1
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
3
|
Vopalensky P, Pralow S, Vastenhouw NL. Reduced expression of the Nodal co-receptor Oep causes loss of mesendodermal competence in zebrafish. Development 2018; 145:dev.158832. [PMID: 29440298 DOI: 10.1242/dev.158832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
The activation of specific gene expression programs depends on the presence of the appropriate signals and the competence of cells to respond to those signals. Although it is well established that cellular competence is regulated in space and time, the molecular mechanisms underlying the loss of competence remain largely unknown. Here, we determine the time window during which zebrafish prospective ectoderm loses its ability to respond to Nodal signals, and show that this coincides with a decrease in the levels of the Nodal co-receptor One-eyed pinhead (Oep). Bypassing Oep using a photoactivatable receptor, or an Oep-independent ligand, allows activation of Nodal target genes for an extended period of time. These results suggest that the reduced expression of Oep causes the loss of responsiveness to Nodal signals in the prospective ectoderm. Indeed, extending the presence of Oep prolongs the window of competence to respond to Nodal signals. Our findings suggest a simple mechanism in which the decreasing level of one component of the Nodal signaling pathway regulates the loss of mesendodermal competence in the prospective ectoderm.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Sabrina Pralow
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
4
|
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:49-82. [PMID: 27975270 DOI: 10.1007/978-3-319-46095-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.
Collapse
|
5
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
6
|
Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol 2016; 6:150200. [PMID: 26791244 PMCID: PMC4736825 DOI: 10.1098/rsob.150200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | | |
Collapse
|
7
|
|
8
|
Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH. Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. Dev Biol 2014; 392:358-67. [PMID: 24858484 DOI: 10.1016/j.ydbio.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/27/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Smad proteins convey canonical intracellular signals for activated receptors in the TGFβ superfamily, but the activity of Smads and their impact on target genes are further regulated by a wide variety of cofactors and partner proteins. We have identified a new Smad1 partner, a GTPase named Gtpbp2 that is a distant relative of the translation factor eEf1a. Gtpbp2 affects canonical signaling in the BMP branch of the TGFβ superfamily, as morpholino knockdown of Gtpbp2 decreases, and overexpression of Gtpbp2 enhances, animal cap responses to BMP4. During Xenopus development, gtpbp2 transcripts are maternally expressed and localized to the egg animal pole, and partitioned into the nascent ectodermal and mesodermal cells during cleavage and early gastrulation stages. Subsequently, gtpbp2 is expressed in the neural folds, and in early tadpoles undergoing organogenesis gtpbp2 is expressed prominently in the brain, eyes, somites, ventral blood island and branchial arches. Consistent with its expression, morpholino knockdown of Gtpbp2 causes defects in ventral-posterior germ layer patterning, gastrulation and tadpole morphology. Overexpressed Gtpbp2 can induce ventral-posterior marker genes and localize to cell nuclei in Xenopus animal caps, highlighting its role in regulating BMP signaling in the early embryo. Here, we introduce this large GTPase as a novel factor in BMP signaling and ventral-posterior patterning.
Collapse
Affiliation(s)
- Arif Kirmizitas
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - William Q Gillis
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Haitao Zhu
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
9
|
Zhang Y, Park S, Blaser S, Sheets MD. Determinants of RNA binding and translational repression by the Bicaudal-C regulatory protein. J Biol Chem 2014; 289:7497-504. [PMID: 24478311 DOI: 10.1074/jbc.m113.526426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.
Collapse
Affiliation(s)
- Yan Zhang
- From the Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | | | | |
Collapse
|
10
|
A functional genome-wide in vivo screen identifies new regulators of signalling pathways during early Xenopus embryogenesis. PLoS One 2013; 8:e79469. [PMID: 24244509 PMCID: PMC3828355 DOI: 10.1371/journal.pone.0079469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023] Open
Abstract
Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more of these pathways may result in a variety of congenital defects and diseases. Consequently, investigating how these signalling pathways are regulated at the molecular level is essential to understanding the mechanisms underlying vertebrate embryogenesis, as well as developing treatments for human diseases. Here, we designed and performed a large-scale gain-of-function screen in Xenopus embryos aimed at identifying new regulators of MAPK/Erk, PI3K/Akt, BMP, and TGF-β/Nodal signalling pathways. Our gain-of-function screen is based on the identification of gene products that alter the phosphorylation state of key signalling molecules, which report the activation state of the pathways. In total, we have identified 20 new molecules that regulate the activity of one or more signalling pathways during early Xenopus development. This is the first time that such a functional screen has been performed, and the findings pave the way toward a more comprehensive understanding of the molecular mechanisms regulating the activity of important signalling pathways under normal and pathological conditions.
