1
|
Kundu S, Kumar Das B, Das Gupta S. Hormonal symphony: The dynamic duo of IGF and EGF in gonadotropin-induced fish ovarian development and egg maturation. Anim Reprod Sci 2025; 273:107663. [PMID: 39674119 DOI: 10.1016/j.anireprosci.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Fish oocyte maturation (FOM) is a critical biological process that occurs before ovulation and is influenced by gonadotropins, particularly luteinizing hormone (LH). The release of LH stimulates the ovarian follicle to produce a maturation-inducing hormone (MIH), specifically 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-DP), which initiates the formation of maturation-promoting factor (MPF) through the activation of cyclin B and cdc2 kinase. Insulin-like growth factor I (IGF-I) significantly regulates ovarian functions, including steroidogenesis, by activating its membrane receptors and the tyrosine kinase pathway. IGF-I influences oocyte maturation directly via the PI3 kinase pathway, independent of steroid hormones. Additionally, epidermal growth factor (EGF) promotes cell growth and differentiation by binding to its receptor (EGFR). It is implicated in mediating human chorionic gonadotropin (hCG)-induced DNA synthesis in ovarian follicles while suppressing apoptosis. The presence of EGF in follicle cells and oocytes, along with its higher expression in oocytes, suggests it may act as a paracrine signal regulating somatic cell activity. Recent studies indicate that the activin system in follicle cells could be a target for EGF activity. The EGFR signaling pathway enhances gonadotropin-induced steroidogenesis and governs the transition of oocyte maturation stages, essential for successful fertilization. This review synthesizes current research on the roles of gonadotropins, IGFs, and EGFs in fish oocyte maturation and ovarian steroid production.
Collapse
Affiliation(s)
- Sourav Kundu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India.
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| |
Collapse
|
2
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
3
|
Aickareth J, Hawwar M, Sanchez N, Gnanasekaran R, Zhang J. Membrane Progesterone Receptors (mPRs/PAQRs) Are Going beyond Its Initial Definitions. MEMBRANES 2023; 13:membranes13030260. [PMID: 36984647 PMCID: PMC10056622 DOI: 10.3390/membranes13030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 05/13/2023]
Abstract
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig cells of the testes and neuronal and glial cells. PRG has wide-ranging physiological effects, including impacts on metabolic systems, central nervous systems and reproductive systems in both genders. It was first purified as an ovarian steroid with hormonal function for pregnancy, and is known to play a role in pro-gestational proliferation during pregnancy. The main function of PRG is exerted through its binding to progesterone receptors (nPRs, mPRs/PAQRs) to evoke cellular responses through genomic or non-genomic signaling cascades. Most of the existing research on PRG focuses on classic PRG-nPR-paired actions such as nuclear transcriptional factors, but new evidence suggests that PRG also exerts a wide range of PRG actions through non-classic membrane PRG receptors, which can be divided into two sub-classes: mPRs/PAQRs and PGRMCs. The review will concentrate on recently found non-classical membrane progesterone receptors (mainly mPRs/PAQRs) and speculate their connections, utilizing the present comprehension of progesterone receptors.
Collapse
|
4
|
Alawadhi M, Kilarkaje N, Mouihate A, Al-Bader MD. Role of progesterone on dexamethasone-induced alterations in placental vascularization and progesterone receptors in rats†. Biol Reprod 2023; 108:133-149. [PMID: 36322157 DOI: 10.1093/biolre/ioac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is manifested by lower maternal progesterone levels, smaller placental size, and decreased placental vascularity indicated by lower expression of vascular endothelial growth factor (VEGF). Studies showed that progesterone increases angiogenesis and induces VEGF expression in different tissues. Therefore, the aim of the present study is to evaluate the effect of progesterone on placental vascular bed and VEGF expression and the modulation of nuclear and membranous progesterone receptors (PR) in dexamethasone-induced rat IUGR model. METHODS Pregnant Sprague-Dawley rats were allocated into four groups and given intraperitoneal injections of either saline, dexamethasone, dexamethasone, and progesterone or progesterone. Injections started on gestation day (DG) 15 and lasted until the days of euthanization (19 and 21 DG). Enzyme-linked immunosorbent assay was used to evaluate plasma progesterone levels. Real-time PCR and western blotting were used to evaluate gene and protein expressions of VEGF, and PR in labyrinth and basal placental zones. Immunohistochemistry was used to locate VEGF and different PRs in placental cells. Immunofluorescence was used to monitor the expression of blood vessel marker (αSMA). RESULTS Dexamethasone decreased the vascular bed fraction and the expression of VEGF in both placental zones. Progesterone co-treatment with dexamethasone prevented this reduction. Nuclear and membrane PRs showed tissue-specific expression in different placental zones and responded differently to both dexamethasone and progesterone. CONCLUSIONS Progesterone treatment improves the outcomes in IUGR pregnancy. Progesterone alleviated DEX-induced IUGR probably by promoting placental VEGF and angiogenesis.
Collapse
Affiliation(s)
- Mariam Alawadhi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Narayana Kilarkaje
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maie D Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
5
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
6
|
Thomas P. Membrane Progesterone Receptors (mPRs, PAQRs): Review of Structural and Signaling Characteristics. Cells 2022; 11:cells11111785. [PMID: 35681480 PMCID: PMC9179843 DOI: 10.3390/cells11111785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation of numerous reproductive and non-reproductive functions in vertebrates, several critical aspects of their structure and signaling functions have been unresolved until recently and remain the subject of considerable debate. This paper briefly reviews recent developments in our understanding of the structure and functional characteristics of mPRs. The proposed membrane topology of mPRα, the structure of its ligand-binding site, and the binding affinities of steroids were predicted from homology modeling based on the structures of other PAQRs, adiponectin receptors, and confirmed by mutational analysis and ligand-binding assays. Extensive data demonstrating that mPR-dependent progestogen regulation of intracellular signaling through mPRs is mediated by activation of G proteins are reviewed. Close association of mPRα with progesterone membrane receptor component 1 (PGRMC1), its role as an adaptor protein to mediate cell-surface expression of mPRα and mPRα-dependent progestogen signaling has been demonstrated in several vertebrate models. In addition, evidence is presented that mPRs can regulate the activity of other hormone receptors.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
7
|
Kelder J, Pang Y, Dong J, Schaftenaar G, Thomas P. Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRα (PAQR7): Shared ligand binding with AdipoR1 and its structural basis. J Steroid Biochem Mol Biol 2022; 219:106082. [PMID: 35189329 DOI: 10.1016/j.jsbmb.2022.106082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
The 7-transmembrane architecture of adiponectin receptors (AdipoRs), determined from their X-ray crystal structures, was used for homology modeling of another progesterone and adipoQ receptor (PAQR) family member, membrane progesterone receptor alpha (mPRα). The mPRα model identified excess positively charged residues on the cytosolic side, suggesting it has the same membrane orientation as AdipoRs with an intracellular N-terminus. The homology model showed identical amino acid residues to those forming the zinc binding pocket in AdipoRs, which strongly implies that zinc is also present in mPRα. The homology model showed a critical H-bond interaction between the glutamine (Q) residue at 206 in the binding pocket and the 20-carbonyl of progesterone. Mutational analysis showed no progesterone binding to the arginine (R) 206 mutant and modeling predicted this was due to the strong positive charge of arginine stabilizing the presence of an oleic acid (C18:1) molecule in the binding pocket, as observed in the X-rays of AdipoRs. High Zn2+ concentrations are predicted to form a salt with the carboxylate group of the oleic acid, thereby eliminating its binding to the free fatty acid (FFA) binding pocket, and allowing progesterone to bind. This is supported by experiments showing 100 µM Zn2+ addition restored [3H]-progesterone binding of the Q206R mutant to levels in WT mPRα and increased [3H]-progesterone binding to mPRγ and AdipoR1 which have arginine residues in this region. The model predicts hydrophobic interactions of progesterone with amino acid residues surrounding the binding pocket, including valine 146 in TM3, which when mutated into a polar serine resulted in a complete loss of [3H]-progesterone binding. The mPRα model showed there is no hydrogen bond donor in the vicinity of the 3-keto group of progesterone and ligand structure-activity studies with 3-deoxy steroids revealed that, unlike the nuclear progesterone receptor, the 3-carbonyl oxygen is not essential for binding to mPRα. Interestingly, the small synthetic AdipoR agonist, AdipoRon, displayed binding affinity for mPRα and mimicked progesterone signaling, whereas D-e-MAPP, a ceramidase inhibitor, blocked progesterone signaling. Thus, critical residues around the binding pocket and steroid structures that bind mPRα, as well as similarities with AdipoRs, can be predicted from the homology model.
