1
|
Moccia F, Fiorio Pla A, Lim D, Lodola F, Gerbino A. Intracellular Ca 2+ signalling: unexpected new roles for the usual suspect. Front Physiol 2023; 14:1210085. [PMID: 37576340 PMCID: PMC10413985 DOI: 10.3389/fphys.2023.1210085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca2+ into the cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+ handling machinery varies among different cell types to generate intracellular Ca2+ signals that are selectively tailored to subserve specific functions. The advent of novel high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and genetic Ca2+ indicators, as well as the development of novel genetic engineering tools to manipulate single cells and whole animals, has shed novel light on the regulation of cellular activity by the Ca2+ handling machinery. A symposium organized within the framework of the 72nd Annual Meeting of the Italian Society of Physiology, held in Bari on 14-16th September 2022, has recently addressed many of the unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular fate in healthy and disease states. Herein, we present a report of this symposium, in which the following emerging topics were discussed: 1) Regulation of water reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+ transfer in Alzheimer's disease-related astroglial dysfunction; 3) The non-canonical role of TRP Melastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Abstract
The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lora L Martucci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Santella L, Chun JT. Structural actin dynamics during oocyte maturation and fertilization. Biochem Biophys Res Commun 2022; 633:13-16. [DOI: 10.1016/j.bbrc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
|
4
|
Berra-Romani R, Vargaz-Guadarrama A, Sánchez-Gómez J, Coyotl-Santiago N, Hernández-Arambide E, Avelino-Cruz JE, García-Carrasco M, Savio M, Pellavio G, Laforenza U, Lagunas-Martínez A, Moccia F. Histamine activates an intracellular Ca 2+ signal in normal human lung fibroblast WI-38 cells. Front Cell Dev Biol 2022; 10:991659. [PMID: 36120576 PMCID: PMC9478493 DOI: 10.3389/fcell.2022.991659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Histamine is an inflammatory mediator that can be released from mast cells to induce airway remodeling and cause persistent airflow limitation in asthma. In addition to stimulating airway smooth muscle cell constriction and hyperplasia, histamine promotes pulmonary remodeling by inducing fibroblast proliferation, contraction, and migration. It has long been known that histamine receptor 1 (H1R) mediates the effects of histamine on human pulmonary fibroblasts through an increase in intracellular Ca2+ concentration ([Ca2+]i), but the underlying signaling mechanisms are still unknown. Herein, we exploited single-cell Ca2+ imaging to assess the signal transduction pathways whereby histamine generates intracellular Ca2+ signals in the human fetal lung fibroblast cell line, WI-38. WI-38 fibroblasts were loaded with the Ca2+-sensitive fluorophore, FURA-2/AM, and challenged with histamine in the absence and presence of specific pharmacological inhibitors to dissect the Ca2+ release/entry pathways responsible for the onset of the Ca2+ response. Histamine elicited complex intracellular Ca2+ signatures in WI-38 fibroblasts throughout a concentration range spanning between 1 µM and 1 mM. In accord, the Ca2+ response to histamine adopted four main temporal patterns, which were, respectively, termed peak, peak-oscillations, peak-plateau-oscillations, and peak-plateau. Histamine-evoked intracellular Ca2+ signals were abolished by pyrilamine, which selectively blocks H1R, and significantly reduced by ranitidine, which selectively inhibits H2R. Conversely, the pharmacological blockade of H3R and H4R did not affect the complex increase in [Ca2+]i evoked by histamine in WI-38 fibroblasts. In agreement with these findings, histamine-induced intracellular Ca2+ signals were initiated by intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3R) and sustained by store-operated Ca2+ channels (SOCs). Conversely, L-type voltage-operated Ca2+ channels did not support histamine-induced extracellular Ca2+ entry. A preliminary transcriptomic analysis confirmed that WI-38 human lung fibroblasts express all the three InsP3R isoforms as well as STIM2 and Orai3, which represent the molecular components of SOCs. The pharmacological blockade of InsP3 and SOC, therefore, could represent an alternative strategy to prevent the pernicious effects of histamine on lung fibroblasts in asthmatic patients.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Josué Sánchez-Gómez
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Nayeli Coyotl-Santiago
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Efraín Hernández-Arambide
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Everardo Avelino-Cruz
- Laboratory of Molecular Cardiology, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Mario García-Carrasco
- Department of Immunology, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Monica Savio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Morelos, México