Collapse
|
11
|
Zhang Y, Cooke A, Park S, Dewey CN, Wickens M, Sheets MD. Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1575-82. [PMID: 24062572 PMCID: PMC3851724 DOI: 10.1261/rna.041665.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy Cooke
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Corresponding authorE-mail
| |
Collapse
|
12
|
Reichert S, Randall RA, Hill CS. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border. Development 2013; 140:4435-44. [PMID: 24089471 DOI: 10.1242/dev.098707] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During ectodermal patterning the neural crest and preplacodal ectoderm are specified in adjacent domains at the neural plate border. BMP signalling is required for specification of both tissues, but how it is spatially and temporally regulated to achieve this is not understood. Here, using a transgenic zebrafish BMP reporter line in conjunction with double-fluorescent in situ hybridisation, we show that, at the beginning of neurulation, the ventral-to-dorsal gradient of BMP activity evolves into two distinct domains at the neural plate border: one coinciding with the neural crest and the other abutting the epidermis. In between is a region devoid of BMP activity, which is specified as the preplacodal ectoderm. We identify the ligands required for these domains of BMP activity. We show that the BMP-interacting protein Crossveinless 2 is expressed in the BMP activity domains and is under the control of BMP signalling. We establish that Crossveinless 2 functions at this time in a positive-feedback loop to locally enhance BMP activity, and show that it is required for neural crest fate. We further demonstrate that the Distal-less transcription factors Dlx3b and Dlx4b, which are expressed in the preplacodal ectoderm, are required for the expression of a cell-autonomous BMP inhibitor, Bambi-b, which can explain the specific absence of BMP activity in the preplacodal ectoderm. Taken together, our data define a BMP regulatory network that controls cell fate decisions at the neural plate border.
Collapse
Affiliation(s)
- Sabine Reichert
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | |
Collapse
|
13
|
Bates TJD, Vonica A, Heasman J, Brivanlou AH, Bell E. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. Development 2013; 140:4177-81. [PMID: 24026124 DOI: 10.1242/dev.095521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the earliest steps in embryonic development is the specification of the germ layers, the subdivision of the blastula embryo into endoderm, mesoderm and ectoderm. Maternally expressed members of the Transforming Growth Factor β (TGFβ) family influence all three germ layers; the ligands are required to induce endoderm and mesoderm, whereas inhibitors are required for formation of the ectoderm. Here, we demonstrate a vital role for maternal Coco, a secreted antagonist of TGFβ signalling, in this process. We show that Coco is required to prevent Activin and Nodal signals in the dorsal marginal side of the embryo from invading the prospective ectoderm, thereby restricting endoderm- and mesoderm-inducing signals to the vegetal and marginal zones of the pre-gastrula Xenopus laevis embryo.
Collapse
Affiliation(s)
- Thomas J D Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
14
|
Li J, Zhang S, Soto X, Woolner S, Amaya E. ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing. J Cell Sci 2013; 126:5005-17. [PMID: 23986484 PMCID: PMC3820245 DOI: 10.1242/jcs.133421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Embryonic wound healing provides a perfect example of efficient recovery of tissue integrity and homeostasis, which is vital for survival. Tissue movement in embryonic wound healing requires two functionally distinct actin structures: a contractile actomyosin cable and actin protrusions at the leading edge. Here, we report that the discrete formation and function of these two structures is achieved by the temporal segregation of two intracellular upstream signals and distinct downstream targets. The sequential activation of ERK and phosphoinositide 3-kinase (PI3K) signalling divides Xenopus embryonic wound healing into two phases. In the first phase, activated ERK suppresses PI3K activity, and is responsible for the activation of Rho and myosin-2, which drives actomyosin cable formation and constriction. The second phase is dominated by restored PI3K signalling, which enhances Rac and Cdc42 activity, leading to the formation of actin protrusions that drive migration and zippering. These findings reveal a new mechanism for coordinating different modes of actin-based motility in a complex tissue setting, namely embryonic wound healing.
Collapse
Affiliation(s)
- Jingjing Li
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
15
|
Sanvitale CE, Kerr G, Chaikuad A, Ramel MC, Mohedas AH, Reichert S, Wang Y, Triffitt JT, Cuny GD, Yu PB, Hill CS, Bullock AN. A new class of small molecule inhibitor of BMP signaling. PLoS One 2013; 8:e62721. [PMID: 23646137 PMCID: PMC3639963 DOI: 10.1371/journal.pone.0062721] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/24/2013] [Indexed: 01/24/2023] Open
Abstract
Growth factor signaling pathways are tightly regulated by phosphorylation and include many important kinase targets of interest for drug discovery. Small molecule inhibitors of the bone morphogenetic protein (BMP) receptor kinase ALK2 (ACVR1) are needed urgently to treat the progressively debilitating musculoskeletal disease fibrodysplasia ossificans progressiva (FOP). Dorsomorphin analogues, first identified in zebrafish, remain the only BMP inhibitor chemotype reported to date. By screening an assay panel of 250 recombinant human kinases we identified a highly selective 2-aminopyridine-based inhibitor K02288 with in vitro activity against ALK2 at low nanomolar concentrations similar to the current lead compound LDN-193189. K02288 specifically inhibited the BMP-induced Smad pathway without affecting TGF-β signaling and induced dorsalization of zebrafish embryos. Comparison of the crystal structures of ALK2 with K02288 and LDN-193189 revealed additional contacts in the K02288 complex affording improved shape complementarity and identified the exposed phenol group for further optimization of pharmacokinetics. The discovery of a new chemical series provides an independent pharmacological tool to investigate BMP signaling and offers multiple opportunities for pre-clinical development.
