. This research provides valuable insights for advancing transdermal delivery methods.
Collapse
Affiliation(s)
- Qi Duan
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kangfu Zhou
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Xu L, Kasting GB. Solvent and Crystallization Effects on the Dermal Absorption of Hydrophilic and Lipophilic Compounds. J Pharm Sci 2024; 113:948-960. [PMID: 37797884 DOI: 10.1016/j.xphs.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
This study probes the mechanisms by which volatile solvents (water, ethanol) and a nonionic surfactant (Triton X-100) influence the skin permeation of dissolved solutes following deposition of small doses onto unoccluded human skin. A secondary objective was to sharpen guidelines for the use of these and other simple solvent systems for dermal safety testing of cosmetic ingredients at finite doses. Four solutes were studied - niacinamide, caffeine, testosterone and geraniol - at doses close to that estimated to saturate the upper layers of the stratum corneum. Methods included tensiometry, visualization of spreading on skin, polarized light microscopy and in vitro permeation testing using radiolabeled solutes. Ethanol, aqueous ethanol and dilute aqueous Triton solutions all yielded surface tensions below 36 mN/m, allowing them to spread easily on the skin, unlike water (72.4 mN/m) which did not spread. Deposition onto skin of niacinamide (32 μg·cm-2) or caffeine (3.2 μg·cm-2) from water and ethanol led to crystalline deposits on the skin surface, whereas the same amounts applied from aqueous ethanol and 2 % Triton did not. Skin permeation of these compounds was inversely correlated to the extent of crystallization. A separate study with caffeine showed the absence of a dose-related skin permeability increase with Triton. Permeation of testosterone (8.2 μg·cm-2) was modestly increased when dosed from aqueous ethanol versus ethanol. Permeation of geraniol (2.9 μg·cm-2) followed the order aqueous ethanol > water ∼ 2 % Triton >> ethanol and was inversely correlated with evaporative loss. We conclude that, under the conditions tested, aqueous ethanol and Triton serve primarily as deposition aids and do not substantially disrupt stratum corneum lipids. Implications for the design of in vitro skin permeability tests are discussed.
Collapse
Affiliation(s)
- Lijing Xu
- James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
4
|
Vennila M, Rathikha R, Muthu S, Jeelani A, Irfan A. Theoretical structural analysis (FT-IR, FT-R), solvent effect on electronic parameters NLO, FMO, NBO, MEP, UV (IEFPCM model), Fukui function evaluation with pharmacological analysis on methyl nicotinate. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Alinaghi A, Macedo A, Cheruvu HS, Holmes A, Roberts MS. Human epidermal in vitro permeation test (IVPT) analyses of alcohols and steroids. Int J Pharm 2022; 627:122114. [PMID: 35973591 DOI: 10.1016/j.ijpharm.2022.122114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/22/2022]
Abstract
This study examined a number of factors that can impact the outcomes of in vitro human epidermal permeation coefficients for aliphatic alcohols and steroids, including receptor phase composition and study conditions. We determined experimentally the solubilities and IVPT permeation of a homologous series of 14C labeled aliphatic alcohols (ethanol, propanol, pentanol, heptanol, octanol and decanol) in different receptor fluids as recommended by Organisation Economic Co-operation and Development (OECD). We used human epidermal membranes at 25°C and phosphate-buffered saline (PBS), 2% w/v bovine serum albumin (2%w/v BSA), 50% v/v ethanol and 0.1, 2 and 6% w/v Oleth-20 receptor phases. We also explored and confirmed the discrepancies between in vitro human epidermal permeability coefficients (kp) and diffusion lag times for steroids from Scheuplein's group with our own work and that of others. The main reason for the observed differences is not clear but is likely to be multifactorial, including the effects of diffusion cell design, receptor phase solubility, unstirred receptor phase effects, epidermal membrane hydration, diffusion cell configuration, transport through appendageal pathways and steroid lipophilicity. We conclude with a summary of experimental conditions that should be considered in undertaking IVPT studies.
Collapse
Affiliation(s)
- Azadeh Alinaghi
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Ana Macedo
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Hanumanth S Cheruvu
- Diamantina Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Amy Holmes
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia
| | - Michael S Roberts
- Clinical and Medical Sciences, University of South Australia, Adelaide, Australia and The Basil Hetzel Institute for Translational Health Research, Adelaide, Australia; Diamantina Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
6
|
Tonnis K, Nitsche JM, Xu L, Haley A, Jaworska J, Kasting GB. Impact of solvent dry down, vehicle pH and slowly reversible keratin binding on skin penetration of cosmetic relevant compounds: I. Liquids. Int J Pharm 2022; 624:122030. [PMID: 35863596 DOI: 10.1016/j.ijpharm.2022.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
To measure progress and evaluate performance of the newest UB/UC/P&G skin penetration model we simulated an 18-compound subset of finite dose in vitro human skin permeation data taken from a solvent-deposition study of cosmetic-relevant compounds (Hewitt et al., J. Appl. Toxicol. 2019, 1-13). The recent model extension involved slowly reversible binding of solutes to stratum corneum keratins. The selected subset was compounds that are liquid at skin temperature. This set was chosen to distinguish between slow binding and slow dissolution effects that impact solid phase compounds. To adequately simulate the physical experiments there was a need to adjust the evaporation mass transfer coefficient to better represent the diffusion cell system employed in the study. After this adjustment the model successfully predicted both dermal delivery and skin surface distribution of 12 of the 18 compounds. Exceptions involved compounds that were cysteine-reactive, highly water-soluble or highly ionized in the dose solution. Slow binding to keratin, as presently parameterized, was shown to significantly modify the stratum corneum kinetics and diffusion lag times, but not the ultimate disposition, of the more lipophilic compounds in the dataset. Recommendations for further improvement of both modeling methods and experimental design are offered.