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Faris P, Casali C, Negri S, Iengo L, Biggiogera M, Maione AS, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells. Front Cell Dev Biol 2022; 10:874043. [PMID: 35392169 PMCID: PMC8980055 DOI: 10.3389/fcell.2022.874043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced lysosomal Ca2+ release may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release (CICR) mechanism. NAADP-induced intracellular Ca2+ signals were shown to modulate a growing number of functions in the cardiovascular system, but their occurrence and role in cardiac mesenchymal stromal cells (C-MSCs) is still unknown. Herein, we found that exogenous delivery of NAADP-AM induced a robust Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store with Gly-Phe β-naphthylamide, nigericin, and bafilomycin A1, and blocking TPC1 and TPC2, that are both expressed at protein level in C-MSCs. Furthermore, NAADP-induced EL Ca2+ release resulted in the Ca2+-dependent recruitment of ER-embedded InsP3Rs and SOCE activation. Transmission electron microscopy revealed clearly visible membrane contact sites between lysosome and ER membranes, which are predicted to provide the sub-cellular framework for lysosomal Ca2+ to recruit ER-embedded InsP3Rs through CICR. NAADP-induced EL Ca2+ mobilization via EL TPC was found to trigger the intracellular Ca2+ signals whereby Fetal Bovine Serum (FBS) induces C-MSC proliferation. Furthermore, NAADP-evoked Ca2+ release was required to mediate FBS-induced extracellular signal-regulated kinase (ERK), but not Akt, phosphorylation in C-MSCs. These finding support the notion that NAADP-induced TPC activation could be targeted to boost proliferation in C-MSCs and pave the way for future studies assessing whether aberrant NAADP signaling in C-MSCs could be involved in cardiac disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lara Iengo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| |
Collapse
|
6
|
Mohri T, Kyozuka K. Starfish oocytes of A. pectinifera reveal marked differences in sperm-induced electrical and intracellular calcium changes during oocyte maturation and at fertilization. Mol Reprod Dev 2021; 89:3-22. [PMID: 34729824 DOI: 10.1002/mrd.23544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Although changes in membrane potential and intracellular Ca2+ (Cai ) during fertilization in starfish oocytes have been known for long time, little is known precisely about how and what kind of channels are involved during oocyte maturation and in fertilization, and how the mechanisms of changes in Cai in oocytes develop during oocyte maturation. Since in starfish, oocyte maturation-inducing hormone, 1-methyladenine (1MA) is well known, we took advantage of it to investigate the developmental process of channel-function and changes in Cai in three different developmental stages using 1MA. Sperm-induced membrane current at voltage clamp and changes in Cai in starfish oocytes, Asterina pectinifera, were examined in stages of immature, partly mature (a state in 15-20 min after sufficient concentration, 1 µM of 1MA addition, or 30-40 min exposure to subthreshold concentration of 1MA), and mature oocytes (MO). We found some immature and many partly MOs showed fluctuating responses in membrane current, membrane potential, and corresponding changes in Cai , which are distinct from those in MOs. The responses in immature and partly MOs indicate physiologically characteristic responses of insufficient changes in Cai and its corresponding electrical responses at the partial developmental stage during maturation. Our data should shed light on the mechanism of egg activation and oocyte maturation in terms of examining membrane current and corresponding changes in Cai .
Collapse
Affiliation(s)
- Tatsuma Mohri
- Division of Cell structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Keiichiro Kyozuka
- Research Center for Marine Biology, Asamushi, Graduate School of Life Science, Tohoku University, Aomori, Japan
| |
Collapse
|
7
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
8
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
10
|
Moccia F, Zuccolo E, Di Nezza F, Pellavio G, Faris PS, Negri S, De Luca A, Laforenza U, Ambrosone L, Rosti V, Guerra G. Nicotinic acid adenine dinucleotide phosphate activates two-pore channel TPC1 to mediate lysosomal Ca 2+ release in endothelial colony-forming cells. J Cell Physiol 2020; 236:688-705. [PMID: 32583526 DOI: 10.1002/jcp.29896] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Estella Zuccolo
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pawan S Faris
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, IRCCS Ospedale Policlinico San Matteo, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
11
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
12
|
Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. Histamine induces intracellular Ca 2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol 2019; 235:1515-1530. [PMID: 31310018 DOI: 10.1002/jcp.29071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 μM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Mario Garcia-Carrasco
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Arachidonic Acid Evokes an Increase in Intracellular Ca 2+ Concentration and Nitric Oxide Production in Endothelial Cells from Human Brain Microcirculation. Cells 2019; 8:cells8070689. [PMID: 31323976 PMCID: PMC6678502 DOI: 10.3390/cells8070689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
It has long been known that the conditionally essential polyunsaturated arachidonic acid (AA) regulates cerebral blood flow (CBF) through its metabolites prostaglandin E2 and epoxyeicosatrienoic acid, which act on vascular smooth muscle cells and pericytes to vasorelax cerebral microvessels. However, AA may also elicit endothelial nitric oxide (NO) release through an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we adopted Ca2+ and NO imaging, combined with immunoblotting, to assess whether AA induces intracellular Ca2+ signals and NO release in the human brain microvascular endothelial cell line hCMEC/D3. AA caused a dose-dependent increase in [Ca2+]i that was mimicked by the not-metabolizable analogue, eicosatetraynoic acid. The Ca2+ response to AA was patterned by endoplasmic reticulum Ca2+ release through type 3 inositol-1,4,5-trisphosphate receptors, lysosomal Ca2+ mobilization through two-pore channels 1 and 2 (TPC1-2), and extracellular Ca2+ influx through transient receptor potential vanilloid 4 (TRPV4). In addition, AA-evoked Ca2+ signals resulted in robust NO release, but this signal was considerably delayed as compared to the accompanying Ca2+ wave and was essentially mediated by TPC1-2 and TRPV4. Overall, these data provide the first evidence that AA elicits Ca2+-dependent NO release from a human cerebrovascular endothelial cell line, but they seemingly rule out the possibility that this NO signal could acutely modulate neurovascular coupling.
