1
|
Canse C, Yildirim E, Yaba A. Overview of junctional complexes during mammalian early embryonic development. Front Endocrinol (Lausanne) 2023; 14:1150017. [PMID: 37152932 PMCID: PMC10158982 DOI: 10.3389/fendo.2023.1150017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Cell-cell junctions form strong intercellular connections and mediate communication between blastomeres during preimplantation embryonic development and thus are crucial for cell integrity, polarity, cell fate specification and morphogenesis. Together with cell adhesion molecules and cytoskeletal elements, intercellular junctions orchestrate mechanotransduction, morphokinetics and signaling networks during the development of early embryos. This review focuses on the structure, organization, function and expressional pattern of the cell-cell junction complexes during early embryonic development. Understanding the importance of dynamic junction formation and maturation processes will shed light on the molecular mechanism behind developmental abnormalities of early embryos during the preimplantation period.
Collapse
Affiliation(s)
- Ceren Canse
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Ecem Yildirim
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
- *Correspondence: Aylin Yaba,
| |
Collapse
|
2
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Morris T, Sue E, Geniesse C, Brieher WM, Tang VW. Synaptopodin stress fiber and contractomere at the epithelial junction. J Cell Biol 2022; 221:e202011162. [PMID: 35416930 PMCID: PMC9011326 DOI: 10.1083/jcb.202011162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and adhesion. Yet, the structural basis for force generation at the apical junction is not fully understood. Here, we describe two synaptopodin-dependent actomyosin structures that are spatially, temporally, and structurally distinct. The first structure is formed by the retrograde flow of synaptopodin initiated at the apical junction, creating a sarcomeric stress fiber that lies parallel to the apical junction. Contraction of the apical stress fiber is associated with either clustering of membrane components or shortening of junctional length. Upon junction maturation, apical stress fibers are disassembled. In mature epithelial monolayer, a motorized "contractomere" capable of "walking the junction" is formed at the junctional vertex. Actomyosin activities at the contractomere produce a compressive force evident by actin filament buckling and measurement with a new α-actinin-4 force sensor. The motility of contractomeres can adjust junctional length and change cell packing geometry during cell extrusion and intercellular movement. We propose a model of epithelial homeostasis that utilizes contractomere motility to support junction rearrangement while preserving the permeability barrier.
Collapse
Affiliation(s)
- Timothy Morris
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Eva Sue
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Caleb Geniesse
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
5
|
Yu L, Wei Y, Duan J, Schmitz DA, Sakurai M, Wang L, Wang K, Zhao S, Hon GC, Wu J. Blastocyst-like structures generated from human pluripotent stem cells. Nature 2021; 591:620-626. [PMID: 33731924 DOI: 10.1038/s41586-021-03356-y] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Limited access to embryos has hampered the study of human embryogenesis and disorders that occur during early pregnancy. Human pluripotent stem cells provide an alternative means to study human development in a dish1-7. Recent advances in partial embryo models derived from human pluripotent stem cells have enabled human development to be examined at early post-implantation stages8-14. However, models of the pre-implantation human blastocyst are lacking. Starting from naive human pluripotent stem cells, here we developed an effective three-dimensional culture strategy with successive lineage differentiation and self-organization to generate blastocyst-like structures in vitro. These structures-which we term 'human blastoids'-resemble human blastocysts in terms of their morphology, size, cell number, and composition and allocation of different cell lineages. Single-cell RNA-sequencing analyses also reveal the transcriptomic similarity of blastoids to blastocysts. Human blastoids are amenable to embryonic and extra-embryonic stem cell derivation and can further develop into peri-implantation embryo-like structures in vitro. Using chemical perturbations, we show that specific isozymes of protein kinase C have a critical function in the formation of the blastoid cavity. Human blastoids provide a readily accessible, scalable, versatile and perturbable alternative to blastocysts for studying early human development, understanding early pregnancy loss and gaining insights into early developmental defects.