Collapse
Affiliation(s)
| | - Georgina Kerr
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Apirat Chaikuad
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Agustin H. Mohedas
- Department of Medicine Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabine Reichert
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - You Wang
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - James T. Triffitt
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Gregory D. Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Paul B. Yu
- Department of Medicine Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Briones-Orta MA, Levy L, Madsen CD, Das D, Erker Y, Sahai E, Hill CS. Arkadia regulates tumor metastasis by modulation of the TGF-β pathway. Cancer Res 2013; 73:1800-10. [PMID: 23467611 PMCID: PMC3672972 DOI: 10.1158/0008-5472.can-12-1916] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TGF-β can act as a tumor suppressor at early stages of cancer progression and as a tumor promoter at later stages. The E3 ubiquitin ligase Arkadia (RNF111) is a critical component of the TGF-β signaling pathway, being required for a subset of responses, those mediated by Smad3-Smad4 complexes. It acts by mediating ligand-induced degradation of Ski and SnoN (SKIL), which are 2 potent transcriptional repressors. Here, we investigate the role of Arkadia in cancer using model systems to address both potential tumor-suppressive and tumor-promoting roles. Stable reexpression of Arkadia in lung carcinoma NCI-H460 cells, which we show contain a hemizygous nonsense mutation in the Arkadia/RNF111 gene, efficiently restored TGF-β-induced Smad3-dependent transcription, and substantially decreased the ability of these cells to grow in soft agar in vitro. However, it had no effect on tumor growth in vivo in mouse models. Moreover, loss of Arkadia in cancer cell lines and human tumors is rare, arguing against a prominent tumor-suppressive role. In contrast, we have uncovered a potent tumor-promoting function for Arkadia. Using 3 different cancer cell lines whose tumorigenic properties are driven by TGF-β signaling, we show that loss of Arkadia function, either by overexpression of dominant negative Arkadia or by siRNA-induced knockdown, substantially inhibited lung colonization in tail vein injection experiments in immunodeficient mice. Our findings indicate that Arkadia is not critical for regulating tumor growth per se, but is required for the early stages of cancer cell colonization at the sites of metastasis.
Collapse
Affiliation(s)
- Marco A. Briones-Orta
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Laurence Levy
- INSERM UMR S 938, Hôpital St-Antoine, 184 rue du Faubourg St-Antoine, 75012 Paris, France
| | - Chris D. Madsen
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Debipriya Das
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Yigit Erker
- INSERM UMR S 938, Hôpital St-Antoine, 184 rue du Faubourg St-Antoine, 75012 Paris, France
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| |
Collapse
|
17
|
Grönroos E, Kingston IJ, Ramachandran A, Randall RA, Vizán P, Hill CS. Transforming growth factor β inhibits bone morphogenetic protein-induced transcription through novel phosphorylated Smad1/5-Smad3 complexes. Mol Cell Biol 2012; 32:2904-16. [PMID: 22615489 PMCID: PMC3416179 DOI: 10.1128/mcb.00231-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/10/2012] [Indexed: 12/26/2022] Open
Abstract
In vivo cells receive simultaneous signals from multiple extracellular ligands and must integrate and interpret them to respond appropriately. Here we investigate the interplay between pathways downstream of two transforming growth factor β (TGF-β) superfamily members, bone morphogenetic protein (BMP) and TGF-β. We show that in multiple cell lines, TGF-β potently inhibits BMP-induced transcription at the level of both BMP-responsive reporter genes and endogenous BMP target genes. This inhibitory effect requires the TGF-β type I receptor ALK5 and is independent of new protein synthesis. Strikingly, we show that Smad3 is required for TGF-β's inhibitory effects, whereas Smad2 is not. We go on to demonstrate that TGF-β induces the formation of complexes comprising phosphorylated Smad1/5 and Smad3, which bind to BMP-responsive elements in vitro and in vivo and mediate TGF-β-induced transcriptional repression. Furthermore, loss of Smad3 confers on TGF-β the ability to induce transcription via BMP-responsive elements. Our results therefore suggest that not only is Smad3 important for mediating TGF-β's inhibitory effects on BMP signaling but it also plays a critical role in restricting the transcriptional output in response to TGF-β.