Collapse
|
14
|
Faris P, Pellavio G, Ferulli F, Di Nezza F, Shekha M, Lim D, Maestri M, Guerra G, Ambrosone L, Pedrazzoli P, Laforenza U, Montagna D, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca 2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11040542. [PMID: 30991693 PMCID: PMC6521149 DOI: 10.3390/cancers11040542] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) gates two-pore channels 1 and 2 (TPC1 and TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced EL Ca2+ signals may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release mechanism (CICR). Herein, we aimed at assessing for the first time the role of EL Ca2+ signaling in primary cultures of human metastatic colorectal carcinoma (mCRC) by exploiting Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide (GPN), and nigericin, which dissipates the ΔpH which drives Ca2+ refilling of acidic organelles, caused massive Ca2+ release in the presence of a functional inositol-1,4,5-trisphosphate (InsP3)-sensitive ER Ca2+ store. Liposomal delivery of NAADP induced a transient Ca2+ release that was reduced by GPN and NED-19, a selective TPC antagonist. Pharmacological and genetic manipulations revealed that the Ca2+ response to NAADP was triggered by TPC1, the most expressed TPC isoform in mCRC cells, and required ER-embedded InsP3 receptors. Finally, NED-19 and genetic silencing of TPC1 reduced fetal calf serum-induced Ca2+ signals, proliferation, and extracellular signal-regulated kinase and Akt phoshorylation in mCRC cells. These data demonstrate that NAADP-gated TPC1 could be regarded as a novel target for alternative therapies to treat mCRC.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Giorgia Pellavio
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Mudhir Shekha
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
- Department of Pathological Analysis, College of Science, Knowledge University, 074016 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Paolo Pedrazzoli
- Medical Oncology, oundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Umberto Laforenza
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
15
|
Vasilev F, Limatola N, Chun JT, Santella L. Contributions of suboolemmal acidic vesicles and microvilli to the intracellular Ca 2+ increase in the sea urchin eggs at fertilization. Int J Biol Sci 2019; 15:757-775. [PMID: 30906208 PMCID: PMC6429021 DOI: 10.7150/ijbs.28461] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/15/2018] [Indexed: 12/03/2022] Open
Abstract
The onset of fertilization in echinoderms is characterized by instantaneous increase of Ca2+ in the egg cortex, which is called 'cortical flash', and the subsequent Ca2+ wave. While the cortical flash is due to the ion influx through L-type Ca2+ channels in starfish eggs, its amplitude was shown to be affected by the integrity of the egg cortex. Here, we investigated the contribution of cortical granules (CG) and yolk granules (YG) to the sperm-induced Ca2+ signals in sea urchin eggs. To this end, prior to fertilization, Paracentrotus lividus eggs were treated with agents that disrupt or relocate CG beneath the plasma membrane: namely, glycyl-L-phenylalanine 2-naphthylamide (GPN), procaine, urethane, and NH4Cl. All these pretreatments consistently suppressed the cortical flash in the fertilized eggs, and accelerated the decay kinetics of the subsiding Ca2+ wave in most cases. By contrast, centrifugation of the eggs, which stratifies organelles but not the CG, did not exhibit such changes except that the CF was much enhanced in the centrifugal pole where YG are localized. Surprisingly, we noted that pretreatment of the eggs with these CG-disrupting agents or with the inhibitors of L-type Ca2+ channels all drastically reduced the density of the microvilli and their individual shapes on the egg surface. Taken together, our results suggest that the integrity of the egg cortex ensures successful generation of the Ca2+ responses at fertilization, and that modulation of microvilli shape and density may serve as a mechanism of controlling ion flux across the plasma membrane.
Collapse
Affiliation(s)
- F Vasilev
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - N Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - J T Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - L Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
16
|
Zuccolo E, Kheder DA, Lim D, Perna A, Nezza FD, Botta L, Scarpellino G, Negri S, Martinotti S, Soda T, Forcaia G, Riboni L, Ranzato E, Sancini G, Ambrosone L, D'Angelo E, Guerra G, Moccia F. Glutamate triggers intracellular Ca 2+ oscillations and nitric oxide release by inducing NAADP- and InsP 3 -dependent Ca 2+ release in mouse brain endothelial cells. J Cell Physiol 2018; 234:3538-3554. [PMID: 30451297 DOI: 10.1002/jcp.26953] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 μM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Dlzar A Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Duhok, Kurdistan-Region of Iraq
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedmont "Amedeo Avogadro,", Novara, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesca Di Nezza
- Department of Bioscience and Territory (DIBT), University of Molise, Contrada Lappone Pesche, Isernia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Teresa Soda
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Segrate, Milan, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", Centre of Nanomedicine, University of Molise, Campobasso, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|
18
|