Collapse
Affiliation(s)
- Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute, Jiangmen, China
| | - Jialei Duan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Díaz-Coránguez M, Liu X, Antonetti DA. Tight Junctions in Cell Proliferation. Int J Mol Sci 2019; 20:E5972. [PMID: 31783547 PMCID: PMC6928848 DOI: 10.3390/ijms20235972] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.
Collapse
Affiliation(s)
| | | | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA; (M.D.-C.); (X.L.)
| |
Collapse
|
7
|
Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 2019; 21:44-53. [DOI: 10.1038/s41556-018-0195-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
8
|
Shao YX, Lei Z, Wolf PG, Gao Y, Guo YM, Zhang BK. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged bySalmonella entericaSerovar Typhimurium. J Nutr 2017; 147:1282-1289. [DOI: 10.3945/jn.116.243238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yu-Xin Shao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhao Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Patricia G Wolf
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yan Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu-Ming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing-Kun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Yang QE, Ozawa M, Zhang K, Johnson SE, Ealy AD. The requirement for protein kinase C delta (PRKCD) during preimplantation bovine embryo development. Reprod Fertil Dev 2016; 28:482-90. [DOI: 10.1071/rd14160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/17/2014] [Indexed: 11/23/2022] Open
Abstract
Protein kinase C (PKC) delta (PRKCD) is a member of the novel PKC subfamily that regulates gene expression in bovine trophoblast cells. Additional functions for PRKCD in early embryonic development in cattle have not been fully explored. The objectives of this study were to describe the expression profile of PRKCD mRNA in bovine embryos and to examine its biological roles during bovine embryo development. Both PRKCD mRNA and protein are present throughout early embryo development and increases in mRNA abundance are evident at morula and blastocyst stages. Phosphorylation patterns are consistent with detection of enzymatically active PRKCD in bovine embryos. Exposure to a pharmacological inhibitor (rottlerin) during early embryonic development prevented development beyond the eight- to 16-cell stage. Treatment at or after the 16-cell stage reduced blastocyst development rates, total blastomere numbers and inner cell mass-to-trophoblast cell ratio. Exposure to the inhibitor also decreased basal interferon tau (IFNT) transcript abundance and abolished fibroblast growth factor-2 induction of IFNT expression. Furthermore, trophoblast adhesion and proliferation was compromised in hatched blastocysts. These observations provide novel insights into PRKCD mRNA expression profiles in bovine embryos and provide evidence for PRKCD-dependent regulation of embryonic development, gene expression and post-hatching events.
Collapse
|
10
|
Bessonnard S, Mesnard D, Constam DB. PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation. J Cell Biol 2015; 210:1185-97. [PMID: 26416966 PMCID: PMC4586756 DOI: 10.1083/jcb.201503042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Targeted deletion of PC7 and the related proprotein convertases Furin and Pace4, combined with live imaging of their activities, unmasks their overlapping and complementary functions in morula compaction and ICM formation in mouse blastocysts and in E-cadherin precursor processing. The first cell differentiation in mammalian embryos segregates polarized trophectoderm cells from an apolar inner cell mass (ICM). This lineage decision is specified in compacted morulae by cell polarization and adhesion acting on the Yes-associated protein in the Hippo signaling pathway, but the regulatory mechanisms are unclear. We show that morula compaction and ICM formation depend on PC7 and the related proprotein convertases (PCs) Furin and Pace4 and that these proteases jointly regulate cell–cell adhesion mediated by E-cadherin processing. We also mapped the spatiotemporal activity profiles of these proteases by live imaging of a transgenic reporter substrate in wild-type and PC mutant embryos. Differential inhibition by a common inhibitor revealed that all three PCs are active in inner and outer cells, but in partially nonoverlapping compartments. E-cadherin processing by multiple PCs emerges as a novel mechanism to modulate cell–cell adhesion and fate allocation.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel Mesnard
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Swiss Federal Institute of Technology in Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Jedrusik A. Making the first decision: lessons from the mouse. Reprod Med Biol 2015; 14:135-150. [PMID: 29259411 PMCID: PMC5715835 DOI: 10.1007/s12522-015-0206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Pre-implantation development encompasses a period of 3-4 days over which the mammalian embryo has to make its first decision: to separate the pluripotent inner cell mass (ICM) from the extra-embryonic epithelial tissue, the trophectoderm (TE). The ICM gives rise to tissues mainly building the body of the future organism, while the TE contributes to the extra-embryonic tissues that support embryo development after implantation. This review provides an overview of the cellular and molecular mechanisms that control the critical aspects of this first decision, and highlights the role of critical events, namely zytotic genome activation, compaction, polarization, asymmetric cell divisions, formation of the blastocyst cavity and expression of key transcription factors.