Collapse
Affiliation(s)
- Jan Kelder
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Yefei Pang
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jing Dong
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Gijs Schaftenaar
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Peter Thomas
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
8
|
Wang Y, Luo T, Zheng L, Huang J, Zheng Y, Li J. PAQR7: An intermediary mediating nongenomic progesterone action in female reproductive tissue. Reprod Biol 2021; 21:100529. [PMID: 34217103 DOI: 10.1016/j.repbio.2021.100529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Progestin and adipoQ receptor 7 (PAQR7) as an indispensable member of membrane progestin receptors in the Progestin and adipoQ receptor (PAQR) family that mediates nongenomic progesterone actions, initiated rapidly at the cell surface. Previous research demonstrated the distribution of PAQR7, which was mainly expressed in reproductive tissues, including ovary and testis. In the male reproductive system, PAQR7 is involved in progestin-induced sperm hypermotility. However, reports studying PAQR7 in female reproductive tissue mainly concentrate on oocyte maturation in fish, its expression in the ovary and gestational tissue, and regulation of uterine functions in mammals. Despite recent advances, many aspects of progestin signaling through PAQR7 are still unclear, especially in female reproductive tissue. Therefore, we reveal the structure and characteristics of PAQR7 and conclude the putative progestin-induced action mediated by PAQR7 in female reproductive tissue, such as the development of ovarian follicles, apoptosis of granulosa cells, oocyte maturation, and development of certain diseases, among others, to review the function of PAQR7 in the female reproductive system in detail.
Collapse
Affiliation(s)
- Yijie Wang
- Queen Mary University of London Nanchang joint programme, Nanchang University, Nanchang 330006, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Tao Luo
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Institute of Life Science, Nanchang University, Nanchang 330006, China
| | - Liping Zheng
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Basic Medical School, Nanchang University, Nanchang 330006, China
| | - Jian Huang
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China
| | - Yuehui Zheng
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, China
| | - Jia Li
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang 330006, China; Basic Medical School, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
9
|
Lemel L, Nieścierowicz K, García-Fernández MD, Darré L, Durroux T, Busnelli M, Pezet M, Rébeillé F, Jouhet J, Mouillac B, Domene C, Chini B, Cherezov V, Moreau CJ. The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. J Lipid Res 2021; 62:100059. [PMID: 33647276 PMCID: PMC8050779 DOI: 10.1016/j.jlr.2021.100059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a major component of mammalian plasma membranes that not only affects the physical properties of the lipid bilayer but also is the function of many membrane proteins including G protein-coupled receptors. The oxytocin receptor (OXTR) is involved in parturition and lactation of mammals and in their emotional and social behaviors. Cholesterol acts on OXTR as an allosteric modulator inducing a high-affinity state for orthosteric ligands through a molecular mechanism that has yet to be determined. Using the ion channel-coupled receptor technology, we developed a functional assay of cholesterol modulation of G protein-coupled receptors that is independent of intracellular signaling pathways and operational in living cells. Using this assay, we discovered a stable binding of cholesterol molecules to the receptor when it adopts an orthosteric ligand-bound state. This stable interaction preserves the cholesterol-dependent activity of the receptor in cholesterol-depleted membranes. This mechanism was confirmed using time-resolved FRET experiments on WT OXTR expressed in CHO cells. Consequently, a positive cross-regulation sequentially occurs in OXTR between cholesterol and orthosteric ligands.
Collapse
Affiliation(s)
- Laura Lemel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | - Leonardo Darré
- Functional Genomics Laboratory and Biomolecular Simulations Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marta Busnelli
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Mylène Pezet
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Carmen Domene
- Department of Chemistry, University of Bath, Bath, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Bice Chini
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
10
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
11
|
Pang Y, Thomas P. Progesterone induces relaxation of human umbilical cord vascular smooth muscle cells through mPRα (PAQR7). Mol Cell Endocrinol 2018; 474:20-34. [PMID: 29428395 DOI: 10.1016/j.mce.2018.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
Progesterone effects on vascular smooth muscle cell (VSMC) relaxation and the mechanism were investigated in cultured human umbilical vein VSMCs. Membrane progesterone receptors mPRα, mPRβ, and mPRγ were highly expressed in VSMCs, whereas nuclear progesterone receptor (nPR) had low expression. Progesterone (20 nM) and 02-0 (mPR-selective agonist), but not R5020 (nPR agonist), induced muscle relaxation in both a VSMC collagen gel disk contraction assay and an endothelium-denuded human umbilical artery ring tension assay. Progesterone and 02-0 increased ERK and Akt phosphorylation and decreased cAMP levels. These effects were blocked by preincubation with pertussis toxin. Progestin-induced muscle relaxation was blocked by pretreatment with mPRα, but not nPR, siRNAs, and by co-treatment with 8-Br-cAMP, AZD6244 (MAP kinase inhibitor), and wortmannin (PI3K inhibitor). Progestins reduced myosin light chain phosphorylation which was blocked with AZD6244 and wortmannin. These results demonstrate progesterone directly relaxes human VSMCs through mPRα/Gi and MAP kinase/ERK-, Akt/PI3K-, and cAMP-dependent pathways.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA.
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA.
| |
Collapse
|
12
|
Pang Y, Thomas P. Role of natriuretic peptide receptor 2-mediated signaling in meiotic arrest of zebrafish oocytes and its estrogen regulation through G protein-coupled estrogen receptor (Gper). Gen Comp Endocrinol 2018; 265:180-187. [PMID: 29574150 DOI: 10.1016/j.ygcen.2018.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Natriuretic peptide type C (NPPC) and its receptor, natriuretic peptide receptor 2 (NPR2), have essential roles in maintaining meiotic arrest of oocytes in several mammalian species. However, it is not known if a similar mechanism exists in non-mammalian vertebrates. Using zebrafish as a model, we show that Nppc is expressed in ovarian follicle cells, whereas Npr2 is mainly detected in oocytes. Treatment of intact and defolliculated oocytes with 100 nM NPPC for 6 h caused a large increase in cGMP concentrations, and a significant decrease in oocyte maturation (OM), an effect that was mimicked by treatment with 8-Br-cGMP. Treatment with E2 and G-1, the specific GPER agonist, also increased cGMP levels. Cyclic AMP levels were also increased by treatments with 8-Br-cGMP, E2 and G1. The estrogen upregulation of cAMP levels was blocked by co-treatment with AG1478, an inhibitor of EGFR activation. Gene expression of npr2, but not nppc, was significantly upregulated in intact oocytes by 6 h treatments with 20 nM E2 and G-1. Both cilostamide, a phosphodiesterase 3 (PDE3) inhibitor, and rolipram, a PDE4 inhibitor, significantly decreased OM of intact and defolliculated oocytes, and enhanced the inhibitory effects of E2 and G-1 on OM. These findings indicate the presence of a Nppc/Npr2/cGMP pathway maintaining meiotic arrest in zebrafish oocytes that is upregulated by estrogen activation of Gper. Collectively, the results suggest that Nppc through Npr2 cooperates with E2 through Gper in upregulation of cGMP levels to inhibit phosphodiesterase activity resulting in maintenance of oocyte meiotic arrest in zebrafish.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
13
|
Aizen J, Pang Y, Harris C, Converse A, Zhu Y, Aguirre MA, Thomas P. Roles of progesterone receptor membrane component 1 and membrane progestin receptor alpha in regulation of zebrafish oocyte maturation. Gen Comp Endocrinol 2018; 263:51-61. [PMID: 29649418 PMCID: PMC6480306 DOI: 10.1016/j.ygcen.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/06/2018] [Accepted: 04/07/2018] [Indexed: 01/15/2023]
Abstract
Although previous studies suggest membrane progesterone receptor alpha (mPRα/Paqr7) mediates 17, 20β-dihydroxy-4-pregnen-3-one (DHP) induction of oocyte maturation (OM) in zebrafish, critical information needed to establish mPRα as the receptor mediating OM is lacking. The relative potencies of progestins and specific mPRα agonists in inducing OM matched their relative binding affinities for zebrafish mPRα, supporting its role in OM. Microinjection of pertussis toxin blocked DHP induction of OM and the progestin-induced decrease in cyclic AMP levels, suggesting mPRα activates an inhibitory G protein (Gi). Microinjection of morpholino antisense oligonucleotides to zebrafish pgrmc1 blocked induction of OM by DHP which was accompanied by decreased levels of Pgrmc1 and mPRα on the oocyte plasma membranes. Similarly, treatment of denuded oocytes with a PGRMC1 inhibitor, AG205, blocked the gonadotropin-induced increase in plasma membrane mPRα levels and attenuated DHP induction of OM. Co-incubation with two inhibitors of epidermal growth factor Erbb2, ErbB2 inhibitor II and AG 879, prevented induction of OM by DHP, indicating the likely involvement of Erbb2 in mPRα-mediated signaling. Treatment with AG205 reversed the inhibitory effects of the Erbb2 inhibitors on OM and also inhibited insulin-like growth factor-1 induction of OM. Close associations between Pgrmc1 and mPRα, and between Pgrmc1 and Erbb2 were detected in zebrafish oocytes with in situ proximity ligation assays. The results suggest progestin induction of OM in zebrafish is mediated through an mPRα/Gi/Erbb2 signaling pathway that requires Pgrmc1 for expression of mPRα on oocyte membranes and that Pgrmc1 also is required for induction of OM through Erbb2.