Di Nezza F, Zuccolo E, Poletto V, Rosti V, De Luca A, Moccia F, Guerra G, Ambrosone L. Liposomes as a Putative Tool to Investigate NAADP Signaling in Vasculogenesis. J Cell Biochem 2017; 118:3722-3729. [PMID: 28374913 DOI: 10.1002/jcb.26019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the newest discovered intracellular second messengers, which is able to release Ca2+ stored within endolysosomal (EL) vesicles. NAADP-induced Ca2+ signals mediate a growing number of cellular functions, ranging from proliferation to muscle contraction and differentiation. Recently, NAADP has recently been shown to regulate angiogenesis by promoting endothelial cell growth. It is, however, still unknown whether NAADP stimulates proliferation also in endothelial progenitor cells, which are mobilized in circulation after an ischemic insult to induce tissue revascularization. Herein, we described a novel approach to prepare NAADP-containing liposomes, which are highly cell membrane permeable and are therefore amenable for stimulating cell activity. Accordingly, NAADP-containing liposomes evoked an increase in intracellular Ca2+ concentration, which was inhibited by NED-19, a selective inhibitor of NAADP-induced Ca2+ release. Furthermore, NAADP-containing liposomes promoted EPC proliferation, a process which was inhibited by NED-19 and BAPTA, a membrane permeable intracellular Ca2+ buffer. Therefore, NAADP-containing liposomes stand out as a promising tool to promote revascularization of hypoxic/ischemic tissues by favoring EPC proliferation. J. Cell. Biochem. 118: 3722-3729, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesca Di Nezza
- Department of Bioscience and Territory (DIBT), University of Molise, Contrada Lappone Pesche, Isernia 86090, Italy
| | - Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Valentina Poletto
- Biotechnology Research Laboratory, Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Vittorio Rosti
- Biotechnology Research Laboratory, Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Università degli Studi della Campania "L. Vanvitelli", Naples 80138, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", Centre of Nanomedicine, University of Molise, Campobasso 86100, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", Centre of Nanomedicine, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
19
|
Development of Ca2+-release mechanisms during oocyte maturation of the starfish Asterina pectinifera. ZYGOTE 2016; 24:857-868. [PMID: 27692029 DOI: 10.1017/s0967199416000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An important step for successful fertilization and further development is the increase in intracellular Ca2+ in the activated oocyte. It has been known that starfish oocytes become increasingly sensitive to inositol 1,4,5-trisphosphate (IP3) during meiotic maturation to exhibit highly efficient IP3-induced Ca2+ release (IICR) by the time of germinal vesicle breakdown (GVBD). However, we noted that the peak level of intracellular Ca2+ increase after insemination is already high in the maturing oocytes before GVBD. Using maturing oocytes before GVBD, we investigated Ca2+ release mechanisms other than IICR. We report here that Ca2+-release mechanisms dependent on nicotinic acid adenine dinucleotide phosphate (NAADP) and nicotinamide adenine dinucleotide (NADP), the precursor of NAADP, became functional prior to the development of IICR mechanisms. As with IP3, but unlike NAADP, the Ca2+ stores responsive to NADP are sensitized during the meiotic maturation induced by 1-methyladenine (1-MA). This suggests that the process may represent a physiological response to the maturation hormone. NADP-dependent Ca2+ release in immature oocytes, however, did not induce oocyte maturation by itself, but was enhanced by the conditions mimicking the increases of intracellular Ca2+ and pH that take place in the maturing oocytes of starfish.
Collapse
|
20
|
Abstract
The most fundamental unresolved issue of fertilization is to define how the sperm activates the egg to begin embryo development. Egg activation at fertilization in all species thus far examined is caused by some form of transient increase in the cytoplasmic free Ca2+ concentration. What has not been clear, however, is precisely how the sperm triggers the large changes in Ca2+ observed within the egg cytoplasm. Here, we review the studies indicating that the fertilizing sperm stimulates a cytosolic Ca2+ increase in the egg specifically by delivering a soluble factor that diffuses into the cytosolic space of the egg upon gamete membrane fusion. Evidence is primarily considered in species of eggs where the sperm has been shown to elicit a cytosolic Ca2+ increase by initiating Ca2+ release from intracellular Ca2+ stores. We suggest that our best understanding of these signaling events is in mammals, where the sperm triggers a prolonged series of intracellular Ca2+ oscillations. The strongest empirical studies to date suggest that mammalian sperm-triggered Ca2+ oscillations are caused by the introduction of a sperm-specific protein, called phospholipase C-zeta (PLCζ) that generates inositol trisphosphate within the egg. We will discuss the role and mechanism of action of PLCζ in detail at a molecular and cellular level. We will also consider some of the evidence that a soluble sperm protein might be involved in egg activation in nonmammalian species.
Collapse
Affiliation(s)
- Karl Swann
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Anthony Lai
- College of Biomedical and Life Sciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown. Cell Calcium 2015; 58:500-10. [DOI: 10.1016/j.ceca.2015.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022]
|
22
|
Ronco V, Potenza DM, Denti F, Vullo S, Gagliano G, Tognolina M, Guerra G, Pinton P, Genazzani AA, Mapelli L, Lim D, Moccia F. A novel Ca²⁺-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca²⁺ signalling. Cell Calcium 2015; 57:89-100. [PMID: 25655285 DOI: 10.1016/j.ceca.2015.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/01/2015] [Indexed: 12/31/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) serves as the ideal trigger of spatio-temporally complex intracellular Ca(2+) signals. However, the identity of the intracellular Ca(2+) store(s) recruited by NAADP, which may include either the endolysosomal (EL) or the endoplasmic reticulum (ER) Ca(2+) pools, is still elusive. Here, we show that the Ca(2+) response to NAADP was suppressed by interfering with either EL or ER Ca(2+) sequestration. The measurement of EL and ER Ca(2+) levels by using selectively targeted aequorin unveiled that the preventing ER Ca(2+) storage also affected ER Ca(2+) loading and vice versa. This indicates that a functional Ca(2+)-mediated cross-talk exists at the EL-ER interface and exerts profound implications for the study of NAADP-induced Ca(2+) signals. Extreme caution is warranted when dissecting NAADP targets by pharmacologically inhibiting EL and/or the ER Ca(2+) pools. Moreover, Ca(2+) transfer between these compartments might be essential to regulate vital Ca(2+)-dependent processes in both organelles.