Collapse
Affiliation(s)
- Agnieszka Jedrusik
- Wellcome Trust/CR UK Gurdon InstituteTennis Court RoadCB2 1QNCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeDowning StreetCB2 3DYCambridgeUK
| |
Collapse
|
12
|
Sasaki H. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Semin Cell Dev Biol 2015; 47-48:80-7. [PMID: 25986053 DOI: 10.1016/j.semcdb.2015.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
Abstract
During the preimplantation stage, mouse embryos establish two cell lineages by the time of early blastocyst formation: the trophectoderm (TE) and the inner cell mass (ICM). Historical models have proposed that the establishment of these two lineages depends on the cell position within the embryo (e.g., the positional model) or cell polarization along the apicobasal axis (e.g., the polarity model). Recent findings have revealed that the Hippo signaling pathway plays a central role in the cell fate-specification process: active and inactive Hippo signaling in the inner and outer cells promote ICM and TE fates, respectively. Intercellular adhesion activates, while apicobasal polarization suppresses Hippo signaling, and a combination of these processes determines the spatially regulated activation of the Hippo pathway in 32-cell-stage embryos. Therefore, there is experimental evidence in favor of both positional and polarity models. At the molecular level, phosphorylation of the Hippo-pathway component angiomotin at adherens junctions (AJs) in the inner (apolar) cells activates the Lats protein kinase and triggers Hippo signaling. In the outer cells, however, cell polarization sequesters Amot from basolateral AJs and suppresses activation of the Hippo pathway. Other mechanisms, including asymmetric cell division and Notch signaling, also play important roles in the regulation of embryonic development. In this review, I discuss how these mechanisms cooperate with the Hippo signaling pathway during cell fate-specification processes.
Collapse
Affiliation(s)
- Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Wardill HR, Gibson RJ, Logan RM, Bowen JM. TLR4/PKC-mediated tight junction modulation: a clinical marker of chemotherapy-induced gut toxicity? Int J Cancer 2014; 135:2483-92. [PMID: 24310924 DOI: 10.1002/ijc.28656] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/15/2022]
Abstract
Chemotherapy-induced gut toxicity is a major clinical and economic burden to oncology practice. The mechanisms responsible for its development are ill defined, hampering the development of therapeutic interventions. In light of newly published research foci and clinical practice guidelines in supportive care in cancer, there has been renewed interest in the role tight junctions play in the pathobiology of chemotherapy-induced gut toxicity. Several preclinical studies have identified molecular defects in intestinal tight junctions following chemotherapy. Despite these findings, the mechanisms responsible for chemotherapy-induced tight junction disruption remain unclear. Recent research has highlighted roles for toll-like receptor 4 and protein kinase C signalling in the regulation of tight junctions. This critical review therefore aims to provide evidence linking toll-like receptor 4 expression, protein kinase C activation and tight junction disruption and their relationship to clinical toxicity.
