1
|
Ruiz-Villalba A, Guadix JA, Pérez-Pomares JM. Epicardium and Coronary Vessels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:155-166. [PMID: 38884710 DOI: 10.1007/978-3-031-44087-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital anomalies and acquired diseases of the coronary blood vessels are of great clinical relevance. The early diagnosis of these conditions remains, however, challenging. In order to improve our knowledge of these ailments, progress has to be achieved in the research of the molecular and cellular mechanisms that control development of the coronary vascular bed. The aim of this chapter is to provide a succint account of the key elements of coronary blood vessel development, especially in the context of the role played by the epicardium and epicardial cellular derivatives. We will discuss the importance of the epicardium in coronary blood vessel morphogenesis, from the contribution of the epicardially derived mesenchyme to these blood vessels to its role as an instructive signaling center, attempting to relate these concepts to the origin of coronary disease.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Campanillas (Málaga), Spain
| | - Juan Antonio Guadix
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Campanillas (Málaga), Spain
| | - José M Pérez-Pomares
- Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain.
- Instituto de Biomedicina de Málaga (IBIMA)-Plataforma BIONAND, Campanillas (Málaga), Spain.
| |
Collapse
|
2
|
Mei L, Chen Y, Chen P, Chen H, He S, Jin C, Wang Y, Hu Z, Li W, Jin L, Cong W, Wang X, Guan X. Fibroblast growth factor 7 alleviates myocardial infarction by improving oxidative stress via PI3Kα/AKT-mediated regulation of Nrf2 and HXK2. Redox Biol 2022; 56:102468. [PMID: 36113339 PMCID: PMC9482143 DOI: 10.1016/j.redox.2022.102468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myocardial infarction (MI) triggers oxidative stress, which worsen cardiac function, eventually leads to remodeling and heart failure. Unfortunately, effective therapeutic approaches are lacking. Fibroblast growth factor 7 (FGF7) is proved with respect to its proliferative effects and high expression level during embryonic heart development. However, the regulatory role of FGF7 in cardiovascular disease, especially MI, remains unclear. FGF7 expression was significantly decreased in a mouse model at 7 days after MI. Further experiments suggested that FGF7 alleviated MI-induced cell apoptosis and improved cardiac function. Mechanistic studies revealed that FGF7 attenuated MI by inhibiting oxidative stress. Overexpression of FGF7 actives nuclear factor erythroid 2-related factor 2 (Nrf2) and scavenging of reactive oxygen species (ROS), and thereby improved oxidative stress, mainly controlled by the phosphatidylinositol-3-kinase α (PI3Kα)/AKT signaling pathway. The effects of FGF7 were partly abrogated in Nrf2 deficiency mice. In addition, overexpression of FGF7 promoted hexokinase2 (HXK2) and mitochondrial membrane translocation and suppressed mitochondrial superoxide production to decrease oxidative stress. The role of HXK2 in FGF7-mediated improvement of mitochondrial superoxide production and protection against MI was verified using a HXK2 inhibitor (3-BrPA) and a HXKII VDAC binding domain (HXK2VBD) peptide, which competitively inhibits localization of HXK2 on mitochondria. Furthermore, inhibition of PI3Kα/AKT signaling abolished regulation of Nrf2 and HXK2 by FGF7 upon MI. Together, these results indicate that the cardio protection of FGF7 under MI injury is mostly attributable to its role in maintaining redox homeostasis via Nrf2 and HXK2, which is mediated by PI3Kα/AKT signaling. The expression of FGF7 in cardiomyocytes is decreased upon myocardial infarction (MI). Overexpression of FGF7 in the heart protects against cardiomyocytes apoptosis in a rodent model of MI. FGF7 attenuates MI-induced cardiac apoptosis via maintaining redox homeostasis. FGF7 maintains redox homeostasis by promoting mitochondrial HXK2 localization and Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Lin Mei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China; Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yunjie Chen
- Department of Pharmacy, Ningbo First Hospital, Ningbo, 315010, PR China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Huinan Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Wanqian Li
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou, 318000, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
3
|
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci 2022; 23:ijms23063220. [PMID: 35328640 PMCID: PMC8950551 DOI: 10.3390/ijms23063220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
The epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial–mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis. Although several lineage trace studies have provided some evidence about epicardial cell fate determination, the molecular mechanisms underlying epicardial cell heterogeneity remain not fully understood. Interestingly, seminal works during the last decade have pointed out that the adult epicardium is reactivated after heart damage, re-expressing some embryonic genes and contributing to cardiac remodeling. Therefore, the epicardium has been proposed as a potential target in the treatment of cardiovascular disease. In this review, we summarize the previous knowledge regarding the regulation of epicardial cell contribution during development and the control of epicardial reactivation in cardiac repair after damage.