Collapse
Affiliation(s)
- Eva Grönroos
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Gallagher JM, Komati H, Roy E, Nemer M, Latinkić BV. Dissociation of cardiogenic and postnatal myocardial activities of GATA4. Mol Cell Biol 2012; 32:2214-23. [PMID: 22473995 PMCID: PMC3372269 DOI: 10.1128/mcb.00218-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Transcription factor GATA4 is a critical regulator of the embryonic and postnatal heart, but the mechanisms and cofactors required for its diverse functions are not fully understood. Here, we show that whereas the N-terminal domain of GATA4 is required for inducing cardiogenesis and for promoting postnatal cardiomyocyte survival, distinct residues and domains therein are necessary to mediate these effects. Cardiogenic activity of GATA4 requires a 24-amino-acid (aa) region (aa 129 to 152) which is needed for transcriptional synergy and physical interaction with BAF60c. The same region is not essential for induction of endoderm or blood cell markers by GATA4, suggesting that it acts as a cell-type-specific transcriptional activation domain. On the other hand, a serine residue at position 105, which is a known target for mitogen-activated protein kinase (MAPK) phosphorylation, is necessary for GATA4-dependent cardiac myocyte survival and hypertrophy but is entirely dispensable for GATA4-induced cardiogenesis. We find that S105 is differentially required for transcriptional synergy between GATA4 and serum response factor (SRF) but not other cardiac cofactors such as TBX5 and NKX2.5. The findings provide new insight into GATA4 mechanisms of action and suggest that distinct regulatory pathways regulate activities of GATA4 in embryonic development and postnatal hearts.
Collapse
Affiliation(s)
- Joseph M. Gallagher
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| | - Hiba Komati
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emmanuel Roy
- Graduate Program in Biomedical Sciences, University of Montréal, Montréal, Québec, Canada
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Graduate Program in Biomedical Sciences, University of Montréal, Montréal, Québec, Canada
| | - Branko V. Latinkić
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, United Kingdom
| |
Collapse
|
19
|
Ravisankar V, Singh TP, Manoj N. Molecular evolution of the EGF-CFC protein family. Gene 2011; 482:43-50. [PMID: 21640172 DOI: 10.1016/j.gene.2011.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs.
Collapse
Affiliation(s)
- V Ravisankar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | |
Collapse
|
20
|
Wu MY, Ramel MC, Howell M, Hill CS. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. PLoS Biol 2011; 9:e1000593. [PMID: 21358802 PMCID: PMC3039673 DOI: 10.1371/journal.pbio.1000593] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/31/2010] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.
Collapse
Affiliation(s)
- Mary Y. Wu
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Michael Howell
- High-Throughput Screening Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Abstract
Nodal signals belong to the TGF-beta superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left-right axis. Nodal signals can act as morphogens-they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction-diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-beta signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.
Collapse
|
22
|
Vonica A, Rosa A, Arduini BL, Brivanlou AH. APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis. Dev Biol 2010; 350:13-23. [PMID: 20880495 DOI: 10.1016/j.ydbio.2010.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/30/2010] [Accepted: 09/21/2010] [Indexed: 12/01/2022]
Abstract
The specification of left-right asymmetry is an evolutionarily conserved developmental process in vertebrates. The interplay between two TGFβ ligands, Derrière/GDF1 and Xnr1/Nodal, together with inhibitors such as Lefty and Coco/Cerl2, have been shown to provide the signals that lead to the establishment of laterality. However, molecular events leading to and following these signals remain mostly unknown. We find that APOBEC2, a member of the cytidine deaminase family of DNA/RNA editing enzymes, is induced by TGFβ signaling, and that its activity is necessary to specify the left-right axis in Xenopus and zebrafish embryos. Surprisingly, we find that APOBEC2 selectively inhibits Derrière, but not Xnr1, signaling. The inhibitory effect is conserved, as APOBEC2 blocks TGFβ signaling, and promotes muscle differentiation, in a mammalian myoblastic cell line. This demonstrates for the first time that a putative RNA/DNA editing enzyme regulates TGFβ signaling and plays a major role in development.
Collapse
Affiliation(s)
- Alin Vonica
- Laboratory of Vertebrate Embryology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| | | | | | | |
Collapse
|
23
|
Harvey SA, Tümpel S, Dubrulle J, Schier AF, Smith JC. no tail integrates two modes of mesoderm induction. Development 2010; 137:1127-35. [PMID: 20215349 DOI: 10.1242/dev.046318] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During early zebrafish development the nodal signalling pathway patterns the embryo into three germ layers, in part by inducing the expression of no tail (ntl), which is essential for correct mesoderm formation. When nodal signalling is inhibited ntl fails to be expressed in the dorsal margin, but ventral ntl expression is unaffected. These observations indicate that ntl transcription is under both nodal-dependent and nodal-independent regulation. Consistent with these observations and with a role for ntl in mesoderm formation, some somites form within the tail region of embryos lacking nodal signalling. In an effort to understand how ntl is regulated and thus how mesoderm forms, we have mapped the elements responsible for nodal-dependent and nodal-independent expression of ntl in the margin of the embryo. Our work demonstrates that expression of ntl in the margin is the consequence of two separate enhancers, which act to mediate different mechanisms of mesoderm formation. One of these enhancers responds to nodal signalling, and the other to Wnt and BMP signalling. We demonstrate that the nodal-independent regulation of ntl is essential for tail formation. Misexpression of Wnt and BMP ligands can induce the formation of an ectopic tail, which contains somites, in embryos devoid of nodal signalling, and this tail formation is dependent on ntl function. Similarly, nodal-independent tail somite formation requires ntl. At later stages in development ntl is required for notochord formation, and our analysis has also led to the identification of the enhancer required for ntl expression in the developing notochord.