Collapse
Affiliation(s)
- Hannah R Wardill
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
14
|
Quiros M, Alarcón L, Ponce A, Giannakouros T, González-Mariscal L. The intracellular fate of zonula occludens 2 is regulated by the phosphorylation of SR repeats and the phosphorylation/O-GlcNAcylation of S257. Mol Biol Cell 2013; 24:2528-43. [PMID: 23804652 PMCID: PMC3744950 DOI: 10.1091/mbc.e13-04-0224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ZO-2 nuclear import and accumulation in speckles is regulated by phosphorylation of its SR repeats by SRPK1 in a process initiated by EGF activation of AKT. ZO-2 nuclear exportation is favored by O-GlcNAc of S257 at the nucleus, whereas maturation of tight junctions is accompanied by ZO-2 phosphorylation at S257 by PKCζ. Zona occludens 2 (ZO-2) has a dual localization. In confluent epithelia, ZO-2 is present at tight junctions (TJs), whereas in sparse proliferating cells it is also found at the nucleus. Previously we demonstrated that in sparse cultures, newly synthesized ZO-2 travels to the nucleus before reaching the plasma membrane. Now we find that in confluent cultures newly synthesized ZO-2 goes directly to the plasma membrane. Epidermal growth factor induces through AKT activation the phosphorylation of the kinase for SR repeats, serine arginine protein kinase 1, which in turn phosphorylates ZO-2, which contains 16 SR repeats. This phosphorylation induces ZO-2 entry into the nucleus and accumulation in speckles. ZO-2 departure from the nucleus requires intact S257, and stabilizing the β-O-linked N-acetylglucosylation (O-GlcNAc) of S257 with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase, triggers nuclear exportation and proteosomal degradation of ZO-2. At the plasma membrane ZO-2 is not O-GlcNAc, and instead, as TJs mature, it becomes phosphorylated at S257 by protein kinase Cζ. This late phosphorylation of S257 is required for the correct cytoarchitecture to develop, as cells transfected with ZO-2 mutant S257A or S257E form aberrant cysts with multiple lumens. These results reveal novel posttranslational modifications of ZO-2 that regulate the intracellular fate of this protein.
Collapse
Affiliation(s)
- Miguel Quiros
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies Cinvestav, Mexico City 07000, Mexico Department of Chemistry, Aristotele University of Thessaloniki, Thessaloniki 54621, Greece
| | | | | | | | | |
Collapse
|
15
|
Hirate Y, Hirahara S, Inoue KI, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 2013; 23:1181-94. [PMID: 23791731 DOI: 10.1016/j.cub.2013.05.014] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown. RESULTS We show that a combination of cell polarity and cell-cell adhesion establishes position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar, respectively. The junction-associated proteins angiomotin (Amot) and angiomotin-like 2 (Amotl2) are essential for Hippo pathway activation and appropriate cell fate specification. In the nonpolar inner cells, Amot localizes to adherens junctions (AJs), and cell-cell adhesion activates the Hippo pathway. In the outer cells, the cell polarity sequesters Amot from basolateral AJs to apical domains, thereby suppressing Hippo signaling. The N-terminal domain of Amot is required for actin binding, Nf2/Merlin-mediated association with the E-cadherin complex, and interaction with Lats protein kinase. In AJs, S176 in the N-terminal domain of Amot is phosphorylated by Lats, which inhibits the actin-binding activity, thereby stabilizing the Amot-Lats interaction to activate the Hippo pathway. CONCLUSIONS We propose that the phosphorylation of S176 in Amot is a critical step for activation of the Hippo pathway in AJs and that cell polarity disconnects the Hippo pathway from cell-cell adhesion by sequestering Amot from AJs. This mechanism converts positional information into differential Hippo signaling, thereby leading to differential cell fates.
Collapse
Affiliation(s)
- Yoshikazu Hirate
- Department of Cell Fate Control, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Insights into the role of cell-cell junctions in physiology and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:187-221. [PMID: 24016526 DOI: 10.1016/b978-0-12-407694-5.00005-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Contacting cells establish different classes of intricate structures at the cell-cell junctions. These structures are of increasing research interest as they regulate a broad variety of processes in development and disease. Further, in vitro studies are revealing that various cell-cell interaction proteins are involved not only in cell-cell processes but also in many additional aspects of physiology, such as migration and apoptosis. This chapter reviews the basic classification of cell-cell junctional structures and some of their representative proteins. Their roles in development and disease are briefly outlined, followed by a section on contemporary methods for probing cell-cell interactions and some recent developments. This chapter concludes with a few suggestions for potential research directions to further develop this promising area of study.