Collapse
|
4
|
Borasch K, Richardson K, Plendl J. Cardiogenesis with a focus on vasculogenesis and angiogenesis. Anat Histol Embryol 2020; 49:643-655. [PMID: 32319704 DOI: 10.1111/ahe.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
The initial intraembryonic vasculogenesis occurs in the cardiogenic mesoderm. Here, a cell population of proendocardial cells detaches from the mesoderm that subsequently generates the single endocardial tube by forming vascular plexuses. In the course of embryogenesis, the endocardium retains vasculogenic, angiogenic and haematopoietic potential. The coronary blood vessels that sustain the rapidly expanding myocardium develop in the course of the formation of the cardiac loop by vasculogenesis and angiogenesis from progenitor cells of the proepicardial serosa at the venous pole of the heart as well as from the endocardium and endothelial cells of the sinus venosus. Prospective coronary endothelial cells and progenitor cells of the coronary blood vessel walls (smooth muscle cells, perivascular cells) originate from different cell populations that are in close spatial as well as regulatory connection with each other. Vasculo- and angiogenesis of the coronary blood vessels are for a large part regulated by the epicardium and epicardium-derived cells. Vasculogenic and angiogenic signalling pathways include the vascular endothelial growth factors, the angiopoietins and the fibroblast growth factors and their receptors.
Collapse
Affiliation(s)
- Katrin Borasch
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - Kenneth Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| |
Collapse
|
5
|
Abstract
The epicardium, the outermost tissue layer that envelops all vertebrate hearts, plays a crucial role in cardiac development and regeneration and has been implicated in potential strategies for cardiac repair. The heterogenous cell population that composes the epicardium originates primarily from a transient embryonic cell cluster known as the proepicardial organ (PE). Characterized by its high cellular plasticity, the epicardium contributes to both heart development and regeneration in two critical ways: as a source of progenitor cells and as a critical signaling hub. Despite this knowledge, there are many unanswered questions in the field of epicardial biology, the resolution of which will advance the understanding of cardiac development and repair. We review current knowledge in cross-species epicardial involvement, specifically in relation to lineage specification and differentiation during cardiac development.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| |
Collapse
|
6
|
Abstract
The heart is lined by a single layer of mesothelial cells called the epicardium that provides important cellular contributions for embryonic heart formation. The epicardium harbors a population of progenitor cells that undergo epithelial-to-mesenchymal transition displaying characteristic conversion of planar epithelial cells into multipolar and invasive mesenchymal cells before differentiating into nonmyocyte cardiac lineages, such as vascular smooth muscle cells, pericytes, and fibroblasts. The epicardium is also a source of paracrine cues that are essential for fetal cardiac growth, coronary vessel patterning, and regenerative heart repair. Although the epicardium becomes dormant after birth, cardiac injury reactivates developmental gene programs that stimulate epithelial-to-mesenchymal transition; however, it is not clear how the epicardium contributes to disease progression or repair in the adult. In this review, we will summarize the molecular mechanisms that control epicardium-derived progenitor cell migration, and the functional contributions of the epicardium to heart formation and cardiomyopathy. Future perspectives will be presented to highlight emerging therapeutic strategies aimed at harnessing the regenerative potential of the fetal epicardium for cardiac repair.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | | | - Eric M Small
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
7
|
Wang S, Huang W, Castillo HA, Kane MA, Xavier-Neto J, Trainor PA, Moise AR. Alterations in retinoic acid signaling affect the development of the mouse coronary vasculature. Dev Dyn 2018; 247:976-991. [PMID: 29806219 DOI: 10.1002/dvdy.24639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND During the final stages of heart development the myocardium grows and becomes vascularized by means of paracrine factors and cell progenitors derived from the epicardium. There is evidence to suggest that retinoic acid (RA), a metabolite of vitamin A, plays an important role in epicardial-based developmental programming. However, the consequences of altered RA-signaling in coronary development have not been systematically investigated. RESULTS We explored the developmental consequences of altered RA-signaling in late cardiogenic events that involve the epicardium. For this, we used a model of embryonic RA excess based on mouse embryos deficient in the