Collapse
Affiliation(s)
- Virginia Ronco
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Duilio Michele Potenza
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Federico Denti
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sabrina Vullo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Gagliano
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marialuisa Tognolina
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, ItalyfCentro Fermi, 00184 Roma, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Lisa Mapelli
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; Centro Fermi, 00184 Roma, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
23
|
Ramos I, Reich A, Wessel GM. Two-pore channels function in calcium regulation in sea star oocytes and embryos. Development 2014; 141:4598-609. [PMID: 25377554 DOI: 10.1242/dev.113563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities.
Collapse
Affiliation(s)
- Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
24
|
Soluble sperm extract specifically recapitulates the initial phase of the Ca2+ response in the fertilized oocyte of P. occelata following a G-protein/ PLCβ signaling pathway. ZYGOTE 2014; 23:821-35. [PMID: 25318389 DOI: 10.1017/s0967199414000501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Matured oocytes of the annelidan worm Pseudopotamilla occelata are fertilized at the first metaphase of the meiotic division. During the activation by fertilizing spermatozoa, the mature oocyte shows a two-step intracellular Ca2+ increase. Whereas the first Ca2+ increase is localized and appears to utilize the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores, the second Ca2+ increase is global and involves Ca2+ influx via voltage-gated Ca2+ channels on the entire surface of the oocyte. To study how sperm trigger the Ca2+ increases during fertilization, we prepared soluble sperm extract (SE) and examined its ability to induce Ca2+ increases in the oocyte. The SE could evoke a Ca2+ increase in the oocyte when it was added to the medium, but not when it was delivered by microinjection. However, the second-step Ca2+ increase leading to the resumption of meiosis did not follow in these eggs. Local application of SE induced a non-propagating Ca2+ increase and formed a cytoplasmic protrusion that was similar to that created by the fertilizing sperm at the first stage of the Ca2+ response, important for sperm incorporation into the oocyte. Our results suggest that the fertilizing spermatozoon may trigger the first-step Ca2+ increase before it fuses with the oocyte in a pathway that involves the G-protein-coupled receptor and phospholipase C. Thus, the first phase of the Ca2+ response in the fertilized egg of this species is independent of the second phase of the Ca2+ increase for egg activation.
Collapse
|
25
|
Arakawa M, Takeda N, Tachibana K, Deguchi R. Polyspermy block in jellyfish eggs: Collaborative controls by Ca2+ and MAPK. Dev Biol 2014; 392:80-92. [DOI: 10.1016/j.ydbio.2014.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/19/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
|
26
|
Arndt L, Castonguay J, Arlt E, Meyer D, Hassan S, Borth H, Zierler S, Wennemuth G, Breit A, Biel M, Wahl-Schott C, Gudermann T, Klugbauer N, Boekhoff I. NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa. Mol Biol Cell 2014; 25:948-64. [PMID: 24451262 PMCID: PMC3952862 DOI: 10.1091/mbc.e13-09-0523] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A TPCN1 gene–deficient mouse strain is used to show that two convergent working NAADP-dependent pathways with nonoverlapping activation and self-inactivation profiles for distinct NAADP concentrations drive acrosomal exocytosis, by which TPC1 is central for the pathway activated by low-micromolar NAADP concentrations. The functional relationship between the formation of hundreds of fusion pores during the acrosome reaction in spermatozoa and the mobilization of calcium from the acrosome has been determined only partially. Hence, the second messenger NAADP, promoting efflux of calcium from lysosome-like compartments and one of its potential molecular targets, the two-pore channel 1 (TPC1), were analyzed for its involvement in triggering the acrosome reaction using a TPCN1 gene–deficient mouse strain. The present study documents that TPC1 and NAADP-binding sites showed a colocalization at the acrosomal region and that treatment of spermatozoa with NAADP resulted in a loss of the acrosomal vesicle that showed typical properties described for TPCs: Registered responses were not detectable for its chemical analogue NADP and were blocked by the NAADP antagonist trans-Ned-19. In addition, two narrow bell-shaped dose-response curves were identified with maxima in either the nanomolar or low micromolar NAADP concentration range, where TPC1 was found to be responsible for activating the low affinity pathway. Our finding that two convergent NAADP-dependent pathways are operative in driving acrosomal exocytosis supports the concept that both NAADP-gated cascades match local NAADP concentrations with the efflux of acrosomal calcium, thereby ensuring complete fusion of the large acrosomal vesicle.
