1
|
Zhang J, Chang J, Chen V, Beg MA, Huang W, Vick L, Wang Y, Zhang H, Yttre E, Gupta A, Castleberry M, Zhang Z, Dai W, Song S, Zhu J, Yang M, Brown AK, Xu Z, Ma YQ, Smith BC, Zielonka J, Traylor JG, Dhaou CB, Orr AW, Cui W, Zheng Z, Chen Y. Oxidized LDL regulates efferocytosis through the CD36-PKM2-mtROS pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556574. [PMID: 39071358 PMCID: PMC11275753 DOI: 10.1101/2023.09.07.556574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Macrophage efferocytosis, the process by which phagocytes engulf and remove apoptotic cells (ACs), plays a critical role in maintaining tissue homeostasis. Efficient efferocytosis prevents secondary necrosis, mitigates chronic inflammation, and impedes atherosclerosis progression. However, the regulatory mechanisms of efferocytosis under atherogenic conditions remain poorly understood. We previously demonstrated that oxidized LDL (oxLDL), an atherogenic lipoprotein, induces mitochondrial reactive oxygen species (mtROS) in macrophages via CD36. In this study, we demonstrate that macrophage mtROS facilitate continual efferocytosis through a positive feedback mechanism. However, oxLDL disrupts continual efferocytosis by dysregulating the internalization of ACs. This disruption is mediated by an overproduction of mtROS. Mechanistically, oxLDL/CD36 signaling promotes the translocation of cytosolic PKM2 to mitochondria, facilitated by the chaperone GRP75. Mitochondrial PKM2 then binds to Complex III of the electron transport chain, inducing mtROS production. This study elucidates a novel regulatory mechanism of efferocytosis in atherosclerosis, providing potential therapeutic targets for intervention. SUMMARY Macrophages clear apoptotic cells through a process called efferocytosis, which involves mitochondrial ROS. However, the atherogenic oxidized LDL overstimulates mitochondrial ROS via the CD36-PKM2 pathway, disrupting continual efferocytosis. This finding elucidates a novel molecular mechanism that explains defects in efferocytosis, driving atherosclerosis progression.
Collapse
|
2
|
Ward NP, Yoon SJ, Flynn T, Sherwood AM, Olley MA, Madej J, DeNicola GM. Mitochondrial respiratory function is preserved under cysteine starvation via glutathione catabolism in NSCLC. Nat Commun 2024; 15:4244. [PMID: 38762605 PMCID: PMC11102494 DOI: 10.1038/s41467-024-48695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Sang Jun Yoon
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tyce Flynn
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Amanda M Sherwood
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maddison A Olley
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Juliana Madej
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
3
|
Bukhteeva I, Rahman FA, Kendall B, Duncan RE, Quadrilatero J, Pavlov EV, Gingras MJP, Leonenko Z. Effects of lithium isotopes on sodium/lithium co-transport and calcium efflux through the sodium/calcium/lithium exchanger in mitochondria. Front Physiol 2024; 15:1354091. [PMID: 38655027 PMCID: PMC11036541 DOI: 10.3389/fphys.2024.1354091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
The effects of lithium (Li) isotopes and their impact on biological processes have recently gained increased attention due to the significance of Li as a pharmacological agent and the potential that Li isotopic effects in neuroscience contexts may constitute a new example of quantum effects in biology. Previous studies have shown that the two Li isotopes, which differ in mass and nuclear spin, have unusual different effects in vivo and in vitro and, although some molecular targets for Li isotope fractionation have been proposed, it is not known whether those result in observable downstream neurophysiological effects. In this work we studied fluxes of Li+, sodium (Na+) and calcium (Ca2+) ions in the mitochondrial sodium/calcium/lithium exchanger (NCLX), the only transporter known with recognized specificity for Li+. We studied the effect of Li+ isotopes on Ca2+ efflux from heart mitochondria in comparison to natural Li+ and Na+ using Ca2+-induced fluorescence and investigated a possible Li isotope fractionation in mitochondria using inductively coupled plasma mass spectrometry (ICP-MS). Our fluorescence data indicate that Ca2+ efflux increases with higher concentrations of either Li+ or Na+. We found that the simultaneous presence of Li+ and Na+ increases Ca2+ efflux compared to Ca2+ efflux caused by the same concentration of Li+ alone. However, no differentiation in the Ca2+ efflux between the two Li+ isotopes was observed, either for Li+ alone or in mixtures of Li+ and Na+. Our ICP-MS data demonstrate that there is selectivity between Na+ and Li+ (greater Na+ than Li+ uptake) and, most interestingly, between the Li+ isotopes (greater 6Li+ than 7Li+ uptake) by the inner mitochondrial membrane. In summary, we observed no Li+ isotope differentiation for Ca2+ efflux in mitochondria via NCLX but found a Li+ isotope fractionation during Li+ uptake by mitochondria with NCLX active or blocked. Our results suggest that the transport of Li+ via NCLX is not the main pathway for Li+ isotope fractionation and that this differentiation does not affect Ca2+ efflux in mitochondria. Therefore, explaining the puzzling effects of Li+ isotopes observed in other contexts will require further investigation to identify the molecular targets for Li+ isotope differentiation.