retinaldehyde reductase DHRS3, and a complementary model of embryonic RA deficiency based on pharmacological inhibition of RA synthesis. We found that alterations in embryonic RA signaling led to a thin myocardium and aberrant coronary vessel formation and remodeling. Both excess, and deficient RA-signaling are associated with reductions in ventricular coverage and density of coronary vessels, altered vessel morphology, and impaired recruitment of epicardial-derived mural cells. Using a combined transcriptome and proteome profiling approach, we found that RA treatment of epicardial cells influenced key signaling pathways relevant for cardiac development. CONCLUSIONS Epicardial RA-signaling plays critical roles in the development of the coronary vasculature needed to support myocardial growth. Developmental Dynamics 247:976-991, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suya Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Hozana A Castillo
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - José Xavier-Neto
- Conselho Nacional do Desenvolvimnto Científico e Tecnológico (Cnpq) CEP 01414000 Cerqueira Cesar Sao Paulo, Sao Paulo, Brazil
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas.,Northern Ontario School of Medicine, Biomolecular Sciences Program and Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
8
|
The epicardium signals the way towards heart regeneration. Stem Cell Res 2014; 13:683-92. [PMID: 24933704 PMCID: PMC4241487 DOI: 10.1016/j.scr.2014.04.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/12/2014] [Accepted: 04/18/2014] [Indexed: 11/23/2022] Open
Abstract
From historical studies of developing chick hearts to recent advances in regenerative injury models, the epicardium has arisen as a key player in heart genesis and repair. The epicardium provides paracrine signals to nurture growth of the developing heart from mid-gestation, and epicardium-derived cells act as progenitors of numerous cardiac cell types. Interference with either process is terminal for heart development and embryogenesis. In adulthood, the dormant epicardium reinstates an embryonic gene programme in response to injury. Furthermore, injury-induced epicardial signalling is essential for heart regeneration in zebrafish. Given these critical roles in development, injury response and heart regeneration, the application of epicardial signals following adult heart injury could offer therapeutic strategies for the treatment of ischaemic heart disease and heart failure. The epicardium is a dynamic signalling centre during heart development and injury. Heart repair in lower vertebrates highlights the importance of epicardial signalling. Epicardial signals may be targeted to regenerate adult mammalian hearts.
Collapse
|
9
|
|
10
|
Nakajima Y, Imanaka-Yoshida K. New insights into the developmental mechanisms of coronary vessels and epicardium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:263-317. [PMID: 23445813 DOI: 10.1016/b978-0-12-407697-6.00007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During heart development, the epicardium, which originates from the proepicardial organ (PE), is a source of coronary vessels. The PE develops from the posterior visceral mesoderm of the pericardial coelom after stimulation with a combination of weak bone morphogenetic protein and strong fibroblast growth factor (FGF) signaling. PE-derived cells migrate across the heart surface to form the epicardial sheet, which subsequently seeds multipotent subepicardial mesenchymal cells via epithelial-mesenchymal transition, which is regulated by several signaling pathways including retinoic acid, FGF, sonic hedgehog, Wnt, transforming growth factor-β, and platelet-derived growth factor. Subepicardial endothelial progenitors eventually generate the coronary vascular plexus, which acquires an arterial or venous phenotype, connects with the sinus venosus and aortic sinuses, and then matures through the recruitment of vascular smooth muscle cells under the regulation of complex growth factor signaling pathways. These developmental programs might be activated in the adult heart after injury and play a role in the regeneration/repair of the myocardium.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | | |
Collapse
|
11
|
Liu W, Zhang Y, Thomopoulos S, Xia Y. Generation of Controllable Gradients in Cell Density. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Liu W, Zhang Y, Thomopoulos S, Xia Y. Generation of controllable gradients in cell density. Angew Chem Int Ed Engl 2012; 52:429-32. [PMID: 22951913 DOI: 10.1002/anie.201206060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Indexed: 12/18/2022]
Abstract
Making the grad(ient): a gradient in cell density was generated on a substrate that was inserted into a homogeneous suspension of cells at a specific tilt angle by taking advantage of the gradual change in the number of cells available for sedimentation. Reverse gradients were also fabricated on the same substrate using multiple sedimentation procedures.