Collapse
Affiliation(s)
- Joseph Aizen
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yefei Pang
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Caleb Harris
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Aubrey Converse
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yong Zhu
- East Carolina University, Department of Biology, Greenville, NC 27858, USA
| | - Meagan A Aguirre
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
14
|
Thomas P. Reprint of "Role of G protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes". J Steroid Biochem Mol Biol 2018; 176:23-30. [PMID: 29102625 DOI: 10.1016/j.jsbmb.2017.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/23/2016] [Accepted: 12/16/2016] [Indexed: 01/07/2023]
Abstract
An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E2) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (Gs) on oocyte plasma membranes, resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE2) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH actions cause declines in oocyte cAMP levels resulting in the resumption of meiosis. GPER is also present on murine oocytes but there are no reports of studies investigating its possible involvement in maintaining meiotic arrest in mammals.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| |
Collapse
|
15
|
Relative importance of phosphatidylinositol-3 kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK3/1) signaling during maturational steroid-induced meiotic G2-M1 transition in zebrafish oocytes. ZYGOTE 2017; 26:62-75. [PMID: 29229010 DOI: 10.1017/s0967199417000545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Participation and relative importance of phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling, either alone or in combination, have been investigated during 17α,20β-dihydroxy-4-pregnen-3-one (DHP)-induced meiotic G2-M1 transition in denuded zebrafish oocyte. Results demonstrate that concomitant with rapid phosphorylation (activation) of Akt (Ser473) and MAPK (ERK1/2) at as early as 15 min of incubation, DHP stimulation promotes enhanced an GVBD response and histone H1 kinase activation between 1 and 5 h in full-grown oocytes in vitro. While p-Akt reaches its peak at 60 to 90 min and undergoes downregulation to the basal level by 240 min, ERK1/2 phosphorylation (activation) increases gradually until 120 min and remains high thereafter. Although, priming with MEK1/2 inhibitor U0126 is without effect, PI3K inhibitors, wortmannin or LY294002, delay the GVBD response significantly (P < 0.001) until 3 h but not at 5 h of incubation. Interestingly, blocking PI3K and MEK function together could abrogate steroid-induced oocyte maturation at all time points tested. While DHP stimulation promotes phospho-PKA catalytic (p-PKAc) dephosphorylation (inactivation) between 30-120 min of incubation, simultaneous inhibition of PI3K and MEK1/2 kinases abrogates DHP action. Conversely, elevated intra-oocyte cAMP, through priming with either adenylyl cyclase (AC) activator forskolin (FK) or dibutyryl cAMP (db-cAMP), abrogates steroid-induced Akt and ERK1/2 phosphorylation. Taken together, these results suggest that DHP-induced Akt and ERK activation precedes the onset of meiosis (GVBD response) in a cAMP-sensitive manner and PI3K/Akt and MEK/MAPK pathways together have a pivotal influence in the downregulation of PKA and resumption of meiotic maturation in zebrafish oocytes in vitro.
Collapse
|
16
|
Thomas P, Pang Y, Dong J. Membrane androgen receptor characteristics of human ZIP9 (SLC39A) zinc transporter in prostate cancer cells: Androgen-specific activation and involvement of an inhibitory G protein in zinc and MAP kinase signaling. Mol Cell Endocrinol 2017; 447:23-34. [PMID: 28219737 DOI: 10.1016/j.mce.2017.02.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/29/2022]
Abstract
Characteristics of novel human membrane androgen receptor (mAR), ZIP9 (SLC39A9), were investigated in ZIP9-transfected PC-3 cells (PC3-ZIP9). Ligand blot analysis showed plasma membrane [3H]-T binding corresponds to the position of ZIP9 on Western blots which suggests ZIP9 can bind [3H]-T alone, without a protein partner. Progesterone antagonized testosterone actions, blocking increases in zinc, Erk phosphorylation and apoptosis, further evidence that ZIP9 is specifically activated by androgens. Pre-treatment with GTPγS and pertussis toxin decreased plasma membrane [3H]-T binding and blocked testosterone-induced increases in Erk phosphorylation and intracellular zinc, indicating ZIP9 is coupled to an inhibitory G protein (Gi) that mediates both MAP kinase and zinc signaling. Testosterone treatment of nuclei and mitochondria which express ZIP9 decreased their zinc contents, suggesting ZIP9 also regulates free zinc through releasing it from these intracellular organelles. The results show ZIP9 is a specific Gi coupled-mAR mediating testosterone-induced MAP kinase and zinc signaling in PC3-ZIP9 cells.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA.
| | - Yefei Pang
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Jing Dong
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| |
Collapse
|
17
|
Thomas P. Role of G-protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes. J Steroid Biochem Mol Biol 2017; 167:153-161. [PMID: 28007532 DOI: 10.1016/j.jsbmb.2016.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/23/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E2) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (Gs) on oocyte plasma membranes resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE2) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH actions cause declines in oocyte cAMP levels resulting in the resumption of meiosis. GPER is also present on murine oocytes but there are no reports of studies investigating its possible involvement in maintaining meiotic arrest in mammals.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| |
Collapse
|
18
|
Nakashima M, Suzuki M, Saida M, Kamei Y, Hossain MB, Tokumoto T. Cell-based assay of nongenomic actions of progestins revealed inhibitory G protein coupling to membrane progestin receptor α (mPRα). Steroids 2015; 100:21-6. [PMID: 25911435 DOI: 10.1016/j.steroids.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022]
Abstract
Previously, we established cell lines stably producing goldfish membrane progestin receptor α (goldfish mPRα) proteins, which mediate steroidal nongenomic actions. In this study, we transfected these cell lines (MDA-MD-231) with cDNAs encoding a recombinant luciferase gene (GloSensor). These cells can be used for monitoring the effects of ligands that bind to mPR by means of luminescence, the intensity of which reflects intracellular cyclic adenosine monophosphate (cAMP) levels. Luminescence intensity of the cells increased significantly when cells were treated with forskolin, strong activator of adenylyl cyclase. Then, we established a strategy to measure changes in luminescence that correlated with the actions of the ligands. The actions of ligands were measurable by the prevention of stimulation caused by forskolin after ligand stimulation. The studies using these cell lines indicated that cAMP concentrations were decreased specifically by the mPR ligands 17α,20β-dihydroxy-4-pregnen-3-one, diethylstilbestrol and progesterone. Furthermore, pertussis toxin inhibited the decrease in cAMP levels caused by mPR ligands. These results support evidence from previous results that mPRα is coupled to an inhibitory G protein.