Collapse
|
17
|
Paternot G, Spiessens M, Verstreken D, Van Bauwel J, Debrock S, D’Hooghe T, Spiessens C. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate? Reprod Biol Endocrinol 2012; 10:78. [PMID: 22963278 PMCID: PMC3447721 DOI: 10.1186/1477-7827-10-78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell-cell communication and adhesion are essential for the compaction process of early stage embryos. The aim of this study was to develop a non-invasive objective calculation system of embryo compaction in order to test the hypothesis that embryos with a larger mean contact surface result in a higher live birth rate compared to embryos with a lower mean contact surface. METHODS Multilevel images of 474 embryos transferred on day 3 were evaluated by the Cellify software. This software calculates the contact surfaces between the blastomeres. The primary outcome of this study was live birth. An ideal range of contact surface was determined and the positive and negative predictive value, the sensitivity, the specificity and the area under the curve for this new characteristic were calculated. RESULTS In total, 115 (24%) transferred embryos resulted in a live birth. Selection of an embryo for transfer on its mean contact surface could predict live birth with a high sensitivity (80%) and high negative predicting value (83%) but with a low positive predictive value (27%), a low specificity (31%) and low area under the ROC curve (0.56). The mean contact surface of embryos cultured in a single medium was significantly higher compared to the mean contact surface of embryos cultured in a sequential medium (p = 0.0003). CONCLUSIONS Neither the mean contact surface nor the number of contact surfaces of a day 3 embryo had an additional value in the prediction of live birth. The type of culture medium, however, had an impact on the contact surface of an embryo. Embryos cultured in a single medium had a significant larger contact surface compared to embryos cultured in the sequential medium.
Collapse
Affiliation(s)
- Goedele Paternot
- Leuven University Fertility Center, UZ Leuven, Gasthuisberg, Campus gasthuisberg, Leuven, Belgium
| | | | | | - Johan Van Bauwel
- Lessius-Mechelen, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - Sophie Debrock
- Leuven University Fertility Center, UZ Leuven, Gasthuisberg, Campus gasthuisberg, Leuven, Belgium
| | - Thomas D’Hooghe
- Leuven University Fertility Center, UZ Leuven, Gasthuisberg, Campus gasthuisberg, Leuven, Belgium
| | - Carl Spiessens
- Leuven University Fertility Center, UZ Leuven, Gasthuisberg, Campus gasthuisberg, Leuven, Belgium
| |
Collapse
|
18
|
Yang QE, Johnson SE, Ealy AD. Protein Kinase C Delta Mediates Fibroblast Growth Factor-2-Induced Interferon-Tau Expression in Bovine Trophoblast1. Biol Reprod 2011; 84:933-43. [DOI: 10.1095/biolreprod.110.087916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Szczepanska K, Stanczuk L, Maleszewski M. Isolated mouse inner cell mass is unable to reconstruct trophectoderm. Differentiation 2011; 82:1-8. [PMID: 21514715 DOI: 10.1016/j.diff.2011.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 11/17/2022]
Abstract
The ability of ICM to differentiate into TE is still a controversial issue. Many of authors have showed the reconstruction of TE from isolated ICMs. We showed that immunosurgical method is not 100% efficient and that the original TE cells very often remain on the surface of isolated ICMs. We also found that isolated ICM cells cultured in vitro do not express Cdx2, and that the TE is reconstituted from TE cells which have survived immunosurgery. This indicates that very soon after the formation of TE in the blastocyst, the cells of ICM lose the potency to differentiate into trophectoderm.