Collapse
Affiliation(s)
- Lilli Arndt
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University, 81377 München, Germany Department of Pharmacy, Ludwig-Maximilians University, 81377 München, Germany Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University, 79104 Freiburg, Germany Institute for Anatomy, University of Duisburg-Essen, 45141 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Guerra G, Borghesi A, Stronati M, Rosti V, Tanzi F, Moccia F. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev 2013; 22:2561-80. [PMID: 23682725 DOI: 10.1089/scd.2013.0032] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are the only endothelial progenitor cells (EPCs) that are capable of acquiring a mature endothelial phenotype. ECFCs are mainly mobilized from bone marrow to promote vascularization and represent a promising tool for cell-based therapy of severe ischemic diseases. Vascular endothelial growth factor (VEGF) stimulates the proliferation of peripheral blood-derived ECFCs (PB-ECFCs) through oscillations in intracellular Ca(2+) concentration ([Ca(2+)]i). VEGF-induced Ca(2+) spikes are driven by the interplay between inositol-1,4,5-trisphosphate (InsP3)-dependent Ca(2+) release and store-operated Ca(2+) entry (SOCE). The therapeutic potential of umbilical cord blood-derived ECFCs (UCB-ECFCs) has also been shown in recent studies. However, VEGF-induced proliferation of UCB-ECFCs is faster compared with their peripheral counterpart. Unlike PB-ECFCs, UCB-ECFCs express canonical transient receptor potential channel 3 (TRPC3) that mediates diacylglycerol-dependent Ca(2+) entry. The present study aimed at investigating whether the higher proliferative potential of UCB-ECFCs was associated to any difference in the molecular underpinnings of their Ca(2+) response to VEGF. We found that VEGF induces oscillations in [Ca(2+)]i that are patterned by the interaction between InsP3-dependent Ca(2+) release and SOCE. Unlike PB-ECFCs, VEGF-evoked Ca(2+) oscillations do not arise in the absence of extracellular Ca(2+) entry and after pharmacological (with Pyr3 and flufenamic acid) and genetic (by employing selective small interference RNA) suppression of TRPC3. VEGF-induced UCB-ECFC proliferation is abrogated on inhibition of the intracellular Ca(2+) spikes. Therefore, the Ca(2+) response to VEGF in UCB-ECFCs is shaped by a different Ca(2+) machinery as compared with PB-ECFCs, and TRPC3 stands out as a promising target in EPC-based treatment of ischemic pathologies.
Collapse
Affiliation(s)
- Silvia Dragoni
- 1 Department of Biology and Biotechnology "Lazzaro Spallanzani,", University of Pavia , Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li PL, Zhang Y, Abais JM, Ritter JK, Zhang F. Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. ACTA ACUST UNITED AC 2013; 2:63-85. [PMID: 24749015 DOI: 10.1166/msr.2013.1022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), two intracellular Ca2+ mobilizing second messengers, have been recognized as a fundamental signaling mechanism regulating a variety of cell or organ functions in different biological systems. Here we reviewed the literature regarding these ADP-ribosylcyclase products in vascular cells with a major focus on their production, physiological roles, and related underlying mechanisms mediating their actions. In particular, several hot topics in this area of research are comprehensively discussed, which may help understand some of the controversial evidence provided by different studies. For example, some new models are emerging for the agonist receptor coupling of CD38 or ADP-ribosylcyclase and for the formation of an acidic microenvironment to facilitate the production of NAADP in vascular cells. We also summarized the evidence regarding the NAADP-mediated two-phase Ca2+ release with a slow Ca2+-induced Ca2+ release (CICR) and corresponding physiological relevance. The possibility of a permanent structural space between lysosomes and sarcoplasmic reticulum (SR), as well as the critical role of lysosome trafficking in phase 2 Ca2+ release in response to some agonists are also explored. With respect to the molecular targets of NAADP within cells, several possible candidates including SR ryanodine receptors (RyRs), lysosomal transient receptor potential-mucolipin 1 (TRP-ML1) and two pore channels (TPCs) are presented with supporting and opposing evidence. Finally, the possible role of NAADP-mediated regulation of lysosome function in autophagy and atherogenesis is discussed, which may indicate a new direction for further studies on the pathological roles of cADPR and NAADP in the vascular system.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| |
Collapse
|
29
|
Morgan AJ, Davis LC, Wagner SKTY, Lewis AM, Parrington J, Churchill GC, Galione A. Bidirectional Ca²⁺ signaling occurs between the endoplasmic reticulum and acidic organelles. ACTA ACUST UNITED AC 2013; 200:789-805. [PMID: 23479744 PMCID: PMC3601362 DOI: 10.1083/jcb.201204078] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
After acidic organelles induce signaling to activate ER calcium ion release, local microdomains of high calcium at ER–acidic organelle junctions feed back to activate further acidic organelle calcium release. The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ramos I, Wessel GM. Calcium pathway machinery at fertilization in echinoderms. Cell Calcium 2012; 53:16-23. [PMID: 23218671 DOI: 10.1016/j.ceca.2012.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 01/01/2023]
Abstract
Calcium signaling in cells directs diverse physiological processes. The calcium waves triggered by fertilization is a highly conserved calcium signaling event essential for egg activation, and has been documented in every egg tested. This activity is one of the few highly conserved events of egg activation through the course of evolution. Echinoderm eggs, as well as many other cell types, have three main intracellular Ca(2+) mobilizing messengers - IP3, cADPR and NAADP. Both cADPR and NAADP were identified as Ca(2+) mobilizing messengers using the sea urchin egg homogenate, and this experimental system, along with the intact urchin and starfish oocyte/egg, continues to be a vital tool for investigating the mechanism of action of calcium signals. While many of the major regulatory steps of the IP3 pathway are well resolved, both cADPR and NAADP remain understudied in terms of our understanding of the fundamental process of egg activation at fertilization. Recently, NAADP has been shown to trigger Ca(2+) release from acidic vesicles, separately from the ER, and a new class of calcium channels, the two-pore channels (TPCs), was identified as the likely targets for this messenger. Moreover, it was found that both cADPR and NAADP can be synthesized by the same family of enzymes, the ADP-rybosyl cyclases (ARCs). In this context of increasing amount of information, the potential coupling and functional roles of different messengers, intracellular stores and channels in the formation of the fertilization calcium wave in echinoderms will be critically evaluated.