Collapse
Affiliation(s)
- Mikiko Nakashima
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan
| | - Manami Suzuki
- Department of Biology, Faculty of Science, National University Corporation Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan
| | - Misako Saida
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 445-8585, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 445-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Md Babul Hossain
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toshinobu Tokumoto
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan; Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
19
|
Majumder S, Das S, Moulik SR, Mallick B, Pal P, Mukherjee D. G-protein coupled estrogen receptor (GPER) inhibits final oocyte maturation in common carp, Cyprinus carpio. Gen Comp Endocrinol 2015; 211:28-38. [PMID: 25485460 DOI: 10.1016/j.ygcen.2014.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
GPR-30, now named as GPER (G protein-coupled estrogen receptor) was first identified as an orphan receptor and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. Later studies demonstrated that GPER has the characteristics of a high affinity estrogen membrane receptor on Atlantic croaker and zebra fish oocytes and mediates estrogen inhibition of oocyte maturation in these two distantly related teleost. To determine the broad application of these findings to other teleost, expression of GPER mRNA and its involvement in 17β-estradiol mediated inhibition of oocyte maturation in other cyprinid, Cyprinus carpio was investigated. Carp oocytes at pre-vitellogenic, late-vitellogenic and post-vitellogenic stages of development contained GPER mRNA and its transcribed protein with a maximum at late-vitellogenic oocytes. Ovarian follicular cells did not express GPER mRNA. Carp oocytes GPER mRNA was essentially identical to that found in other perciformes and cyprinid fish oocytes. Both spontaneous and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced oocyte maturation in carp was significantly decreased when they were incubated with either E2, or GPER agonist G-1. On the other hand spontaneous oocyte maturation was significantly increased when carp ovarian follicles were incubated with an aromatase inhibitor, fadrozole, GPER antagonist, G-15 and enzymatic removal of the ovarian follicle cell layers. This increase in oocyte maturation was partially reversed by co-treatment with E2. Consistent with previous findings with human and fish GPR30, E2 treatment in carp oocytes caused increase in cAMP production and simultaneously decrease in oocyte maturation, which was inhibited by the addition of 17,20β-P. The results suggest that E2 and GPER play a critical role in regulating re-entry in to meiotic cell cycle in carp oocytes.
Collapse
Affiliation(s)
- Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sumana Das
- Department of Zoology, Krishnagar Govt College, Krishnanagar, West Bengal, India
| | - Sujata Roy Moulik
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Buddhadev Mallick
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Puja Pal
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
20
|
Pramanick K, Kundu S, Paul S, Mallick B, Roy Moulik S, Pal P, Mukherjee D. Steroid-induced oocyte maturation in Indian shad Tenualosa ilisha (Hamilton, 1822) is dependent on phosphatidylinositol 3 kinase but not MAP kinase activation. Mol Cell Endocrinol 2014; 390:26-33. [PMID: 24726901 DOI: 10.1016/j.mce.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Fully grown fish and amphibian oocytes exposed to a maturation-inducing steroid (MIS) activates multiple signal transduction pathways, leading to formation and activation of maturation-promoting factor (MPF) and induction of germinal vesicle breakdown (GVBD). The present study was to investigate if phosphatidylinositol 3 kinase (PI3 kinase) and mitogen-activated protein kinase (MAP kinase) activation are required for naturally occurring MIS, 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced cdc2 activation and oocyte maturation (OM) in Tenualosa ilisha. We observed that 17,20β-P-induced OM was significantly inhibited by PI3 kinase inhibitors Wortmannin and LY29400. 17,20 β-P was shown to activate PI3 kinase maximally at 90 min and cdc2 kinase at 16 h of treatment. Relative involvement of PI3 kinase, MAP kinase and cdc2 kinase in 17,20β-P-induced OM was examined. MAP kinase was rapidly phosphorylated and activated (60-120 min) after MIS treatment and this response preceded the activation of cdc2 kinase by several hours. A selective inhibitor of MAP kinase (MEK), PD98059, sufficiently blocked the phosphorylation and activation of MAP kinase. Inhibition of MAP kinase activity using PD98059 however, had no effect on MIS-induced cdc2 kinase activation and GVBD. These results demonstrate that activation of the PI3 kinase is required for 17,20β-P-induced cdc2 kinase activation and OM in T. ilisha. MAP kinase although was activated in response to 17,20β-P and PI3 kinase activation, it is not necessary for cdc2 activation and OM in this species.
Collapse
Affiliation(s)
- Kousik Pramanick
- Department of Zoology, Presidency University, 86/1 College Street, Kolkata 73, India
| | - Sourav Kundu
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center-A, University of Louisville, KY 40292, USA
| | - Sudipta Paul
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Buddhadev Mallick
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sujata Roy Moulik
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Puja Pal
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
21
|
Bylander A, Lind K, Goksör M, Billig H, Larsson DGJ. The classical progesterone receptor mediates the rapid reduction of fallopian tube ciliary beat frequency by progesterone. Reprod Biol Endocrinol 2013; 11:33. [PMID: 23651709 PMCID: PMC3651731 DOI: 10.1186/1477-7827-11-33] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/29/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The transport of gametes as well as the zygote is facilitated by motile cilia lining the inside of the fallopian tube. Progesterone reduces the ciliary beat frequency within 30 minutes in both cows and mice. This rapid reduction suggest the involvement of a non-genomic signaling mechanism, although it is not known which receptors that are involved. Here we investigated the possible involvement of the classical progesterone receptor in this process. METHOD The ciliary beat frequency of mice fallopian tube was measured ex vivo using an inverted bright field microscope and a high speed camera. The effects of the agonists progesterone and promegestone and an antagonist, mifeprestone, were investigated in wildtype mice. The effect of progesterone was also investigated in mice lacking the classical progesterone receptor. RESULTS Progesterone, as well as the more specific PR agonist promegestone, significantly reduced the CBF at concentrations of 10-100 nanomolar within 10-30 minutes. In the absence of progesterone, the PR antagonist mifeprestone had no effect on the ciliary beat frequency at a concentration of 1 micromolar. When ciliated cells were pre-incubated with 1 micromolar mifeprestone, addition of progesterone did not reduce the ciliary beat frequency. Accordingly, in ciliated cells from mice not expressing the classical progesterone receptor, exposure to 100 nanomolar progesterone did not reduce the ciliary beat frequency. CONCLUSIONS This is the first study to provide comprehensive evidence that the classical progesterone receptor mediates the rapid reduction of the tubal ciliary beat frequency by progesterone.
Collapse
Affiliation(s)
- Anna Bylander
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy , University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Karin Lind
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy , University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Mattias Goksör
- Department of Physics, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Håkan Billig
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy , University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - DG Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
| |
Collapse
|
22
|
Dressing GE, Alyea R, Pang Y, Thomas P. Membrane progesterone receptors (mPRs) mediate progestin induced antimorbidity in breast cancer cells and are expressed in human breast tumors. Discov Oncol 2012; 3:101-12. [PMID: 22350867 DOI: 10.1007/s12672-012-0106-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Membrane progesterone receptors (mPRs) have been detected in breast cancer cells and tissues, but their roles in cancer progression remain unclear. Here, we demonstrate the localization, signaling, and antiapoptotic actions of mPRs in two nuclear progesterone receptor (PR)-negative breast cancer cell lines, SKBR3 and MDA-MB-468 (MB468), and mPR expression in human breast tumor biopsies. mPRα, mPRβ, and mPRγ subtypes were detected in both cell lines as well as in breast tumor tissues from 13 individuals irrespective of nuclear steroid receptor expression. Competitive receptor binding studies with a selective PR ligand, R5020, and an mPR agonist, Org OD 02-0 confirmed the presence of functional mPRs on both cancer cell lines. Progesterone treatment of either cell line caused rapid activation of an inhibitory G protein, as well as activation of p42/44 MAP kinase. Treatment with progesterone or Org OD 02-0 significantly decreased cell death and apoptosis in response to serum starvation, whereas testosterone, 17β-estradiol, dexamethasone, and R5020 and RU486 were ineffective. Progesterone treatment of MB468 cells also increased mitochondrial membrane potential and Akt activity, but no decrease in caspase 3 activity was observed. Knockdown of mPRα expression in MB468 cells by siRNA transfection blocked the inhibitory effects of progesterone on cell death. The results indicate that progesterone can act through mPRs to inhibit apoptosis in breast cancer cells. The involvement of mPRs in the development or progression of breast tumor growth through inhibition of cell death is an intriguing possibility and requires further investigation.