Collapse
Affiliation(s)
- Steven A Harvey
- Wellcome Trust and Cancer Research UK, Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | | | | | |
Collapse
|
24
|
Samuel LJ, Latinkić BV. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling. PLoS One 2009; 4:e7650. [PMID: 19862329 PMCID: PMC2763344 DOI: 10.1371/journal.pone.0007650] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.
Collapse
Affiliation(s)
- Lee J. Samuel
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Branko V. Latinkić
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Kwek J, De Iongh R, Nicholas K, Familari M. Molecular insights into evolution of the vertebrate gut: focus on stomach and parietal cells in the marsupial,Macropus eugenii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:613-24. [DOI: 10.1002/jez.b.21227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Abstract
The xCR1 protein is a maternal determinant and cofactor for nodal signaling in vertebrate embryos. The xCR1 protein accumulates specifically in the animal cells of Xenopus embryos, but maternal xCR1 mRNA is distributed equally throughout all embryonic cells. Here, we show that vegetal cell-specific translational repression of xCR1 mRNA contributes to this spatially restricted accumulation of the xCR1 protein in Xenopus embryos. xCR1 mRNA was associated with polyribosomes in animal cells but not vegetal cells. A 351-nucleotide region of xCR1 mRNA's 3' untranslated region was sufficient to confer a spatially restricted pattern of translation to a luciferase reporter mRNA by repressing translation in vegetal cells. Repression depended upon the mRNA's 5' cap but not its 3' poly(A) tail. Furthermore, the region of xCR1 mRNA sufficient to confer vegetal cell-specific repression contained both Pumilio binding elements (PBEs) and binding sites for the CUG-BP1 protein. The PBEs and the CUG-BP1 sites were necessary but not sufficient for translation repression. Our studies of xCR1 mRNA document the first example of spatially regulated translation in controlling the asymmetric distribution of a maternal determinant in vertebrates.
Collapse
|
27
|
Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D. Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech Dev 2008; 126:240-55. [PMID: 19027850 DOI: 10.1016/j.mod.2008.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
Abstract
ADAM19 is a member of the meltrin subfamily of ADAM metalloproteases. In Xenopus, ADAM19 is present as a maternal transcript. Zygotic expression starts during gastrulation and is apparent in the dorsal blastopore lip. ADAM19 expression through neurulation and tailbud formation becomes enriched in dorsal structures such as the neural tube, the notochord and the somites. Using morpholino knock-down, we show that a reduction of ADAM19 protein in gastrula stage embryos results in a decrease of Brachyury expression in the notochord concomitant with an increase in the dorsal markers, Goosecoid and Chordin. These changes in gene expression are accompanied by a decrease in phosphorylated AKT, a downstream target of the EGF signaling pathway, and occur while the blastopore closes at the same rate as the control embryos. During neurulation and tailbud formation, ADAM19 knock-down induces a reduction of the neural markers N-tubulin and NRP1 but not Sox2. In the somitic mesoderm, the expression of MLC is also decreased while MyoD is not. ADAM19 knockdown also reduces neural crest markers prior to cell migration. Neural crest induction is also decreased in embryos treated with an EGF receptor inhibitor suggesting that this pathway is necessary for neural crest cell induction. Using targeted knock-down of ADAM19 we show that the reduction of neural and neural crest markers is cell autonomous and that the migration if the cranial neural crest is perturbed. We further show that ADAM19 protein reduction affects somite organization, reduces 12-101 expression and perturbs fibronectin localization at the intersomitic boundary.
Collapse
Affiliation(s)
- Russell Neuner
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| | | | | | | | | |
Collapse
|
28
|
Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M. Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development 2008; 135:2927-37. [PMID: 18697906 DOI: 10.1242/dev.020842] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We identify Balpha (PPP2R2A) and Bdelta (PPP2R2D), two highly related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-beta/Activin/Nodal signalling that affect the pathway in opposite ways. Knockdown of Balpha in Xenopus embryos or mammalian tissue culture cells suppresses TGF-beta/Activin/Nodal-dependent responses, whereas knockdown of Bdelta enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit Twins. We show that, in vertebrates, Balpha enhances TGF-beta/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas Bdelta negatively modulates these pathways by restricting receptor activity. Thus, these highly related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-beta/Activin/Nodal signalling to elicit opposing biological outcomes.