Collapse
Affiliation(s)
- Wenying Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
| | | | | | | |
Collapse
|
13
|
Boukens BJ, Christoffels VM. Electrophysiological patterning of the heart. Pediatr Cardiol 2012; 33:900-6. [PMID: 22367553 DOI: 10.1007/s00246-012-0237-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
Abstract
In the adult heart, electrophysiological heterogeneity is present to guide activation and contraction. A change in electrophysiological heterogeneity, for example, during disease, can contribute to arrhythmogenesis. During development, spatial and temporal patterns of transcriptional activity regulate the localized expression of ion channels that cause electrophysiological heterogeneity throughout the heart. If we gain insight into the regulating processes that generate the electrophysiological characteristics and factors involved during development, we can use this knowledge in the search for new therapeutic targets. In this review, we discuss which factors guide the electrical patterning of atrioventricular conduction system and ventricles and how this patterning relates to arrhythmogenic disease in patients.
Collapse
Affiliation(s)
- Bastiaan J Boukens
- Heart Failure Research Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Tomanek RJ, Christensen LP, Simons M, Murakami M, Zheng W, Schatteman GC. Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Dev Dyn 2011; 239:3182-91. [PMID: 20981833 DOI: 10.1002/dvdy.22460] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In embryonic hearts explanted on collagen gels, epicardial cells delaminate and form vascular tubes, thus providing a model for coronary tubulogenesis. Using this model, we show that fibroblast growth factors (FGFs) 1, 2, 4, 8, 9, and 18 contribute to tubulogenesis and that the availability of multiple FGFs provides the optimal tubulogenic response. Moreover, the FGF effects are vascular endothelial growth factor (VEGF) -dependent, while VEGF-induced tubulogenesis requires FGF signaling. The number of endothelial cells (ECs) is increased by all of the FGFs, while EC migration is significantly enhanced only by FGF-2 and FGF-18. Finally, addition of embryonic mesenchymal stem cells (EMSC) to the explants markedly enhances EC numbers and a 23-fold increase in stromal derived factor-1α (SDF-1α), which is FGF dependent. Both explants and EMSCs produce SDF-1α. In conclusion, coronary tubulogenesis of embryonic epicardium: (1) is responsive to many FGF family members, (2) requires both FGF and VEGFA signaling, and (3) is responsive to EMSCs.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology, The University of Iowa Carver College of Medicine and The Cardiovascular Center, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
15
|
The epicardium in cardiac repair: From the stem cell view. Pharmacol Ther 2011; 129:82-96. [DOI: 10.1016/j.pharmthera.2010.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 12/12/2022]
|
16
|
Abstract
The establishment of the coronary circulation is critical for the development of the embryonic heart. Over the last several years, there has been tremendous progress in elucidating the pathways that control coronary development. Interestingly, many of the pathways that regulate the development of the coronary vasculature are distinct from those governing vasculogenesis in the rest of the embryo. It is becoming increasingly clear that coronary development depends on a complex communication between the epicardium, the subepicardial mesenchyme, and the myocardium mediated in part by secreted growth factors. This communication coordinates the growth of the myocardium with the formation of the coronary vasculature. This review summarizes our present understanding of the role of these growth factors in the regulation of coronary development. Continued progress in this field holds the potential to lead to novel therapeutics for the treatment of patients with coronary artery disease.
Collapse
Affiliation(s)
- Harold E Olivey
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | | |
Collapse
|
17
|
Wan AMD, Brooks DJ, Gumus A, Fischbach C, Malliaras GG. Electrical control of cell density gradients on a conducting polymer surface. Chem Commun (Camb) 2009:5278-80. [PMID: 19707645 DOI: 10.1039/b911130a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe a conducting polymer device that can induce electrically controlled density gradients of normal and cancerous cell lines, and hence can be used as a tool for the study of cell-cell interactions.