Collapse
Affiliation(s)
- Gwen E Dressing
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | | | | | | |
Collapse
|
23
|
Thomas P. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models. Gen Comp Endocrinol 2012; 175:367-83. [PMID: 22154643 PMCID: PMC3264783 DOI: 10.1016/j.ygcen.2011.11.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
24
|
Singh V, Joy KP. Vasotocin induces final oocyte maturation and ovulation through the production of a maturation-inducing steroid in the catfish Heteropneustes fossilis. Gen Comp Endocrinol 2011; 174:15-21. [PMID: 21827764 DOI: 10.1016/j.ygcen.2011.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/06/2011] [Accepted: 07/25/2011] [Indexed: 01/05/2023]
Abstract
The study reports for the first time vasotocin (VT) induction of final oocyte maturation and ovulation through the production of the maturation-inducing steroid 17, 20β-dihydroxy-4-pregnen-3-one (MIS, 17, 20β-DP). Post-vitellogenic follicles of the catfish Heteropneustes fossilis were incubated with different concentrations of VT (1, 10, 100 and 1000 nM) for different time periods. Germinal vesicle breakdown [GVBD, as a marker of final oocyte maturation (FOM)] and ovulation were scored. In another series of experiments, the follicles were incubated with VT alone or in combination with VT receptor (V(1) and V(2)) antagonists, and GVBD and ovulation were increased with progesterone, 17-hydroxy-4-pregnene-3, 20-dione (17-P) and 17, 20β-DP levels. VT stimulated both GVBD and ovulation in a concentration and time-dependent manner, and the responses were inhibited to varying degrees in groups incubated with the VT receptor antagonists. The V(1) antagonist inhibited the responses by 2- to 3-fold and more than the V(2) antagonist, and the combination was more potent than the separate incubation. Progestins increased time-dependently in the VT groups and the fold increase was greater for the MIS. The VT-induced steroid stimulation was significantly inhibited to near the control levels in co-incubations with both V(1) and V(2) receptor antagonists, in the order 17, 20β-DP > 17-P > P(4). The inhibition by the V(1) receptor antagonist was greater than that with the V(2) blocker, and followed the same order of inhibition described above. The results suggest that VT induces FOM and ovulation mainly through the V(1) receptors.
Collapse
Affiliation(s)
- V Singh
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
25
|
Pang Y, Thomas P. Progesterone signals through membrane progesterone receptors (mPRs) in MDA-MB-468 and mPR-transfected MDA-MB-231 breast cancer cells which lack full-length and N-terminally truncated isoforms of the nuclear progesterone receptor. Steroids 2011; 76:921-8. [PMID: 21291899 PMCID: PMC3129471 DOI: 10.1016/j.steroids.2011.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/24/2011] [Indexed: 01/07/2023]
Abstract
The functional characteristics of membrane progesterone receptors (mPRs) have been investigated using recombinant mPR proteins over-expressed in MDA-MB-231 breast cancer cells. Although these cells do not express the full-length progesterone receptor (PR), it is not known whether they express N-terminally truncated PR isoforms which could possibly account for some progesterone receptor functions attributed to mPRs. In the present study, the presence of N-terminally truncated PR isoforms was investigated in untransfected and mPR-transfected MDA-MB-231 cells, and in MDA-MB-468 breast cancer cells. PCR products were detected in PR-positive T47D Yb breast cancer cells using two sets of C-terminus PR primers, but not in untransfected and mPR-transfected MDA-MB-231 cells, nor in MDA-MB-468 cells. Western blot analysis using a C-terminal PR antibody, 2C11F1, showed the same distribution pattern for PR in these cell lines. Another C-terminal PR antibody, C-19, detected immunoreactive bands in all the cell lines, but also recognized α-actinin, indicating that the antibody is not specific for PR. High affinity progesterone receptor binding was identified on plasma membranes of MDA-MB-468 cells which was significantly decreased after treatment with siRNAs for mPRα and mPRβ. Plasma membranes of MDA-MB-468 cells showed very low binding affinity for the PR agonist, R5020, ≤1% that of progesterone, which is characteristic of mPRs. Progesterone treatment caused G protein activation and decreased production of cAMP in MDA-MB-468 cells, which is also characteristic of mPRs. The results indicate that the progestin receptor functions in these cell lines are mediated through mPRs and do not involve any N-terminally truncated PR isoforms.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | | |
Collapse
|
26
|
Peyton C, Thomas P. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio). Biol Reprod 2011; 85:42-50. [PMID: 21349822 DOI: 10.1095/biolreprod.110.088765] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.
Collapse
Affiliation(s)
- Candace Peyton
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas 78373, USA
| | | |
Collapse
|
27
|
Tubbs C, Tan W, Shi B, Thomas P. Identification of 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S) receptor binding and membrane progestin receptor alpha on southern flounder sperm (Paralichthys lethostigma) and their likely role in 20β-S stimulation of sperm hypermotility. Gen Comp Endocrinol 2011; 170:629-39. [PMID: 21163260 DOI: 10.1016/j.ygcen.2010.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 11/30/2022]
Abstract
The existence of direct progestin actions on teleost sperm to stimulate hypermotility is not widely acknowledged because it has only been demonstrated in members of the family Sciaenidae. In the present study, progestin stimulation of sperm hypermotility was investigated in a non-sciaenid, southern flounder, and the potential role of membrane progestin receptor alpha (mPRα or Paqr7b) in mediating this action was examined. The major progestin produced in vitro by flounder testicular fragments co-migrated with 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S) during thin-layer chromatography. Treatment of flounder sperm with 5 nM-100 nM 20β-S significantly increased sperm velocity in vitro, whereas 17,20β-dihydroxy-4-pregnen-3-one and other steroids were ineffective. A single class of high affinity (K(d) 22.95 nM), saturable, limited-capacity binding sites (B(max) 0.013 nM) specific for 20β-S was identified on sperm membranes. Treatment of sperm membranes with guanosine 5'-(3-O-thio)triphosphate reduced [(3)H]-20β-S binding, suggesting the 20β-S receptor couples to a G protein. The membrane adenylyl cyclase inhibitor 2',5'-dideoxyadenosine blocked 20β-S-induced sperm hypermotility, indicating 20β-S activates stimulatory G proteins. Finally, flounder paqr7b was cloned and characterized from testicular tissues. The Paqr7b protein is expressed on the midpiece of flounder sperm and is more abundant in individuals with high sperm motility than low motility donors. These findings suggest that 20β-S stimulates sperm hypermotility in flounder through activation of stimulatory G proteins, likely through Paqr7b. The finding that progestins directly stimulate sperm hypermotility in a flatfish, a highly derived species not belonging to the teleost family Sciaenidae, suggests this phenomenon is widespread among advanced fishes.
Collapse
Affiliation(s)
- Christopher Tubbs
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | | | | | | |
Collapse
|
28
|
Dressing GE, Pang Y, Dong J, Thomas P. Progestin signaling through mPRα in Atlantic croaker granulosa/theca cell cocultures and its involvement in progestin inhibition of apoptosis. Endocrinology 2010; 151:5916-26. [PMID: 20962051 PMCID: PMC2999484 DOI: 10.1210/en.2010-0165] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although there is substantial evidence that membrane progestin receptors (mPRs) perform a critical physiological role in meiotic maturation of fish oocytes, it is unknown whether they are also intermediaries in progestin signaling in the surrounding follicular cells. Here, we show that mPRα protein is located on the plasma membranes of both granulosa and theca cells (G/T cells) isolated from Atlantic croaker ovaries and is associated with the presence of a single high affinity, limited capacity, pertussis toxin-sensitive, specific progestin [17,20β,21-trihydroxy-4-pregnen-3-one (20β-S)] membrane binding site with the characteristics of mPRα. Treatment of G/T cells with 20β-S caused rapid G protein activation and a transient, pertussis toxin-sensitive, decrease in cAMP levels, whereas the selective nuclear progesterone receptor agonist, R5020, did not cause G protein activation, consistent with previous reports on mPRα signaling. 20β-S treatment decreased serum starvation-induced cell death in both G/T cells and in seatrout mPRα-transfected MDA-MB-231 cells, whereas R5020 was ineffective. Moreover, a selective mPRα agonist, 10-ethenyl-19-norprogesterone, mimicked the protective action of 20β-S against cell death, which was lost upon knockdown of mPRα protein but not after progesterone receptor knockdown, further demonstrating an involvement of mPRα. Signaling molecules involved in inhibition of apoptosis, Erk and serine-threonine kinase, were activated in G/T cells by 20β-S, which suggests a potential mechanism for mPRα inhibition of apoptosis. This is the first study to demonstrate endogenous mPR signaling in the ovarian follicle and to suggest a novel physiological role for mPRα in mediating the antiapoptotic actions of progestins in ovarian follicle cells.
Collapse
Affiliation(s)
- Gwen E Dressing
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas 78373, USA.
| | | | | | | |
Collapse
|
29
|
Pang Y, Thomas P. Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish. Dev Biol 2010; 342:194-206. [PMID: 20382141 PMCID: PMC2874603 DOI: 10.1016/j.ydbio.2010.03.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/25/2010] [Accepted: 03/30/2010] [Indexed: 01/20/2023]
Abstract
Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17beta (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERalpha) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20beta-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRalpha), the intermediary in DHP induction of OM. Conversely DHP treatment caused a >50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRalpha, respectively, at different stages of oocyte development.
