1
|
Sun Q, Huang J, Tian J, Lv C, Li Y, Yu S, Liu J, Zhang J. Key Roles of Gli1 and Ihh Signaling in Craniofacial Development. Stem Cells Dev 2024; 33:251-261. [PMID: 38623785 DOI: 10.1089/scd.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
The Hedgehog (Hh) signaling pathway orchestrates its influence through a dynamic interplay of Hh proteins, the cell surface receptor Ptch1, Smo, and Gli transcription factors, contributing to a myriad of developmental events. Indian Hedgehog (Ihh) and Gli zinc finger transcription factor 1 (Gli1) play crucial roles in developmental regulation within the Hh signaling pathway. Ihh regulates chondrocyte proliferation, differentiation, and bone formation, impacting the development of cranial bones, cartilage, and the temporomandibular joint (TMJ). Losing Ihh results in cranial bone malformation and decreased ossification and affects the formation of cranial base cartilage unions, TMJ condyles, and joint discs. Gli1 is predominantly expressed during early craniofacial development, and Gli1+ cells are identified as the primary mesenchymal stem cells (MSCs) for craniofacial bones, crucial for cell differentiation and morphogenesis. In addition, a complex mutual regulatory mechanism exists between Gli1 and Ihh, ensuring the normal function of the Hh signaling pathway by directly or indirectly regulating each other's expression levels. And the interaction between Ihh and Gli1 significantly impacts the normal development of craniofacial tissues. This review summarizes the pivotal roles of Gli1 and Ihh in the intricate landscape of mammalian craniofacial development and outlines the molecular regulatory mechanisms and intricate interactions governing the growth of bone and cartilage exhibited by Gli1 and Ihh, which provides new insights into potential therapeutic strategies for related diseases or researches of tissue regeneration.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jie Huang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jingjun Tian
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Changhai Lv
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Yanhong Li
- Department of Preventive Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Siyuan Yu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Juan Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jun Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| |
Collapse
|
2
|
Li P, Gao Y, Zhou R, Che X, Wang H, Cong L, Jiang P, Liang D, Li P, Wang C, Li W, Sang S, Duan Q, Wei X. Intra-articular injection of miRNA-1 agomir, a novel chemically modified miRNA agonists alleviates osteoarthritis (OA) progression by downregulating Indian hedgehog in rats. Sci Rep 2024; 14:8101. [PMID: 38582868 PMCID: PMC10998901 DOI: 10.1038/s41598-024-56200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024] Open
Abstract
Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1β for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1β-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.
Collapse
Affiliation(s)
- Pengcui Li
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yangyang Gao
- Department of Orthopaedic Surgery, Jincheng People's Hospital, Jincheng, 048000, Shanxi, China
| | - Raorao Zhou
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xianda Che
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hang Wang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingling Cong
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pinpin Jiang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dan Liang
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Penghua Li
- Shanxi Province Fenyang Hospital, Fenyang, 032200, Shanxi, China
| | - Chunfang Wang
- Department of Experimental Animal Center, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenjin Li
- Department of Stomatology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shengbo Sang
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and College of Information and Computer, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Qianqian Duan
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education and College of Information and Computer, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Xiaochun Wei
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
3
|
Greer SE, Haller SJ, Lee D, Dudley AT. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol Biol Cell 2024; 35:ar49. [PMID: 38294852 PMCID: PMC11064670 DOI: 10.1091/mbc.e23-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spatial and temporal regulation of chondrocyte maturation in the growth plate drives growth of many bones. One essential event to generate the ordered cell array characterizing growth plate cartilage is the formation of chondrocyte columns in the proliferative zone via 90-degree rotation of daughter cells to align with the long axis of the bone. Previous studies have suggested crucial roles for cadherins and integrin β1 in column formation. The purpose of this study was to determine the relative contributions of cadherin- and integrin-mediated cell adhesion in column formation. Here we present new mechanistic insights generated by application of live time-lapse confocal microscopy of cranial base explant cultures, robust genetic mouse models, and new quantitative methods to analyze cell behavior. We show that conditional deletion of either the cell-cell adhesion molecule Cdh2 or the cell-matrix adhesion molecule Itgb1 disrupts column formation. Compound mutants were used to determine a potential reciprocal regulatory interaction between the two adhesion surfaces and identified that defective chondrocyte rotation in a N-cadherin mutant was restored by a heterozygous loss of integrin β1. Our results support a model for which integrin β1, and not N-cadherin, drives chondrocyte rotation and for which N-cadherin is a potential negative regulator of integrin β1 function.