Collapse
Affiliation(s)
- Katarzyna Szczepanska
- Department of Embryology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
20
|
Omri S, Omri B, Savoldelli M, Jonet L, Thillaye-Goldenberg B, Thuret G, Gain P, Jeanny JC, Crisanti P, Behar-Cohen F. The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol 2010; 4:183-95. [PMID: 20463783 PMCID: PMC2861922 DOI: 10.2147/opth.s5901] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier. Material and methods Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported. Results In the rat retina, in the subapical region zonula occludens-1 (ZO-1), junction adhesion molecule (JAM), an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors. Conclusions In the OLM, heterotypic junctions contain proteins from both adherent and tight junctions. Their structure suggests that tight junctions may exist in the OLM. Occludin is present in the OLM of the rat and monkey retina and it is decreased in diabetes. The OLM should be considered as part of the retinal barrier that can be disrupted in pathological conditions contributing to fluid accumulation in the macula.
Collapse
Affiliation(s)
- S Omri
- INSERM, U872 Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
He D, Su Y, Usatyuk PV, Spannhake EW, Kogut P, Solway J, Natarajan V, Zhao Y. Lysophosphatidic acid enhances pulmonary epithelial barrier integrity and protects endotoxin-induced epithelial barrier disruption and lung injury. J Biol Chem 2009; 284:24123-32. [PMID: 19586906 DOI: 10.1074/jbc.m109.007393] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) delta- and zeta-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by approximately 2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Galpha(i)-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 microm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase delta and zeta attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 microm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.
Collapse
Affiliation(s)
- Donghong He
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen CL, Chen HC. Functional suppression of E-cadherin by protein kinase Cdelta. J Cell Sci 2009; 122:513-23. [PMID: 19174468 DOI: 10.1242/jcs.035469] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protein kinase C (PKC) delta, a member of the novel PKC subfamily, has been shown to have an important role in cell proliferation, differentiation, apoptosis and cell motility. In this study, we investigated the effect of green fluorescent protein (GFP)-PKCdelta and GFP-PKCalpha on cell-cell junctions of Madin-Darby canine kidney (MDCK) cells and found that only GFP-PKCdelta suppressed the homophilic interactions between the ectodomains of E-cadherins, accompanied by a weaker cell-cell adhesion. The kinase-deficient mutant of GFP-PKCdelta retained its localization at cell-cell junctions but failed to suppress the function of E-cadherin. In addition, we demonstrated that the hinge region (residues 280-347) that links the regulatory domain and the catalytic domain of PKCdelta is essential for both its kinase activity and the targeting of cell-cell junctions. A PKCdelta mutant with the deletion of amino acids 280-323 within the hinge region, which is catalytically active but defective in the targeting of cell-cell junctions, failed to suppress the function of E-cadherin. Moreover, expression of GFP-PKCdelta in MDCK cells expedited the detachment of cells from their neighbors and facilitated cell scatter induced by hepatocyte growth factor. By contrast, the GFP-PKCdelta mutants including the kinase-deficient mutant and the truncated mutant lacking residues 280-323 suppressed hepatocyte-growth-factor-induced cell scattering. Finally, siRNA-mediated knockdown of endogenous PKCdelta in MDCK cells was found to delay the onset of cell-cell detachment and cell scattering induced by hepatocyte growth factor. Taken together, our results demonstrate that the catalytic activity of PKCdelta and its localization to cell-cell junctions are necessary for PKCdelta to suppress the function of E-cadherin, which thereby facilitates scattering of epithelial cells in response to extracellular cues.