Collapse
Affiliation(s)
- Yefei Pang
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | | |
Collapse
|
30
|
Broad tissue expression of membrane progesterone receptor Alpha in normal mice. J Mol Histol 2010; 41:101-10. [DOI: 10.1007/s10735-010-9265-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
31
|
Bylander A, Nutu M, Wellander R, Goksör M, Billig H, Larsson DGJ. Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube. Reprod Biol Endocrinol 2010; 8:48. [PMID: 20470431 PMCID: PMC2887877 DOI: 10.1186/1477-7827-8-48] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/15/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The physiological regulation of ciliary beat frequency (CBF) within the fallopian tube is important for controlling the transport of gametes and the fertilized ovum. Progesterone influences gamete transport in the fallopian tube of several mammalian species. In fallopian tubes isolated from cows, treatment with 20 micromolar progesterone caused a rapid reduction of the tubal CBF. The aims of this study were to establish methodology for studying fallopian tube CBF in the mouse, as it is an important model species, and to investigate if progesterone rapidly affects the CBF of mice at nM concentrations. METHODS A method to assess tubal CBF of mice was developed. Fallopian tubes were dissected and the tissue was cut in small pieces. Tissue samples with moving cilia were located under an inverted bright field microscope and held still against the bottom of a petri dish by a motorized needle system. Images were acquired over 90 minutes at 35 degrees C with a high-speed camera and used for assessing changes in the CBF in response to the addition of hormone. RESULTS The baseline CBF of the mouse fallopian tube was 23.3 +/- 3.8 Hz. The CBF was stable over at least 90 minutes allowing establishment of a baseline frequency, addition of hormone and subsequent recordings. Progesterone at concentrations of 20 micromolar and 100 nM significantly reduced the CBF by 10% and 15% respectively after 30 minutes compared with controls. CONCLUSIONS The present study demonstrates that the mouse, despite its small size, is a useful model for studying the fallopian tube CBF ex vivo. The rapid reduction in CBF by 100 nM progesterone suggests that gamete transport in the fallopian tube could be mediated by progesterone via a non-genomic receptor mechanism.
Collapse
Affiliation(s)
- Anna Bylander
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Tubbs C, Pace M, Thomas P. Expression and gonadotropin regulation of membrane progestin receptor alpha in Atlantic croaker (Micropogonias undulatus) gonads: role in gamete maturation. Gen Comp Endocrinol 2010; 165:144-54. [PMID: 19539624 DOI: 10.1016/j.ygcen.2009.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/28/2009] [Accepted: 06/12/2009] [Indexed: 11/15/2022]
Abstract
Recent results suggest that membrane progestin receptor alpha (mPRalpha) mediates nongenomic actions of progestin hormones to induce oocyte maturation and sperm hypermotility in several teleost species. The role of mPRalpha in gamete and gonadal physiology was further evaluated in the present study by examining gonadal expression of mPRalpha during gamete maturation in Atlantic croaker (Micropogonias undulatus), a well-characterized teleost model of oocyte maturation and sperm motility. Sequencing of the croaker mPRalpha gene isolated from croaker ovaries showed it is 98% homologous at the nucleotide level to spotted seatrout mPRalpha. The mPRalpha mRNA and protein were detected in both somatic and gonadal tissues. In croaker ovaries, the mPRalpha protein was present throughout the gonadal cycle and was upregulated by gonadotropin in vitro, coincident with the acquisition of oocyte maturational competence (i.e., ability to respond to progestin hormones and complete oocyte maturation). Both mPRalpha mRNA and protein were also expressed in croaker testes throughout the gonadal cycle. Expression of mPRalpha protein was weakly upregulated in testes after 18 h of in vitro gonadotropin treatment. Immunocytochemical staining showed mPRalpha was localized to both germ and interstitial cells. Finally, elevated levels of mPRalpha protein in croaker sperm were associated with high sperm motility. Taken together, these data strongly support the hypothesis that mPRalpha mediates progestin induction of oocyte maturation and upregulation of sperm motility in teleosts.
Collapse
Affiliation(s)
- Christopher Tubbs
- The University of Texas at Austin, Marine Science Institute, Port Aransas, 78373 TX, USA
| | | | | |
Collapse
|
33
|
Tubbs C, Thomas P. Progestin signaling through an olfactory G protein and membrane progestin receptor-alpha in Atlantic croaker sperm: potential role in induction of sperm hypermotility. Endocrinology 2009; 150:473-84. [PMID: 18801904 DOI: 10.1210/en.2008-0512] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progestin stimulation of sperm hypermotility remains poorly understood despite having been described in numerous vertebrate species. We show here that progestin stimulation of sperm hypermotility in a teleost, the Atlantic croaker (Micropogonias undulatus) is associated with activation of an olfactory G protein (Golf). Furthermore, we provide evidence that this progestin action is mediated by membrane progestin receptor-alpha (mPRalpha). Golf was identified in croaker sperm membranes and was specifically activated after treatment with the progestin 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S). Treatment of sperm membranes with 20beta-S caused an increase in cAMP production, which was blocked by pretreatment with cholera toxin and two membrane adenylyl cyclase inhibitors: 2',5'-dideoxyadenosine and SQ22536. Moreover, preincubation of croaker sperm with 2',5'-dideoxyadenosine and SQ22536 resulted in a significant inhibition of 20beta-S-stimulated hypermotility. Binding of [3H]20beta-S to sperm membranes was decreased after pretreatment with GTPgammaS but not pertussis toxin, suggesting the receptor is coupled to a pertussis toxin-insensitive G protein. Golf and mPRalpha were coexpressed on the sperm midpiece and flagella and were coimmunoprecipitated from sperm membranes. Finally, expression of mPRalpha protein on sperm increased after in vivo treatment with LHRH and was associated with increased induction of sperm motility by 20beta-S. These results suggest that 20beta-S activates mPRalpha in croaker sperm, which in turn activates Golf and membrane adenylyl cyclase to stimulate sperm hypermotility. Taken together these findings provide a plausible mechanism by which progestins stimulate sperm hypermotility in croaker and provide the first evidence of hormonal activation of Golf in any species.
Collapse
Affiliation(s)
- Christopher Tubbs
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373, USA.
| | | |
Collapse
|
34
|
Qiu HB, Lu SS, Ji KL, Song XM, Lu YQ, Zhang M, Lu KH. Membrane progestin receptor beta (mPR-beta): a protein related to cumulus expansion that is involved in in vitro maturation of pig cumulus-oocyte complexes. Steroids 2008; 73:1416-23. [PMID: 18722396 DOI: 10.1016/j.steroids.2008.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 01/04/2023]
Abstract
A new group of putative membrane receptors have now been isolated from fish and other vertebrates, including human. These proteins are classified into three groups known as membrane progestin receptor alpha, beta and gamma (mPR-alpha, -beta and -gamma). In the present study we have investigated the role of mPR-beta in regulating in vitro maturation (IVM) of pig cumulus-oocyte complexes (COCs). RT-PCR and Western blot analysis indicated that COCs contain transcripts and proteins for mPR-beta. The levels of both transcripts and proteins increased between 0 and 20h IVM, but then decreased between 20 and 44h. The luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not affect mPR-beta expression during IVM. Immunofluorescence analysis indicated that the mPR-beta was localized in the plasma membrane of cumulus cell. However, in mouse embryonic fibroblasts (MEFs), mPR-beta was detected at the endoplasmic reticulum (ER) rather than the plasma membrane. Cumulus expansion was impaired significantly (P<0.05) when COCs were incubated in maturation medium containing 10% (v/v) anti-mPR-beta serum during IVM. Bioinformatics analysis predicted that mPR-beta had an ER retention motif and an endocytosis internalization motif. These results suggest that the mPR-beta is a molecule related to cumulus expansion and it might function by regulation of exocytosis. In conclusion, this is the first description of the expression patterns and subcellular localization of mPR-beta in COCs and might shed light on the function of the protein.