Collapse
Affiliation(s)
- Irina Bukhteeva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Fasih A. Rahman
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Brian Kendall
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Robin E. Duncan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| | - Michel J. P. Gingras
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
4
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of Cardiac PFKFB2 Drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. J Am Heart Assoc 2024; 13:e033676. [PMID: 38533937 PMCID: PMC11179765 DOI: 10.1161/jaha.123.033676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.
Collapse
Affiliation(s)
- Kylene M. Harold
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Brooke L. Loveland
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
5
|
Kolay A, Kumar A. A Novel Liver Cancer POC Diagnostic Detection Technique by a Gate-engineered Source-extended TFET Device. Med Eng Phys 2024; 125:104133. [PMID: 38508806 DOI: 10.1016/j.medengphy.2024.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/05/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
This work reports a novel POC diagnostic technique to identify the cancerous liver cell lines by designing a Source-Extended (SE) Tunnel Field Effect Transistor (TFET) having a Single-Gate (SG) with Single-Metal (SM) and Dual-Metal (DM) structure. The proposed structures have been equipped with nanocavities by trenching the gate oxide layer where the needle biopsy obtained liver sample has been immobilized. The detection is based on the difference in drain current and the ratio of the proposed device's ON and OFF state currents, which has been evaluated by obtaining the sensitivities. The cancerous and non-cancerous liver cell lines possess different dielectric properties in high frequencies ranging from 100 MHz to 5 GHz, affecting the cavity region's effective capacitances. The change in the dielectric constant of the specimen at 900 MHz has been considered which results in the change in device drain current and device performance. Various parameters of the device, like the adhesive layer in the cavity region, the material of the gate, the length of the cavities, and the orientation of the cavities, have been modified to observe the performance. The total work has been done in the simulation environment, which includes the study considering the different proportions of cancerous and non-cancerous cells in a particular specimen. A comparative analysis has been made between the performance of the proposed SM and DM gate structure. The proposed detection method has been compared with the existing methods reported in the literature. The proposed method can be considered a novel technique and can be implemented as a point of care (POC) diagnostic to detect whether the specimen liver cell line is cancerous.
Collapse
Affiliation(s)
- Anirban Kolay
- Nextgen Adaptive Systems Group, Department of Electrical Engineering, National Institute of Technology Patna, Bihar, India
| | - Amitesh Kumar
- Nextgen Adaptive Systems Group, Department of Electrical Engineering, National Institute of Technology Patna, Bihar, India.
| |
Collapse
|
6
|
Peng Y, Liu X, Liu X, Cheng X, Xia L, Qin L, Guan S, Wang Y, Wu X, Wu J, Yan D, Liu J, Zhang Y, Sun L, Liang J, Shang Y. RCCD1 promotes breast carcinogenesis through regulating hypoxia-associated mitochondrial homeostasis. Oncogene 2023; 42:3684-3697. [PMID: 37903896 DOI: 10.1038/s41388-023-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023]
Abstract
Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.
Collapse
Affiliation(s)
- Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Leyi Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Sudun Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jianying Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
7
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of cardiac PFKFB2 drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568379. [PMID: 38045353 PMCID: PMC10690253 DOI: 10.1101/2023.11.22.568379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. Methods To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control (CON) mice, we characterized impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. Results cKO mice have a shortened lifespan of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase (PDH) activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to CON animals. Metabolomic, proteomic, and western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular (LV) dilation, represented by reduced fractional shortening and increased LV internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. Conclusions Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart. Clinical Perspective What is New?: We have generated a novel cardiomyocyte-specific knockout model of PFKFB2, the cardiac isoform of the primary glycolytic regulator Phosphofructokinase-2 (cKO).The cKO model demonstrates that loss of cardiac PFKFB2 drives metabolic reprogramming and shunting of glucose metabolites to ancillary metabolic pathways.The loss of cardiac PFKFB2 promotes electrophysiological and functional remodeling in the cKO heart.What are the Clinical Implications?: PFKFB2 is degraded in the absence of insulin signaling, making its loss particularly relevant to diabetes and the pathophysiology of diabetic cardiomyopathy.Changes which we observe in the cKO model are consistent with those often observed in diabetes and heart failure of other etiologies.Defining PFKFB2 loss as a driver of cardiac pathogenesis identifies it as a target for future investigation and potential therapeutic intervention.
Collapse
|