Collapse
Affiliation(s)
- Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
31
|
Morgan AJ. Sea urchin eggs in the acid reign. Cell Calcium 2011; 50:147-56. [PMID: 21251713 DOI: 10.1016/j.ceca.2010.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/24/2022]
Abstract
Sea urchin eggs have been an indispensable model system for studying egg activation and ionic signalling for at least a century. Instrumental in the discovery of two Ca(2+)-mobilizing second messengers, cyclic ADP-ribose and NAADP, the sea urchin has revolutionized cell biology for all phyla. This review attempts to summarize what we currently know about egg acidic vesicles in the context of Ca(2+) signalling. The dynamics of Ca(2+) storage, Ca(2+) mobilization, proton fluxes and two-pore channels will be discussed.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| |
Collapse
|
32
|
Vasudevan SR, Lewis AM, Chan JW, Machin CL, Sinha D, Galione A, Churchill GC. The calcium-mobilizing messenger nicotinic acid adenine dinucleotide phosphate participates in sperm activation by mediating the acrosome reaction. J Biol Chem 2010; 285:18262-9. [PMID: 20400502 PMCID: PMC2881750 DOI: 10.1074/jbc.m109.087858] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Before a sperm can fertilize an egg it must undergo a final activation step induced by the egg termed the acrosome reaction. During the acrosome reaction a lysosome-related organelle, the acrosome, fuses with the plasma membrane to release hydrolytic enzymes and expose an egg-binding protein. Because NAADP (nicotinic acid adenine dinucleotide phosphate) releases Ca2+ from acidic lysosome-related organelles in other cell types, we investigated a possible role for NAADP in mediating the acrosome reaction. We report that NAADP binds with high affinity to permeabilized sea urchin sperm. Moreover, we used Mn2+ quenching of luminal fura-2 and 45Ca2+ to directly demonstrate NAADP regulation of a cation channel on the acrosome. Additionally, we show that NAADP synthesis occurs through base exchange and is driven by an increase in Ca2+. We propose a new model for acrosome reaction signaling in which Ca2+ influx initiated by egg jelly stimulates NAADP synthesis and that this NAADP acts on its receptor/channel on the acrosome to release Ca2+ to drive acrosomal exocytosis.
Collapse
Affiliation(s)
- Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cells possess multiple calcium ion (Ca2+) stores and multiple messenger molecules to mobilize them. These include d-myo-inositol 1,4,5-trisphosphate (IP(3)), cyclic adenosine diphosphoribose (cADPR), and the most recently identified Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), which acts on a wide spectrum of cells, from plant cells to mammalian cells. Accumulating evidence indicates that NAADP targets both acidic (lysosome-like) Ca2+ stores and endoplasmic reticular stores. Recent studies in invertebrate and mammalian cells suggest that NAADP provides an initiating Ca2+ signal, which is amplified by cADPR- or IP(3)-dependent mechanisms (or both) through Ca2+-induced Ca2+ release. Diverse stimuli activate a rapid rise of endogenous NAADP concentration, resulting in severalfold increases of NAADP over basal values within seconds. The enzyme CD38 can catalyze both the synthesis and hydrolysis of NAADP, making it ideal for effecting the rapid metabolism of NAADP. The crystal structure of CD38 and the structures of its various substrate complexes have now been determined, clarifying the mechanism of its multifunctional catalysis. We anticipate that these advances will lead to the unmasking of all the key components of the Ca2+ signaling pathway mediated by NAADP.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signaling Group, Institute of Biochemistry and Molecular Biology I, Cellular Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20146 Hamburg, Germany.
| | | |
Collapse
|
34
|
Kyozuka K, Chun JT, Puppo A, Gragnaniello G, Garante E, Santella L. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev Biol 2008; 320:426-35. [DOI: 10.1016/j.ydbio.2008.05.549] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
|
35
|
Horner VL, Wolfner MF. Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Dev Dyn 2008; 237:527-44. [DOI: 10.1002/dvdy.21454] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Moccia F. Latrunculin A depolarizes starfish oocytes. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:845-52. [PMID: 17897856 DOI: 10.1016/j.cbpa.2007.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/09/2007] [Accepted: 08/23/2007] [Indexed: 11/28/2022]
Abstract
Depolymerization of the actin cytoskeleton may liberate Ca2+ from InsP3-sensitive stores in some cell types, including starfish oocytes, while inhibiting Ca2+ influx in others. However, no information is available on the modulation of membrane potential (V(m)) by actin. The present study was aimed to ascertain whether the widely employed actin depolymerizing drug, latrunculin A (Lat A), affects V(m) in mature oocytes of the starfish Astropecten aranciacus. Lat A induced a membrane depolarization which was mimicked by cytochalasin D, another popular actin disruptor, and prevented by jasplakinolide, a stabilizer of the actin network. Lat A-elicited depolarization consisted in a positive shift in V(m) which reached the threshold of activation of voltage-gated Ca2+ channels (VGCC), thus triggering an action potential. Lat A-promoted depolarization lacked the action potential in Ca2+-free sea water, while it was abolished upon removal of external Na+. Moreover, membrane depolarization was prevented by pre-injection of BAPTA and heparin, but not ryanodine. These data indicate that Lat A induces a membrane depolarization by releasing Ca2+ from InsP3Rs. The Ca2+ signal in turn activates a Ca2+-dependent Na+ entry, which causes the positive shift in V(m) and stimulates the VGCC.