Collapse
Affiliation(s)
- H B Qiu
- Animal Reproduction Institute, Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, No. 100, Daxue Road, Nanning 530004, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhu Y, Hanna RN, Schaaf MJM, Spaink HP, Thomas P. Candidates for membrane progestin receptors--past approaches and future challenges. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:381-9. [PMID: 18602498 DOI: 10.1016/j.cbpc.2008.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 02/02/2023]
Abstract
Progestins have a broad range of functions in reproductive biology. Many rapid nongenomic actions of progestins have been identified, including induction of oocyte maturation, modulation of reproductive signaling in the brain, rapid activation of breast cancer cell signaling, induction of the acrosomal reaction and hypermotility in mammalian sperm. Currently, there are three receptor candidates for mediating rapid progestin actions: (1) membrane progestin receptors (mPRs); (2) progestin receptor membrane components (PGRMCs); and (3) nuclear progestin receptors (nPRs). The recently-described mPR family of proteins has seven integral transmembrane domains and mediates signaling via G-protein coupled pathways. The PGRMCs have a single transmembrane with putative Src homology domains for potential activation of second messengers. The classical nPRs, in addition to having well defined transcriptional activity, can also mediate rapid activation of intracellular signaling pathways. However, details of the mechanisms by which these three classes of progestin receptors mediate rapid intracellular signaling and their subcellular localization remain unclear. In addition, mPRs, nPRs and PGRMCs exhibit overlapping expression and functions in multiple tissues, implying potential interactions during oocyte maturation, parturition, and breast cancer signaling in individual cells. However, the overwhelming majority of studies to date have focused on the functions of one of these groups of receptors in isolation. This review will summarize recent findings on the three major progestin receptor candidates, emphasizing the different approaches used, some experimental pitfalls, and current controversies. We will also review evidence for the involvement of mPRs and nPRs in one of the most well-characterized nongenomic steroid actions in basal vertebrates, oocyte maturation, and conclude by suggesting some future areas of research. Clarification of the controversies surrounding the identities and localization of membrane progestin receptors may help direct future research that could advance our understanding of rapid actions of steroids.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, 1000 E. 5th Street, Greenville, NC 27858, USA.
| | | | | | | | | |
Collapse
|
36
|
Pang Y, Dong J, Thomas P. Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest. Endocrinology 2008; 149:3410-26. [PMID: 18420744 PMCID: PMC2453078 DOI: 10.1210/en.2007-1663] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human G protein-coupled receptor 30 (GPR30) mediates estradiol-17beta (E2) activation of adenylyl cyclase in breast cancer cells and displays E2 binding typical of membrane estrogen receptors (mERs). We identified a mER in Atlantic croaker ovaries with characteristics similar to those of human GPR30. To confirm the proposed role of GPR30 as a mER in this distantly related vertebrate group, we cloned GPR30 from croaker ovaries and examined its distribution, steroid binding, and signaling characteristics. Western blot analysis showed the GPR30 protein (approximately 40 kDa) is expressed on the plasma membranes of croaker oocytes and HEK293 cells stably transfected with GPR30 cDNA. Plasma membranes prepared from croaker GPR30-transfected cells displayed high-affinity, limited-capacity, and displaceable binding specific for estrogens, characteristic of mERs. Consistent with previous findings with human GPR30, estrogen treatment of plasma membranes from both croaker ovaries and GPR30-transfected cells caused activation of a stimulatory G protein (Gs) resulting in increased cAMP production. Treatment with E2 as well as G-1, a specific GPR30 ligand, significantly reduced both spontaneous and progestin-induced maturation of both croaker and zebrafish oocytes in vitro, suggesting a possible involvement of GPR30 in maintaining oocyte meiotic arrest in these species. Injection of antisense oligonucleotides to GPR30 into zebrafish oocytes blocked the inhibitory effects of estrogen on oocyte maturation, confirming a role for GPR30 in the control of meiotic arrest. These findings further support our previous suggestion that GPR30 is a vertebrate mER. In addition, the results suggest GRP30 may play a critical role in regulating reentry into the meiotic cell cycle in fish oocytes.
Collapse
Affiliation(s)
- Yefei Pang
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | | | | |
Collapse
|
37
|
|
38
|
Thomas P. Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front Neuroendocrinol 2008; 29:292-312. [PMID: 18343488 PMCID: PMC2600886 DOI: 10.1016/j.yfrne.2008.01.001] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Rapid, progestin actions initiated at the cell surface that are often nongenomic have been described in a variety of reproductive tissues, but until recently the identities of the membrane receptors mediating these nonclassical progestins actions remained unclear. Evidence has been obtained in the last 4-5 years for the involvement of two types of novel membrane proteins unrelated to nuclear steroid receptors, progesterone membrane receptors (mPRs) and progesterone receptor membrane component 1 (PGMRC1), in progestin signaling in several vertebrate reproductive tissues and in the brain. The mPRs, (M(W) approximately 40 kDa) initially discovered in fish ovaries, comprise at least three subtypes, alpha, beta and gamma and belong to the seven-transmembrane progesterone adiponectin Q receptor (PAQR) family. Both recombinant and wildtype mPRs display high affinity (K(d) approximately 5 nM), limited capacity, displaceable and specific progesterone binding. The mPRs are directly coupled to G proteins and typically activate pertussis-sensitive inhibitory G proteins (G(i)), to down-regulate adenylyl cyclase activity. Recent studies suggest the alpha subtype (mPRalpha) has important physiological functions in variety of reproductive tissues. The mPRalpha is an intermediary in progestin induction of oocyte maturation and stimulation of sperm hypermotility in fish. In mammals, the mPRalphas have been implicated in progesterone regulation of uterine function in humans and GnRH secretion in rodents. The single-transmembrane protein PGMRC1 (M(W) 26-28 kDa) was first purified from porcine livers and its cDNA was subsequently cloned from porcine smooth muscle cells and a variety of other tissues by different investigators. PGMRC1 and the closely-related PGMRC2 belong to the membrane-associated progesterone receptor (MAPR) family. The PGMRC1 protein displays moderately high binding affinity for progesterone which is 2- to 10-fold greater than that for testosterone and glucocorticoids, and also can bind to other molecules such as heme, cholesterol metabolites and proteins. The signal transduction pathways induced by binding of progesterone to PGMRC1 have not been described to date, although motifs for tyrosine kinase, kinase binding, SH2 and SH3 have been predicted from the amino acid sequence. Evidence has been obtained that PGMRC1 mediates the antiapoptotic affects of progesterone in rat granulosa cells. The PGMRC1 protein may also be an intermediary in the progesterone induction of the acrosome reaction in mammalian sperm. Despite these recent advances, many aspects of progestin signaling through these two families of novel membrane proteins remain unresolved. Biochemical characterization of the receptors has been hampered by rapid degradation of the partially purified proteins. A major technical challenge has been to express sufficient amounts of the recombinant receptors on the plasma membranes in eukaryotic systems to permit investigations of their progestin binding and signal transduction characteristics. Additional basic information on the molecular and cellular mechanisms by which mPRs and PGMRC1 interact with progestins, signal transductions pathways and other proteins will be required to establish a comprehensive model of nontraditional progestin actions mediated through these novel proteins.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas at Austin, Marine Science, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
39
|
Weber GM, Moore AB, Sullivan CV. In vitro actions of insulin-like growth factor-I on ovarian follicle maturation in white perch (Morone americana). Gen Comp Endocrinol 2007; 151:180-7. [PMID: 17320084 DOI: 10.1016/j.ygcen.2007.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/10/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Previous studies of follicle maturation in temperate basses showed that insulin-like growth factor (IGF)-I and -II can induce meiotic resumption, indicated by germinal vesicle breakdown (GVBD), and oocyte maturational competence (OMC), the ability to respond to the maturation-inducing hormone (MIH, 17,20beta-21-trihydroxy-4-pregnen-3-one, 20beta-S). The IGFs-induced GVBD but not OMC in striped bass follicles in vitro, but OMC and not GVBD in white bass follicles. Striped bass are group-synchronous single-clutch spawners whereas white bass and white perch are group-synchronous multiple-clutch spawners. In the present study, we found that IGFs-induced OMC in white perch. Although IGF-I weakly stimulated GVBD in follicles from some late stage fish, it is likely that IGF-I did not directly induce GVBD but instead induced OMC, enabling endogenous MIH to act. Bovine insulin was less potent than IGFs at inducing OMC, suggesting that the IGFs were acting through an IGF-I receptor. IGF-I increased testosterone and estradiol-17beta production by ovarian fragments but decreased production of 17,20beta-dihydroxy-4-pregnen-3-one, a precursor to the MIH, which was below detection levels. As with the other Morone species, phosphatidylinositiol 3-kinase inhibitors, wortmannin and LY 294002, and the translation inhibitor cyclohexamide, attenuated GVBD induced by human chorionic gonadotropin (hCG), 20beta-S, and a combination of IGF-I and 20beta-S. Only hCG-induced GVBD was attenuated by the transcription inhibitor actinomycin D. The IGFs have shared and disparate actions on ovarian follicle maturation among Morone species that appear to be linked to reproductive strategy and exhibit similarities in mechanisms of action.