Collapse
Affiliation(s)
- Sydney E. Greer
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephen J. Haller
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Donghee Lee
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
4
|
da Cunha JI, Barauna AMD, Garcez RC. Prechordal structures act cooperatively in early trabeculae development of gnathostome skull. Cells Dev 2023; 176:203879. [PMID: 37844659 DOI: 10.1016/j.cdev.2023.203879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The vertebrate skull is formed by mesoderm and neural crest (NC) cells. The mesoderm contributes to the skull chordal domain, with the notochord playing an essential role in this process. The NC contributes to the skull prechordal domain, prompting investigation into the embryonic structures involved in prechordal neurocranium cartilage formation. The trabeculae cartilage, a structure of the prechordal neurocranium, arises at the convergence of prechordal plate (PCP), ventral midline (VM) cells of the diencephalon, and dorsal oral ectoderm. This study examines the molecular participation of these embryonic structures in gnathostome trabeculae development. PCP-secreted SHH induces its expression in VM cells of the diencephalon, initiating a positive feedback loop involving SIX3 and GLI1. SHH secreted by the VM cells of the diencephalon acts on the dorsal oral ectoderm, stimulating condensation of NC cells to form trabeculae. SHH from the prechordal region affects the expression of SOX9 in NC cells. BMP7 and SHH secreted by PCP induce NKX2.1 expression in VM cells of the diencephalon, but this does not impact trabeculae formation. Molecular cooperation between PCP, VM cells of the diencephalon, and dorsal oral ectoderm is crucial for craniofacial development by NC cells in the prechordal domain.
Collapse
Affiliation(s)
- Jaqueline Isoppo da Cunha
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Alessandra Maria Duarte Barauna
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ricardo Castilho Garcez
- Graduate Program of Cell and Developmental Biology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Stem Cell and Tissue Regeneration Laboratory (LACERT), Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
5
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
6
|
Ueharu H, Pan H, Hayano S, Zapien-Guerra K, Yang J, Mishina Y. Augmentation of bone morphogenetic protein signaling in cranial neural crest cells in mice deforms skull base due to premature fusion of intersphenoidal synchondrosis. Genesis 2023; 61:e23509. [PMID: 36622051 PMCID: PMC10757424 DOI: 10.1002/dvg.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023]
Abstract
Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing. Invasive surgical intervention is the current primary option to correct these structural deficiencies. Understanding molecular cellular mechanism for craniofacial development would provide novel therapeutic options for CFAs. In this study, we found that enhanced bone morphogenetic protein (BMP) signaling in cranial neural crest cells (NCCs) (P0-Cre;caBmpr1a mice) causes premature fusion of intersphenoid synchondrosis (ISS) resulting in leading to short snouts and hypertelorism. Histological analyses revealed reduction of proliferation and higher cell death in ISS at postnatal day 3. We demonstrated to prevent the premature fusion of ISS in P0-Cre;caBmpr1a mice by injecting a p53 inhibitor Pifithrin-α to the pregnant mother from E15.5 to E18.5, resulting in rescue from short snouts and hypertelorism. We further demonstrated to prevent premature fusion of cranial sutures in P0-Cre;caBmpr1a mice by injecting Pifithrin-α through E8.5 to E18.5. These results suggested that enhanced BMP-p53-induced cell death in cranial NCCs causes premature fusion of ISS and sutures in time-dependent manner.
Collapse
Affiliation(s)
- Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Karen Zapien-Guerra
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Le Pabic P, Dranow DB, Hoyle DJ, Schilling TF. Zebrafish endochondral growth zones as they relate to human bone size, shape and disease. Front Endocrinol (Lausanne) 2022; 13:1060187. [PMID: 36561564 PMCID: PMC9763315 DOI: 10.3389/fendo.2022.1060187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the genetic mechanisms underlying human skeletal development and disease have largely relied on studies in mice. However, recently the zebrafish has emerged as a popular model for skeletal research. Despite anatomical differences such as a lack of long bones in their limbs and no hematopoietic bone marrow, both the cell types in cartilage and bone as well as the genetic pathways that regulate their development are remarkably conserved between teleost fish and humans. Here we review recent studies that highlight this conservation, focusing specifically on the cartilaginous growth zones (GZs) of endochondral bones. GZs can be unidirectional such as the growth plates (GPs) of long bones in tetrapod limbs or bidirectional, such as in the synchondroses of the mammalian skull base. In addition to endochondral growth, GZs play key roles in cartilage maturation and replacement by bone. Recent studies in zebrafish suggest key roles for cartilage polarity in GZ function, surprisingly early establishment of signaling systems that regulate cartilage during embryonic development, and important roles for cartilage proliferation rather than hypertrophy in bone size. Despite anatomical differences, there are now many zebrafish models for human skeletal disorders including mutations in genes that cause defects in cartilage associated with endochondral GZs. These point to conserved developmental mechanisms, some of which operate both in cranial GZs and limb GPs, as well as others that act earlier or in parallel to known GP regulators. Experimental advantages of zebrafish for genetic screens, high resolution live imaging and drug screens, set the stage for many novel insights into causes and potential therapies for human endochondral bone diseases.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Willmington, NC, United States