Collapse
Affiliation(s)
- Chien-Lin Chen
- Department of Life Science and Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | |
Collapse
|
23
|
Abstract
Left-right patterning is a fascinating problem of morphogenesis, linking evolutionary and cellular signaling mechanisms across many levels of organization. In the past 15 years, enormous progress has been made in elucidating the molecular details of this process in embryos of several model species. While many outside the field seem to believe that the fundamental aspects of this pathway are now solved, workers on asymmetry are faced with considerable uncertainties over the details of specific mechanisms, a lack of conceptual unity of mechanisms across phyla, and important questions that are not being pursued in any of the popular model systems. Here, we suggest that data from clinical syndromes, cryptic asymmetries, and bilateral gynandromorphs, while not figuring prominently in the mainstream work on LR asymmetry, point to crucial and fundamental gaps of knowledge about asymmetry. We identify 12 big questions that provide exciting opportunities for fundamental new advances in this field.
Collapse
Affiliation(s)
- Sherry Aw
- Biological and Biomedical Sciences Program Harvard Medical School, and Center for Regenerative and Developmental Biology Forsyth Institute
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, U.S.A., Tel. (617) 892-8403, Fax: (617) 892-8597,
| |
Collapse
|
24
|
Derangeon M, Spray DC, Bourmeyster N, Sarrouilhe D, Hervé JC. Reciprocal influence of connexins and apical junction proteins on their expressions and functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:768-78. [PMID: 19046940 DOI: 10.1016/j.bbamem.2008.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 01/17/2023]
Abstract
Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another.
Collapse
Affiliation(s)
- Mickaël Derangeon
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, Poitiers, F-86022, France
| | | | | | | | | |
Collapse
|
25
|
Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation. Exp Cell Res 2008; 314:3356-68. [PMID: 18817772 DOI: 10.1016/j.yexcr.2008.08.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 08/01/2008] [Accepted: 08/25/2008] [Indexed: 01/02/2023]
Abstract
Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.
Collapse
|
26
|
Eckert JJ, Fleming TP. Tight junction biogenesis during early development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:717-28. [DOI: 10.1016/j.bbamem.2007.09.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 01/12/2023]
|
27
|
Abstract
The first 4 days of mouse pre-implantation development are characterized by a period of segmentation, including morphogenetic events that are required for the divergence of embryonic and extra-embryonic lineages. These extra-embryonic tissues are essential for the implantation into the maternal uterus and for the development of the foetus. In this review, we first discuss data showing unambiguously that no essential axis of development is set up before the late blastocyst stage, and explain why the pre-patterning described during the early phases (segmentation) of development in other vertebrates cannot apply to mammalian pre-implantation period. Then, we describe important cellular and molecular events that are required for the morphogenesis of the blastocyst.
Collapse
Affiliation(s)
- Nicolas Dard
- Laboratoire de Biologie Cellulaire du Développement, UMR 7622, CNRS, Université Pierre et Marie Curie, 9 Quai St Bernard, 75252 Paris Cedex 05, France
| | | | | | | |
Collapse
|
28
|
Wu X, Li S, Chrostek-Grashoff A, Czuchra A, Meyer H, Yurchenco PD, Brakebusch C. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development. Dev Dyn 2008; 236:2767-78. [PMID: 17849438 DOI: 10.1002/dvdy.21309] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane, but exhibited defects of cell polarity, cell-cell junctions, survival, and cavitation. These defects corresponded to a decreased phosphorylation and membrane localization of aPKC, a reduced phosphorylation of GSK3beta, and a diminished activity of Rac1. However, neither Rac1 nor the kinase function of GSK3beta seem to contribute to cell polarization and cell-cell contacts. In contrast, EBs expressing dominant-negative (dn) PKCzeta mimicked well the phenotype of Cdc42-null EBs, suggesting a major role of aPKC in mediating cell polarization downstream of Cdc42. Finally, aggregation experiments with endodermal cell lines suggested that Cdc42 might affect formation of adherens and tight junctions by PKCzeta-dependent regulation of the protein levels of p120 catenin and E-cadherin.