Collapse
Affiliation(s)
- Julie Batut
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
29
|
Haworth KE, Kotecha S, Mohun TJ, Latinkic BV. GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos. BMC DEVELOPMENTAL BIOLOGY 2008; 8:74. [PMID: 18662378 PMCID: PMC2526999 DOI: 10.1186/1471-213x-8-74] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 07/28/2008] [Indexed: 01/12/2023]
Abstract
Background GATA factors 4/5/6 have been implicated in the development of the heart and endodermal derivatives in vertebrates. Work in zebrafish has indicated that GATA5 is required for normal development earlier than GATA4/6. However, the GATA5 knockout mouse has no apparent embryonic phenotype, thereby questioning the importance of the gene for vertebrate development. Results In this study we show that in Xenopus embryos GATA5 is essential for early development of heart and liver precursors. In addition, we have found that in Xenopus embryos GATA4 is important for development of heart and liver primordia following their specification, and that in this role it might interact with GATA6. Conclusion Our results suggest that GATA5 acts earlier than GATA4 to regulate development of heart and liver precursors, and indicate that one early direct target of GATA5 is homeobox gene Hex.
Collapse
Affiliation(s)
- Kim E Haworth
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3US, Wales, UK.
| | | | | | | |
Collapse
|
30
|
D'Andrea D, Liguori GL, Le Good JA, Lonardo E, Andersson O, Constam DB, Persico MG, Minchiotti G. Cripto promotes A-P axis specification independently of its stimulatory effect on Nodal autoinduction. ACTA ACUST UNITED AC 2008; 180:597-605. [PMID: 18268105 PMCID: PMC2234230 DOI: 10.1083/jcb.200709090] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The EGF-CFC gene cripto governs anterior-posterior (A-P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII-activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4. However, how ALK4-independent Cripto pathways function in vivo has remained unclear. We have generated cripto mutants carrying the amino acid substitution F78A, which blocks the Nodal-ALK4-Smad2 signaling both in embryonic stem cells and cell-based assays. In cripto(F78A/F78A) mouse embryos, Nodal fails to expand its own expression domain and that of cripto, indicating that F78 is essential in vivo to stimulate Smad-dependent Nodal autoinduction. In sharp contrast to cripto-null mutants, cripto(F78A/F78A) embryos establish an A-P axis and initiate gastrulation movements. Our findings provide in vivo evidence that Cripto is required in the Nodal-Smad2 pathway to activate an autoinductive feedback loop, whereas it can promote A-P axis formation and initiate gastrulation movements independently of its stimulatory effect on the canonical Nodal-ALK4-Smad2 signaling pathway.
Collapse
Affiliation(s)
- Daniela D'Andrea
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics A. Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
de Almeida I, Rolo A, Batut J, Hill C, Stern CD, Linker C. Unexpected activities of Smad7 in Xenopus mesodermal and neural induction. Mech Dev 2008; 125:421-31. [PMID: 18359614 DOI: 10.1016/j.mod.2008.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 11/24/2022]
Abstract
Neural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFbeta inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2. Surprisingly, however, over-expression of Smad7 in Xenopus ventral epidermis induces expression of the dorsal mesodermal markers Chordin and Brachyury. Neural markers are induced, but in a non-cell-autonomous manner and only when Chordin and Brachyury are also induced. Simultaneous inhibition of Smad1 and Smad2 by different approaches does not account for all Smad7 effects, indicating that Smad7 has activities other than inhibition of the TGFbeta pathway. We provide evidence that these effects are independent of Wnt, FGF, Hedgehog and retinoid signalling. We also show that these effects are due to elements outside of the MH2 domain of Smad7. Together, these results indicate that BMP inhibition is not sufficient for neural induction even when Nodal/Activin is also blocked, and that Smad7 activity is considerably more complex than had previously been assumed. We suggest that experiments relying on Smad7 as an inhibitor of TGFbeta-pathways should be interpreted with considerable caution.
Collapse
Affiliation(s)
- Irene de Almeida
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
32
|
Graindorge A, Le Tonquèze O, Thuret R, Pollet N, Osborne HB, Audic Y. Identification of CUG-BP1/EDEN-BP target mRNAs in Xenopus tropicalis. Nucleic Acids Res 2008; 36:1861-70. [PMID: 18267972 PMCID: PMC2330240 DOI: 10.1093/nar/gkn031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The early development of many animals relies on the posttranscriptional regulations of maternally stored mRNAs. In particular, the translation of maternal mRNAs is tightly controlled during oocyte maturation and early mitotic cycles in Xenopus. The Embryonic Deadenylation ElemeNt (EDEN) and its associated protein EDEN-BP are known to trigger deadenylation and translational silencing to several mRNAs bearing an EDEN. This Xenopus RNA-binding protein is an ortholog of the human protein CUG-BP1/CELF1. Five mRNAs, encoding cell cycle regulators and a protein involved in the notch pathway, have been identified as being deadenylated by EDEN/EDEN-BP. To identify new EDEN-BP targets, we immunoprecipitated EDEN-BP/mRNA complexes from Xenopus tropicalis egg extracts. We identified 153 mRNAs as new binding targets for EDEN-BP using microarrays. Sequence analyses of the 3′ untranslated regions of the newly identified EDEN-BP targets reveal an enrichment in putative EDEN sequences. EDEN-BP binding to a subset of the targets was confirmed both in vitro and in vivo. Among the newly identified targets, Cdk1, a key player of oocyte maturation and cell cycle progression, is specifically targeted by its 3′ UTR for an EDEN-BP-dependent deadenylation after fertilization.