| | - Daniel B. Dranow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Diego J. Hoyle
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Johnson S, Heubel B, Bredesen C, Schilling T, Le Pabic P. Cellular basis of differential endochondral growth in Lake Malawi cichlids. Dev Dyn 2022; 251:2001-2014. [PMID: 36001035 PMCID: PMC9722610 DOI: 10.1002/dvdy.529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The shape and size of skeletal elements is determined by embryonic patterning mechanisms as well as localized growth and remodeling during post-embryonic development. Differential growth between endochondral growth plates underlies many aspects of morphological diversity in tetrapods but has not been investigated in ray-finned fishes. We examined endochondral growth rates in the craniofacial skeletons of two cichlid species from Lake Malawi that acquire species-specific morphological differences during postembryonic development and quantified cellular mechanisms underlying differential growth both within and between species. RESULTS Cichlid endochondral growth rates vary greatly (50%-60%) between different growth zones within a species, between different stages for the same growth zone, and between homologous growth zones in different species. Differences in cell proliferation and/or cell enlargement underlie much of this differential growth, albeit in different proportions. Strikingly, differences in extracellular matrix production do not correlate with growth rate differences. CONCLUSIONS Differential endochondral growth drives many aspects of craniofacial morphological diversity in cichlids. Cellular proliferation and enlargement, but not extracellular matrix deposition, underlie this differential growth and this appears conserved in Osteichthyes. Cell enlargement is observed in some but not all cichlid growth zones and the degree to which it occurs resembles slower growing mammalian growth plates.
Collapse
Affiliation(s)
- Savannah Johnson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC
| | - Brian Heubel
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC
| | - Carson Bredesen
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC
| | - Thomas Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA
| | - Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC
| |
Collapse
|
9
|
Hallett SA, Ono W, Franceschi RT, Ono N. Cranial Base Synchondrosis: Chondrocytes at the Hub. Int J Mol Sci 2022; 23:7817. [PMID: 35887171 PMCID: PMC9317907 DOI: 10.3390/ijms23147817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/04/2023] Open
Abstract
The cranial base is formed by endochondral ossification and functions as a driver of anteroposterior cranial elongation and overall craniofacial growth. The cranial base contains the synchondroses that are composed of opposite-facing layers of resting, proliferating and hypertrophic chondrocytes with unique developmental origins, both in the neural crest and mesoderm. In humans, premature ossification of the synchondroses causes midfacial hypoplasia, which commonly presents in patients with syndromic craniosynostoses and skeletal Class III malocclusion. Major signaling pathways and transcription factors that regulate the long bone growth plate-PTHrP-Ihh, FGF, Wnt, BMP signaling and Runx2-are also involved in the cranial base synchondrosis. Here, we provide an updated overview of the cranial base synchondrosis and the cell population within, as well as its molecular regulation, and further discuss future research opportunities to understand the unique function of this craniofacial skeletal structure.
Collapse
Affiliation(s)
- Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA;
| | - Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (S.A.H.); (R.T.F.)
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA
| |
Collapse
|
10
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Mechanical loading of cranial joints minimizes the craniofacial phenotype in Crouzon syndrome. Sci Rep 2022; 12:9693. [PMID: 35690633 PMCID: PMC9188582 DOI: 10.1038/s41598-022-13807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Children with syndromic forms of craniosynostosis undergo a plethora of surgical interventions to resolve the clinical features caused by the premature fusion of cranial sutures. While surgical correction is reliable, the need for repeated rounds of invasive treatment puts a heavy burden on the child and their family. This study explores a non-surgical alternative using mechanical loading of the cranial joints to prevent or delay craniofacial phenotypes associated with Crouzon syndrome. We treated Crouzon syndrome mice before the onset of craniosynostosis by cyclical mechanical loading of cranial joints using a custom designed set-up. Cranial loading applied to the frontal bone partially restores normal skull morphology, significantly reducing the typical brachycephalic appearance. This is underpinned by the delayed closure of the coronal suture and of the intersphenoidal synchondrosis. This study provides a novel treatment alternative for syndromic craniosynostosis which has the potential to be an important step towards replacing, reducing or refining the surgical treatment of all craniosynostosis patients.