Collapse
Affiliation(s)
- Xunwei Wu
- University of Copenhagen, Institute of Molecular Pathology, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Hartshorn C, Eckert JJ, Hartung O, Wangh LJ. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos. BMC Biotechnol 2007; 7:87. [PMID: 18067662 PMCID: PMC2246118 DOI: 10.1186/1472-6750-7-87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 12/07/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR. RESULTS We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression. CONCLUSION This paper describes the first example of multiplex RT-LATE-PCR and its utility, when combined with PurAmp sample preparation, for quantitative analysis of transcript levels in single cells. With this technique, copy numbers of different RNAs can be accurately measured independently from their relative abundance in a cell, a goal that cannot be achieved using symmetric PCR. The technique illustrated in this work is relevant to a wide array of applications, such as stem cell and cancer cell analysis and preimplantation genetic diagnostics.
Collapse
Affiliation(s)
- Cristina Hartshorn
- Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA.
| | | | | | | |
Collapse
|
30
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
31
|
Crosstalk of tight junction components with signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:729-56. [PMID: 17950242 DOI: 10.1016/j.bbamem.2007.08.018] [Citation(s) in RCA: 584] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/03/2007] [Accepted: 08/16/2007] [Indexed: 12/28/2022]
Abstract
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.
Collapse
|
32
|
Eckert JJ, Houghton FD, Hawkhead JA, Balen AH, Leese HJ, Picton HM, Cameron IT, Fleming TP. Human embryos developing in vitro are susceptible to impaired epithelial junction biogenesis correlating with abnormal metabolic activity. Hum Reprod 2007; 22:2214-24. [PMID: 17623723 DOI: 10.1093/humrep/dem147] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Blastocyst biogenesis occurs over several cell cycles during the preimplantation period comprising the gradual expression and membrane assembly of junctional protein complexes which distinguish the outer epithelial trophectoderm (TE) cells from the inner cell mass (ICM). In the human, TE integrity and the formation of a junctional seal can often be impaired. Embryos likely to result in a successful pregnancy after transfer are mostly selected according to morphological criteria. Recent data suggest that non-invasive measurement of amino acid turnover may be useful to complement such morphological scores. Whether morphological and metabolic criteria can be linked to poor TE differentiation thereby underpinning developmental predictions mechanistically remains unknown. METHODS We examined TE intercellular junction formation in human embryos by immunofluorescence and confocal microscopy and correlated this process with morphological criteria and amino acid turnover during late cleavage. RESULTS Our results show that TE differentiation may be compromised by failure of membrane assembly of specific junction constituents. This abnormality relates more closely to metabolic profiles than morphological criteria. CONCLUSION Our data identify that amino acid turnover can predict TE differentiation. These findings are the first to link two mechanisms, metabolism and junction membrane assembly, which contribute to early embryo development.
Collapse
Affiliation(s)
- Judith J Eckert
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yamanaka Y, Ralston A, Stephenson RO, Rossant J. Cell and molecular regulation of the mouse blastocyst. Dev Dyn 2006; 235:2301-14. [PMID: 16773657 DOI: 10.1002/dvdy.20844] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Animals use diverse strategies to specify tissue lineages during development. A common strategy is to partition maternally supplied and localized lineage determinants into progenitor cells. The mouse embryo appears to use a different, more regulative strategy to specify the first three lineages: the epiblast (EPI: future embryo), the trophectoderm (TE: future placenta), and the primitive endoderm (PE: future yolk sac). These lineages are specified during two successive differentiation steps leading to formation of the blastocyst. Here, we review classic and contemporary models of early lineage specification in the mouse, and describe recent efforts to understand the molecular regulation of these events. We describe evidence that trophectoderm differentiation bears resemblance to the process of epithelialization and describe the importance of apical/basal protein complexes in regulating this process. Next, we present a revised model of PE specification, and describe evidence that PE cells in the inner cell mass sort out to occupy their ultimate position on the surface of the EPI. Finally, we describe factors that reinforce these lineages and three distinct stem cell types that can be isolated from them. Together, these mechanisms guide the differentiation of the first lineages of the mouse and thereby set up tissues that will be important for the first steps of embryonic body patterning.
Collapse
Affiliation(s)
- Yojiro Yamanaka
- Program of Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|