Collapse
Affiliation(s)
- F Moccia
- Department of Structural and Functional Biology, University of Naples Federico II, viale Cinthia, 80126 Naples, Italy.
| |
Collapse
|
37
|
Deguchi R. Fertilization causes a single Ca2+ increase that fully depends on Ca2+ influx in oocytes of limpets (Phylum Mollusca, Class Gastropoda). Dev Biol 2007; 304:652-63. [PMID: 17292344 DOI: 10.1016/j.ydbio.2007.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/19/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022]
Abstract
Mature limpet oocytes arrested at the first metaphase (MI) of meiosis are activated by the stimulation of fertilizing sperm. The aim of the present study was to clarify the spatiotemporal property and mechanism of intracellular Ca2+ increase in limpet oocytes, which is a prerequisite signal for initiation of development at fertilization. In all of the five limpet species tested, the initial Ca2+ rising phase just after fertilization took the form of a centripetal Ca2+ wave spreading from the whole cortex to the center (cortical flash), yielding a homogeneous Ca2+ elevation throughout the oocyte. The Ca2+ level remained high during the subsequent plateau phase lasting for several minutes and then returned nearly to the original value. No additional Ca2+ increase followed the plateau phase at least by the time of first cleavage. Both rising and plateau phases of Ca2+ increase at fertilization were inhibited by removal of external Ca2+, suggesting that continuous Ca2+ entry occurs throughout the Ca2+ increase. Injection of inositol 1,4,5-trisphosphate (IP3) was effective in generating a Ca2+ increase in mature limpet oocytes arrested at MI; however, their ability to show an IP3-induced Ca2+ increase was extremely low, as compared with other animals. Responsiveness to IP3 injection in immature oocytes arrested at the first prophase (PI) was similar to that in the mature oocytes, suggesting that the IP3-induced Ca2+ release system does not develop during the process of meiotic maturation in limpet oocytes. Caffeine, cyclic adenosine diphosphate ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP), the agents known to stimulate internal Ca2+ release mechanisms distinct from an IP3-dependent pathway, had no effect on intracellular Ca2+ changes in mature limpet oocytes. Labeling of the endoplasmic reticulum (ER) with DiI revealed that cortical ER clusters are only present in the localized region around meiotic chromosomes in mature oocytes. These data strongly suggest that Ca2+ release and its propagating mechanisms are undeveloped in limpet oocytes and that Ca2+ influx is the only Ca2+-mobilizing system available and functioning at fertilization.
Collapse
Affiliation(s)
- Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
| |
Collapse
|
38
|
Calcium and fertilization. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Nusco GA, Chun JT, Ercolano E, Lim D, Gragnaniello G, Kyozuka K, Santella L. Modulation of calcium signalling by the actin-binding protein cofilin. Biochem Biophys Res Commun 2006; 348:109-14. [PMID: 16875665 DOI: 10.1016/j.bbrc.2006.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Cofilin is a small protein that belongs to the family of actin-depolymerizing factors (ADF). The main cellular function of cofilin is to change cytoskeletal dynamics and thus to modulate cell motility and cytokinesis. We have recently demonstrated that the actin cytoskeleton is involved in the modulation of Ca(2+) signalling in starfish oocytes. To extend these observations, we have explored whether cofilin influences Ca(2+) signalling in the oocytes. Here we show that microinjection of the functionally active cofilin alters the Ca(2+) signalling mediated by the three major second messengers, InsP(3), NAADP, and cADPr. Cofilin intensifies the Ca(2+) signals induced by InsP(3) and NAADP, and delays those induced by cADPr. Furthermore, the injection of cofilin increases the Ca(2+) signals during hormone-induced oocyte maturation and fertilization. The results suggest that the dynamic regulation of F-actin by its binding proteins may play an important role in the modulation of intracellular Ca(2+) signalling.
Collapse
Affiliation(s)
- Gilda A Nusco
- Cell Signalling Laboratory, Stazione Zoologica Anton Dohrn Villa Comunale, I-80121 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Moccia F, Billington RA, Santella L. Pharmacological characterization of NAADP-induced Ca2+ signals in starfish oocytes. Biochem Biophys Res Commun 2006; 348:329-36. [PMID: 16890912 DOI: 10.1016/j.bbrc.2006.05.157] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 11/20/2022]
Abstract
The recently discovered second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) is central to the onset of intracellular Ca2+ signals induced by several stimuli, including fertilization. The nature of the Ca2+ pool mobilized by NAADP is still controversial. Depending on the cell type, NAADP may target either an acidic compartment with lysosomal properties or ryanodine receptors (RyRs) on endoplasmic reticulum. In addition, NAADP elicits a robust Ca2+ influx into starfish oocytes by activating a Ca2+-mediated current across the plasma membrane. In the present study, we employed the single-electrode intracellular recording technique to assess the involvement of either acidic organelles or RyRs in NAADP-elicited Ca2+ entry. We found that neither drugs which interfere with acidic compartments nor inhibitors of RyRs affected NAADP-induced depolarization. These data further support the hypothesis that a yet unidentified plasma membrane Ca2+ channel is the target of NAADP in starfish oocytes.
Collapse
Affiliation(s)
- F Moccia
- Laboratory of Cell Signaling, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | | | | |
Collapse
|