Collapse
Affiliation(s)
- Antoine Graindorge
- CNRS, UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140 GFAS, 2 avenue du Pr Léon Bernard, CS 34317, 35043 Rennes Cedex and CNRS UMR 8080, Université Paris Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The Dickkopf (Dkk) family is composed of four main members (Dkk1-4), which typically regulate Wnt/beta-catenin signaling. An exception is Dkk3, which does not affect Wnt/beta-catenin signaling and whose function is poorly characterized. Here, we describe the Xenopus dkk3 homolog and characterize its expression and function during embryogenesis. Dkk3 is maternally expressed and zygotically in the cement gland, head mesenchyme, and heart. We show that depletion of Dkk3 in Xenopus embryos by Morpholino antisense oligonucleotides induces axial defects as a result of Spemann organizer and mesoderm inhibition. Dkk3 depletion leads to down-regulation of Activin/Nodal signaling by reducing levels of Smad4 protein. Dkk3 overexpression can rescue phenotypic effects resulting from overexpression of the Smad4 ubiquitin ligase Ectodermin. Furthermore, depletion of Dkk3 up-regulates FGF signaling, while Dkk3 overexpression reduces it. These results indicate that Dkk3 modulates FGF and Activin/Nodal signaling to regulate mesoderm induction during early Xenopus development.
Collapse
Affiliation(s)
- Sonia Pinho
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Westmoreland JJ, Takahashi S, Wright CVE. Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling. Dev Dyn 2007; 236:2050-61. [PMID: 17584861 DOI: 10.1002/dvdy.21210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Nodal and Nodal-related morphogens are utilized for the specification of distinct cellular identity throughout development by activating discrete target genes in a concentration-dependant manner. Lefty is a principal extracellular antagonist involved in the spatiotemporal regulation of the Nodal morphogen gradient during mesendoderm induction. The Xenopus Lefty proprotein contains a single N-linked glycosylation motif in the mature domain and two potential cleavage sites that would be expected to produce long (Xlefty(L)) and short (Xlefty(S)) isoforms. Here we demonstrate that both isoforms were secreted from Xenopus oocytes, but that Xlefty(L) is the only isoform detected when embryonic tissue was analyzed. In mesoderm induction assays, Xlefty(L) is the functional blocker of Xnr signaling. When secreted from oocytes, vertebrate Lefty molecules were N-linked glycosylated. However, glycan addition was not required to inhibit Xnr signaling and did not influence its movement through the extracellular space. These findings demonstrate that Lefty molecules undergo post-translational modifications and that some of these modifications are required for the Nodal inhibitory function.
Collapse
Affiliation(s)
- Joby J Westmoreland
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
35
|
Morris SA, Almeida AD, Tanaka H, Ohta K, Ohnuma SI. Tsukushi modulates Xnr2, FGF and BMP signaling: regulation of Xenopus germ layer formation. PLoS One 2007; 2:e1004. [PMID: 17925852 PMCID: PMC1994590 DOI: 10.1371/journal.pone.0001004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/11/2007] [Indexed: 11/28/2022] Open
Abstract
Background Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-β family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-β-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. Methodology/Principal Findings Here, we show that Xenopus Tsukushi (X-TSK), a member of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. Conclusions/Significance Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional information by integration of multiple pathways in the extracellular space.
Collapse
Affiliation(s)
- Samantha A. Morris
- Department of Oncology, The Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (SM); (SO)
| | - Alexandra D. Almeida
- Department of Oncology, The Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Hideaki Tanaka
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shin-ichi Ohnuma
- Department of Oncology, The Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (SM); (SO)
| |
Collapse
|
36
|
Ramis JM, Collart C, Smith JC. Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division. PLoS One 2007; 2:e213. [PMID: 17299593 PMCID: PMC1790703 DOI: 10.1371/journal.pone.0000213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/19/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mesoderm of the amphibian embryo is formed through an inductive interaction in which vegetal cells of the blastula-staged embryo act on overlying equatorial cells. Candidate mesoderm-inducing factors include members of the transforming growth factor type beta family such as Vg1, activin B, the nodal-related proteins and derrière. METHODOLOGY AND PRINCIPLE FINDINGS Microarray analysis reveals different functions for activin B and the nodal-related proteins during early Xenopus development. Inhibition of nodal-related protein function causes the down-regulation of regionally expressed genes such as chordin, dickkopf and XSox17alpha/beta, while genes that are mis-regulated in the absence of activin B tend to be more widely expressed and, interestingly, include several that are involved in cell cycle regulation. Consistent with the latter observation, cells of the involuting dorsal axial mesoderm, which normally undergo cell cycle arrest, continue to proliferate when the function of activin B is inhibited. CONCLUSIONS/SIGNIFICANCE These observations reveal distinct functions for these two classes of the TGF-beta family during early Xenopus development, and in doing so identify a new role for activin B during gastrulation.