Collapse
Affiliation(s)
- Gregory M Weber
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
40
|
Dressing GE, Thomas P. Identification of membrane progestin receptors in human breast cancer cell lines and biopsies and their potential involvement in breast cancer. Steroids 2007; 72:111-6. [PMID: 17157338 DOI: 10.1016/j.steroids.2006.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 10/30/2006] [Indexed: 12/18/2022]
Abstract
Novel membrane progestin receptors (mPRs) coupled to G proteins recently identified in several species, including humans, are potential intermediaries in rapid, nongenomic progestin actions observed in a wide variety of tissues. Here we demonstrate mPR mRNA and protein expression and specific membrane-associated progestin binding in MCF-7 and SK-BR-3 human breast cancer cells. Interestingly, human mPRalpha mRNA expression was higher in breast tumor biopsies than in normal tissue from the same breast. Recent studies indicate intracellular signaling pathways initiated by the mPRs are broadly similar to those induced during breast cancer growth and development. Taken together these results suggest a potential involvement of mPRs during the development or progression of breast cancer.
Collapse
Affiliation(s)
- Gwen E Dressing
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States
| | | |
Collapse
|
41
|
Thomas P, Pang Y, Dong J, Groenen P, Kelder J, de Vlieg J, Zhu Y, Tubbs C. Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins. Endocrinology 2007; 148:705-18. [PMID: 17082257 DOI: 10.1210/en.2006-0974] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel progestin receptor (mPR) with seven-transmembrane domains was recently discovered in spotted seatrout and homologous genes were identified in other vertebrates. We show that cDNAs for the mPR alpha subtypes from spotted seatrout (st-mPRalpha) and humans (hu-mPRalpha) encode progestin receptors that display many functional characteristics of G protein-coupled receptors. Flow cytometry and immunocytochemical staining of whole MDA-MB-231 cells stably transfected with the mPRalphas using antibodies directed against their N-terminal regions show the receptors are localized on the plasma membrane and suggest the N-terminal domain is extracellular. Both recombinant st-mPRalpha and hu-mPRalpha display high affinity (Kd 4.2-7.8 nm), limited capacity (Bmax 0.03-0.32 nm), and displaceable membrane binding specific for progestins. Progestins activate a pertussis toxin-sensitive inhibitory G protein (G(i)) to down-regulate membrane-bound adenylyl cyclase activity in both st-mPRalpha- and hu-mPRalpha-transfected cells. Coimmunoprecipitation experiments demonstrate the receptors are directly coupled to the G(i) protein. Similar to G protein-coupled receptors, dissociation of the receptor/G protein complex results in a decrease in ligand binding to the mPRalphas and mutation of the C-terminal, and third intracellular loop of st-mPRalpha causes loss of ligand-dependent G protein activation. Phylogenetic analysis indicates the mPRs are members of a progesterone and adipoQ receptor (PAQR) subfamily that is only present in chordates, whereas other PAQRs also occur in invertebrates and plants. Progesterone and adipoQ receptors are related to the hemolysin3 family and have origins in the Eubacteria. Thus, mPRs arose from Eubacteria independently from members of the GPCR superfamily, which arose from Archeabacteria, suggesting convergent evolution of seven-transmembrane hormone receptors coupled to G proteins.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, Texas 78373, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mehlmann LM, Kalinowski RR, Ross LF, Parlow AF, Hewlett EL, Jaffe LA. Meiotic resumption in response to luteinizing hormone is independent of a Gi family G protein or calcium in the mouse oocyte. Dev Biol 2006; 299:345-55. [PMID: 16949564 PMCID: PMC1864934 DOI: 10.1016/j.ydbio.2006.07.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 07/17/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
The signaling pathway by which luteinizing hormone (LH) acts on the somatic cells of vertebrate ovarian follicles to stimulate meiotic resumption in the oocyte requires a decrease in cAMP in the oocyte, but how cAMP is decreased is unknown. Activation of Gi family G proteins can lower cAMP by inhibiting adenylate cyclase or stimulating a cyclic nucleotide phosphodiesterase, but we show here that inhibition of this class of G proteins by injection of pertussis toxin into follicle-enclosed mouse oocytes does not prevent meiotic resumption in response to LH. Likewise, elevation of Ca2+ can lower cAMP through its action on Ca2+-sensitive adenylate cyclases or phosphodiesterases, but inhibition of a Ca2+ rise by injection of EGTA into follicle-enclosed mouse oocytes does not inhibit the LH response. Thus, neither of these well-known mechanisms of cAMP regulation can account for LH signaling to the oocyte in the mouse ovary.
Collapse
Affiliation(s)
- Lisa M. Mehlmann
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Rebecca R. Kalinowski
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Lavinia F. Ross
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - Albert F. Parlow
- National Hormone and Peptide Program, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, and Departments of Medicine and Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Laurinda A. Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|
43
|
Karteris E, Zervou S, Pang Y, Dong J, Hillhouse EW, Randeva HS, Thomas P. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol 2006; 20:1519-34. [PMID: 16484338 DOI: 10.1210/me.2005-0243] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progestin withdrawal is a crucial event for the onset of labor in many mammalian species. However, in humans the mechanism of a functional progestin withdrawal is unclear, because progestin concentrations do not drop in maternal plasma preceding labor. We report the presence of two novel functional membrane progestin receptors (mPRs), mPRalpha and mPRbeta, in human myometrium that are differentially modulated during labor and by steroids in vitro. The mPRs are coupled to inhibitory G proteins, resulting in a decline in cAMP levels and increased phosphorylation of myosin light chain, both of which facilitate myometrial contraction. Activation of mPRs leads to transactivation of PR-B, the first evidence for cross-talk between membrane and nuclear PRs. Progesterone activation of the mPRs leads also to a decrease of the steroid receptor coactivator 2. Our data indicate the presence of a novel signaling pathway mediated by mPRs that may result in a functional progestin withdrawal, shifting the balance from a quiescent state to one of contraction.
Collapse
|
44
|
Pace MC, Thomas P. Steroid-induced oocyte maturation in Atlantic croaker (Micropogonias undulatus) is dependent on activation of the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Biol Reprod 2005; 73:988-96. [PMID: 16014813 DOI: 10.1095/biolreprod.105.041400] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Exposure of fully grown fish and amphibian oocytes to a maturation-inducing steroid (MIS) activates numerous signal transduction pathways to initiate the final stage of oocyte maturation. These events culminate in the activation of maturation-promoting factor and germinal vesicle breakdown (GVBD). In most species, exposure to MIS causes a transient decrease in oocyte cAMP levels. Whether this reduction in oocyte cAMP concentration is sufficient to induce GVBD is unclear. The current study tested the hypothesis that activation of cAMP-independent signal transduction pathways by the naturally occurring MIS, 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S), is necessary for GVBD in Atlantic croaker (Micropogonias undulatus) oocytes. Results indicate that although 20beta-S treatment of oocyte membranes significantly reduced cAMP production, incubation of follicles with the cell-permeable cAMP-dependent protein kinase (Prka) inhibitors Rp-cAMP or KT5720 did not promote GVBD in the absence of 20beta-S. Additionally, treatment of follicles with the phosphodiesterase (Pde) inhibitors Cilostamide (Pde3) or Rolipram (Pde4) significantly reduced GVBD, but they were not able to completely block it. In contrast, pharmacologic inhibition of the cAMP-independent phosphatidylinositol 3-kinase (Pik3)/Akt signal transduction pathway using the Pik3 inhibitors Wortmannin or LY294002, or the Akt inhibitor ML-9, blocked 20beta-S-induced GVBD. Finally, mitogen-activated protein kinase (Mapk1/3) activity increased after treatment with 20beta-S; however, inhibition of Mapk1/3 activity using PD98059 or U0126 had no effect on GVBD. These results demonstrate that activation of cAMP-independent signaling pathways, especially the Pik3/Akt pathway, is necessary for 20beta-S-induced GVBD in Atlantic croaker oocytes.
Collapse
Affiliation(s)
- Margaret C Pace
- The University of Texas at Austin Marine Science Institute, Port Aransas, Texas 78373, USA.
| | | |
Collapse
|