Collapse
Affiliation(s)
- Kevin Tonnis
- College of Engineering and Applied Science, The University of Cincinnati, Cincinnati, OH 45221, USA
| | - Johannes M Nitsche
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Lijing Xu
- The James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA
| | - Alison Haley
- College of Engineering and Applied Science, The University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joanna Jaworska
- The Procter & Gamble Company, Data and Modeling Sciences, Brussels Innovation Center, Belgium
| | - Gerald B Kasting
- The James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
7
|
Mainville L, Smilga AS, Fortin PR. Effect of Nicotinamide in Skin Cancer and Actinic Keratoses Chemoprophylaxis, and Adverse Effects Related to Nicotinamide: A Systematic Review and Meta-Analysis. J Cutan Med Surg 2022; 26:297-308. [PMID: 35134311 PMCID: PMC9125143 DOI: 10.1177/12034754221078201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oral nicotinamide is recommended in individuals with a field of cancerization or with ≥1 previous cutaneous squamous cell carcinoma (cSCC). OBJECTIVE To evaluate the effect of nicotinamide in prevention of skin cancers. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials to evaluate the effect of nicotinamide. We used Medline, EMBASE, CENTRAL, and Web of Science databases from their inception to October 2020 to search the following concepts: "nicotinamide"; "randomized controlled trial" (validated filters). Two independent reviewers screened titles and abstracts for intervention and study design before searching full texts for eligibility criteria. To be eligible, ≥1 outcome had to be covered. We used a standardized collection grid to complete data extraction in duplicate. The primary outcome was skin cancers (all types). Secondary outcomes were basal cell carcinomas (BCCs); cSCCs; actinic keratoses; melanomas; digestive, cutaneous, and biochemical adverse effects (AEs). Subgroup analyses were planned a priori. RESULTS We screened 4730 citations and found 29 trials (3039 patients) meeting inclusion criteria. Nicotinamide was associated with a significant reduction in skin cancers compared to control (rate ratio 0.50 (95% CI, 0.29-0.85; I 2 = 64%; 552 patients; 5 trials); moderate strength of the evidence). Heterogeneity was explained by risk of bias. Nicotinamide was associated with a significant reduction in BCCs and cSCCs, and increased risk of digestive AEs. CONCLUSION Oral nicotinamide should be considered in healthy patients or organ transplant recipients with history of skin cancer (GRADE: weak recommendation; moderate-quality evidence), in particular of BCC and cSCC.
Collapse
Affiliation(s)
| | | | - Paul R. Fortin
- Infectious and Immune Diseases, Centre de recherche du CHU de Québec – Université Laval, Quebec, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec – Université Laval, Quebec, Canada
| |
Collapse
|
8
|
Miller MA, Kasting GB. Absorption of solvent-deposited weak electrolytes and their salts through human skin in vitro. Int J Pharm 2022; 620:121753. [DOI: 10.1016/j.ijpharm.2022.121753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
|
9
|
Yu F, Tonnis K, Xu L, Jaworska J, Kasting GB. Modeling the Percutaneous Absorption of Solvent-deposited Solids Over a Wide Dose Range. J Pharm Sci 2021; 111:769-779. [PMID: 34627876 DOI: 10.1016/j.xphs.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
The transient absorption of two skin care agents, niacinamide (nicotinamide, NA) and methyl nicotinate (MN), solvent-deposited on ex vivo human skin mounted in Franz diffusion cells has been analyzed according to a new variation on a recently published mechanistic skin permeability model (Yu et al. 2020. J Pharm Sci 110:2149-56). The model follows the absorption and evaporation of two components, solute and solvent, and it includes both a follicular transport component and a dissolution rate limitation for high melting, hydrophilic solids deposited on the skin. Explicit algorithms for improving the simulation of transient diffusion of solvent-deposited solids are introduced. The simulations can account for the ex vivo skin permeation time course of both NA and MN over a dose range exceeding 4.5 orders of magnitude. The model allows one to describe on a mechanistic basis why the percutaneous absorption rate of NA is approximately 60-fold lower than that of its lower melting, more lipophilic analog, MN. It furthermore suggests that MN perturbs stratum corneum barrier lipids and increases their permeability while NA does not, presenting a challenge to molecular modelers engaged in simulating biological lipid barriers.
Collapse
Affiliation(s)
- Fang Yu
- College of Engineering and Applied Science, The University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin Tonnis
- College of Engineering and Applied Science, The University of Cincinnati, Cincinnati, Ohio, USA
| | - Lijing Xu
- The James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, Ohio, USA
| | - Joanna Jaworska
- The Procter & Gamble Company, Data and Modeling Sciences, Brussels Innovation Center, Belgium
| | - Gerald B Kasting
- The James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|