Collapse
Affiliation(s)
- Joana M. Ramis
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kindgom
| | - Clara Collart
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kindgom
| | - James C. Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kindgom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Abstract
Nodal-related ligands of the transforming growth factor-beta (TGFbeta) superfamily play central roles in patterning the early embryo during the induction of mesoderm and endoderm and the specification of left-right asymmetry. Additional roles for this pathway in the maintenance of embryonic stem cell pluripotency and in carcinogenesis have been uncovered more recently. Consistent with its crucial developmental functions, Nodal signaling is tightly regulated by diverse mechanisms including the control of ligand processing, utilization of co-receptors, expression of soluble antagonists, as well as positive- and negative-feedback activities.
Collapse
Affiliation(s)
- Michael M Shen
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
38
|
Zorn AM, Wells JM. Molecular Basis of Vertebrate Endoderm Development. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:49-111. [PMID: 17425939 DOI: 10.1016/s0074-7696(06)59002-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The embryonic endoderm gives rise to the epithelial lining of the digestive and respiratory systems and organs such as the thyroid, lungs, liver, gallbladder, and pancreas. Studies in Xenopus, zebrafish, and mice have revealed a conserved molecular pathway controlling vertebrate endoderm development. The TGFbeta/Nodal signaling pathway is at the top of this molecular hierarchy and controls the expression of a number of key transcription factors including Mix-like homeodomain proteins, Gata zinc finger factors, Sox HMG domain proteins, and Fox forkhead factors. Here we review the function of these molecules comparing and contrasting their roles in each model organism. Finally, we will describe how our understanding of the molecular pathway governing endoderm development in embryos is being used to differentiate embryonic stem cells in vitro along endodermal lineages, with the ultimate goal of making therapeutically useful tissue.
Collapse
Affiliation(s)
- Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research, Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
39
|
Haramoto Y, Takahashi S, Asashima M. Monomeric mature protein of Nodal-related 3 activates Xbra expression. Dev Genes Evol 2006; 217:29-37. [PMID: 17089091 DOI: 10.1007/s00427-006-0115-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 09/22/2006] [Indexed: 11/24/2022]
Abstract
Nodal and related proteins play central roles in axes formation, mesendoderm induction, neural patterning, and left-right development. However, Xenopus nodal-related 3 (Xnr3) has unique activities in regulating neural induction and convergent extension movements. Xnr3 is distinguished from other transforming growth factor-beta superfamily members by the absence of the seventh conserved cysteine at the C terminus of the protein, and little is known about the molecular mechanism of Xnr3 action. In this study, we report a novel and unique mechanism of action that the mature region of Xenopus tropicalis nodal-related 3 (Xtnr3) functions as a monomer. Comparative analyses between Xtnr3 and Xnr5 revealed regions required for dimerization: (1) a conserved glycine, (2) the seventh cysteine, and (3) a putative alpha-helix located between the third and the fourth cysteines. These results indicate that the mature region of Nodal-related 3 entirely differs from other Nodal-related proteins in its mechanism of action.
Collapse
Affiliation(s)
- Yoshikazu Haramoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | |
Collapse
|
40
|
Haramoto Y, Takahashi S, Asashima M. Two distinct domains in pro-region of Nodal-related 3 are essential for BMP inhibition. Biochem Biophys Res Commun 2006; 346:470-8. [PMID: 16762322 DOI: 10.1016/j.bbrc.2006.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily member, Xenopus nodal-related 3 (Xnr3), induces neural tissues through inhibition of bone morphogenetic proteins (BMPs). We recently identified an inhibitory mechanism in which the pro-region of Xenopus tropicalis nodal-related 3 (Xtnr3) physically interacts with BMP ligands. Here, we show that disulfide-linked heterodimerization does not contribute to BMP inhibition by Xtnr3 and that the Xtnr3 mature region, overexpression of which can induce the same phenotype as full-length Xtnr3, does not inhibit BMP signaling. Furthermore, we find that the BMP-inhibitory domains of Xtnr3 are separately located in the N- and C-terminal regions of the pro-region. These results indicate the pro-region of Nodal-related 3 is both necessary and sufficient for its BMP inhibition.
Collapse
Affiliation(s)
- Yoshikazu Haramoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|