Collapse
Affiliation(s)
- Alwin M D Wan
- Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
18
|
Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol 2009; 328:148-59. [PMID: 19389363 PMCID: PMC2724599 DOI: 10.1016/j.ydbio.2009.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/09/2009] [Accepted: 01/16/2009] [Indexed: 12/11/2022]
Abstract
Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.
Collapse
Affiliation(s)
- David J Pennisi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
19
|
Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol 2008; 319:258-66. [PMID: 18508041 DOI: 10.1016/j.ydbio.2008.04.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 03/21/2008] [Accepted: 04/08/2008] [Indexed: 02/03/2023]
Abstract
Dissecting the molecular mechanisms that guide the proper development of epicardial cell lineages is critical for understanding the etiology of both congenital and adult forms of human cardiovascular disease. In this study, we describe the function of BAF180, a polybromo protein in ATP-dependent SWI/SNF chromatin remodeling complexes, in coronary development. Ablation of BAF180 leads to impaired epithelial-to-mesenchymal-transition (EMT) and arrested maturation of epicardium around E11.5. Three-dimensional collagen gel assays revealed that the BAF180 mutant epicardial cells indeed possess significantly compromised migrating and EMT potentials. Consequently, the mutant hearts form abnormal surface nodules and fail to develop the fine and continuous plexus of coronary vessels that cover the entire ventricle around E14. PECAM and *-SMA staining assays indicate that these nodules are defective structures resulting from the failure of endothelial and smooth muscle cells within them to form coronary vessels. PECAM staining also reveal that there are very few coronary vessels inside the myocardium of mutant hearts. Consistent with this, quantitative RT-PCR analysis indicate that the expression of genes involved in FGF, TGF, and VEGF pathways essential for coronary development are down-regulated in mutant hearts. Together, these data reveal for the first time that BAF180 is critical for coronary vessel formation.
Collapse
|
20
|
Smith TK, Bader DM. Signals from both sides: Control of cardiac development by the endocardium and epicardium. Semin Cell Dev Biol 2006; 18:84-9. [PMID: 17267246 PMCID: PMC2849752 DOI: 10.1016/j.semcdb.2006.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is readily apparent that the process of heart development is an intricate one, in which cells derived from many embryonic sources coalesce and coordinate their behaviors and development, resulting in the mature heart. The behaviors and mechanisms of this process are complex, and still incompletely understood. However, it is readily apparent that communication between diverse cell types must be involved in this process. The signaling that emanates from epicardial and endocardial sources is the focus of this review.
Collapse
Affiliation(s)
- Travis K Smith
- The Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, 348 Preston Research Building, Nashville, TN 37232-6300, USA
| | | |
Collapse
|
21
|
Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006; 127:607-19. [PMID: 17081981 DOI: 10.1016/j.cell.2006.08.052] [Citation(s) in RCA: 619] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/08/2006] [Accepted: 08/23/2006] [Indexed: 01/11/2023]
Abstract
Zebrafish possess a unique yet poorly understood capacity for cardiac regeneration. Here, we show that regeneration proceeds through two coordinated stages following resection of the ventricular apex. First a blastema is formed, comprised of progenitor cells that express precardiac markers, undergo differentiation, and proliferate. Second, epicardial tissue surrounding both cardiac chambers induces developmental markers and rapidly expands, creating a new epithelial cover for the exposed myocardium. A subpopulation of these epicardial cells undergoes epithelial-to-mesenchymal transition (EMT), invades the wound, and provides new vasculature to regenerating muscle. During regeneration, the ligand fgf17b is induced in myocardium, while receptors fgfr2 and fgfr4 are induced in adjacent epicardial-derived cells. When fibroblast growth factors (Fgf) signaling is experimentally blocked by expression of a dominant-negative Fgf receptor, epicardial EMT and coronary neovascularization fail, prematurely arresting regeneration. Our findings reveal injury responses by myocardial and epicardial tissues that collaborate in an Fgf-dependent manner to achieve cardiac regeneration.
Collapse
Affiliation(s)
- Alexandra Lepilina
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Tomanek RJ, Hansen HK, Dedkov EI. Vascular patterning of the quail coronary system during development. ACTA ACUST UNITED AC 2006; 288:989-99. [PMID: 16892426 DOI: 10.1002/ar.a.20365] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies have provided insights into specific events that contribute to vasculogenesis and angiogenesis in the developing coronary vasculature. This study focused on the developmental progression of coronary vascularization beginning with tube formation and ending with the establishment of a coronary arterial tree. We used electron microscopy, histology of serial sections, and immunohistochemistry in order to provide a comprehensive view of coronary vessel formation during the embryonic and fetal periods of the quail heart, a species that has been used in a number of studies addressing myocardial vascularization. Our data reveal features of progenitor cells and blood islands, tubular formation, and the anatomical relationship of a transformed periarterial tubular network and sympathetic ganglia to the emergence and branching of the right and left coronary arteries. We have traced the pattern of coronary artery branching and documented its innervation. Finally, our data include the relationship of fibronectin, laminin, and apoptosis to coronary artery growth. Our findings bring together morphological events that occur over the embryonic and fetal periods and provide a baseline for studies into the mechanisms that regulate the various events that occur during these time periods.
Collapse
Affiliation(s)
- Robert J Tomanek
- Department of Anatomy and Cell Biology and Cardiovascular Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
23
|
Watanabe N, Nakagawa M, Hanato T, Takeuchi Y, Hara M, Yoshida T, Imanaka-Yoshida K. In vitro model for mouse coronary vasculogenesis. ACTA ACUST UNITED AC 2006; 288:714-22. [PMID: 16761283 DOI: 10.1002/ar.a.20340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To analyze the molecular mechanisms of coronary vessel formation, we performed in vitro experiments on explant cultures of proepicardial organs (PEOs) excised from embryos taken from 9.5-day pregnant mice. When plated on coverglasses coated with rat tail collagen I, fibronectin, or laminin, PEO cells spread and formed an epithelial sheet. When PEOs were cultured on collagen gel in the presence of fetal calf serum (FCS), small projections were seen around the explants 3 days after plating. Around day 6, cord-like structures began to grow from the explants, gradually elongating, increasing in number, and forming a branching network. Histological sections demonstrated that the cells migrated into the gel and formed tube-like structures similar to the vascular channels of the embryonic heart. The cells lining the lumen of the tube-like structures were positive for platelet endothelial cell adhesion molecule (PECAM). Reverse transcriptase-polymerase chain reaction analyses demonstrated that the expression of PECAM, basic fibroblast growth factor (bFGF), and smooth muscle 22-alpha (SM22alpha) was upregulated in association with the tube formation, whereas the expression of Flk-1, Flt-1, and hepatocyte growth factor (HGF) was gradually downregulated. Vascular endothelial growth factor (VEGF) was continuously expressed during the culture. These changes were not observed when PEOs were explanted without FCS. Furthermore, addition of any one or combinational addition of the growth factors, including bFGF, VEGF, or HGF, did not induce tube formation. These results suggest that PEOs contain precursor cells of coronary vasculature and that vasculogenesis may be simultaneously regulated by multiple factors.
Collapse
Affiliation(s)
- Noriko Watanabe
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Jin Z, Chau MD, Bao ZZ. Sema3D, Sema3F, and Sema5A are expressed in overlapping and distinct patterns in chick embryonic heart. Dev Dyn 2006; 235:163-9. [PMID: 16261621 PMCID: PMC1768559 DOI: 10.1002/dvdy.20614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An increasing number of axon guidance cues have been shown recently to play important roles in the development of non-neural tissues. Semaphorins comprise one of the largest conserved families of axon guidance factors. We analyzed the expression patterns of Sema3D, Sema3F, and Sema5A genes in the chick embryonic heart by in situ hybridization. All three genes are expressed in the cardiac cushion regions, both in the mesenchymal cells, and epithelial cells in the endocardial layer, during the period of cardiac remodeling. In addition to the overlapping expression patterns in the cardiac cushion regions, these genes also exhibit distinct expression patterns in the developing heart: Sema3D is additionally expressed in the tips of the ventricular trabeculae; Sema3F is expressed in a subset of cells scattered throughout the ventricles; and Sema5A is expressed in the newly formed atrioventricular valves. The overlapping and distinct expression patterns of these genes suggest that they may play important roles in heart development.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|