Collapse
|
12
|
On the horizon: Hedgehog signaling to heal broken bones. Bone Res 2022; 10:13. [PMID: 35165260 PMCID: PMC8844053 DOI: 10.1038/s41413-021-00184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Uncovering the molecular pathways that drive skeletal repair has been an ongoing challenge. Initial efforts have relied on in vitro assays to identify the key signaling pathways that drive cartilage and bone differentiation. While these assays can provide some clues, assessing specific pathways in animal models is critical. Furthermore, definitive proof that a pathway is required for skeletal repair is best provided using genetic tests. Stimulating the Hh (Hedgehog) pathway can promote cartilage and bone differentiation in cell culture assays. In addition, the application of HH protein or various pathway agonists in vivo has a positive influence on bone healing. Until recently, however, genetic proof that the Hh pathway is involved in bone repair has been lacking. Here, we consider both in vitro and in vivo studies that examine the role of Hh in repair and discuss some of the challenges inherent in their interpretation. We also identify needed areas of study considering a new appreciation for the role of cartilage during repair, the variety of cell types that may have differing roles in repair, and the recent availability of powerful lineage tracing techniques. We are optimistic that emerging genetic tools will make it possible to precisely define when and in which cells promoting Hh signaling can best promote skeletal repair, and thus, the clinical potential for targeting the Hh pathway can be realized.
Collapse
|
13
|
Zhang H, Louie KW, Kulkarni AK, Zapien‐Guerra K, Yang J, Mishina Y. The Posterior Part Influences the Anterior Part of the Mouse Cranial Base Development. JBMR Plus 2021; 6:e10589. [PMID: 35229066 PMCID: PMC8861986 DOI: 10.1002/jbm4.10589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The cranial base is a critical structure in the head, which is composed of endoskeletal and dermal skeletal. The braincase floor, part of the cranial base, is a midline structure of the head. Because it is a midline structure connecting the posterior skull with the facial region, braincase floor is critical for the orientation of the facial structure. Shortened braincase floor leads to mid‐facial hypoplasia and malocclusions. During embryonic development, elongation of the braincase floor occurs through endochondral ossification in the parachordal cartilage, hypophyseal cartilage, and trabecular cartilage, which leads to formation of basioccipital (BO), basisphenoid (BS), and presphenoid (PS) bones, respectively. Currently, little is known about whether maturation of parachordal cartilage, hypophyseal cartilage, and trabecular cartilage occurs in a simultaneous or sequential manner and if the formation of one impacts the others. Our previous studies demonstrated that loss of function of ciliary protein Evc2 leads to premature fusion in the intersphenoid synchondrosis (ISS). In this study, we take advantage of Evc2 mutant mice to delineate the mechanism governing synchondrosis formation. Our analysis supports a cascade mechanism on the spatiotemporal regulation of the braincase floor development that the hypertrophy of parachordal cartilage (posterior side) impacts the hypertrophy of hypophyseal cartilage (middle) and trabecular cartilage (anterior side) in a sequential manner. The cascade mechanism well explains the premature fusion of the ISS in Evc2 mutant mice and is instructive to understand the specifically shortened anterior end of the braincase floor in various types of genetic syndromes. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Karen Zapien‐Guerra
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| |
Collapse
|
14
|
Hsieh YL, Wei X, Wang Y, Zhang H, Qi S, Xie D, Mishina Y, Mendonça D, Hatch N, Liu F. Chondrocyte Tsc1 controls cranial base bone development by restraining the premature differentiation of synchondroses. Bone 2021; 153:116142. [PMID: 34365025 PMCID: PMC8543925 DOI: 10.1016/j.bone.2021.116142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
Cranial base bones are formed through endochondral ossification. Synchondroses are growth plates located between cranial base bones that facilitate anterior-posterior growth of the skull. Coordinated proliferation and differentiation of chondrocytes in cranial base synchondroses is essential for cranial base bone growth. Herein, we report that constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling via Tsc1 (Tuberous sclerosis 1) deletion in chondrocytes causes abnormal skull development with decreased size and rounded shape. In contrast to decreased anterior-posterior growth of the cranial base, mutant mice also exhibited significant expansion of cranial base synchondroses including the intersphenoid synchondrosis (ISS) and the spheno-occipital synchondrosis (SOS). Cranial base synchondrosis expansion in TSC1-deficient mice was accounted for by an expansion of the resting zone due to increased cell number and size without alteration in cell proliferation. Furthermore, our data showed that mTORC1 activity is inhibited in the resting and proliferating zone chondrocytes of wild type mice, and Tsc1 deletion activated mTORC1 signaling of the chondrocytes in the resting zone area. Consequently, the chondrocytes in the resting zone of TSC1-deficient mice acquired characteristics generally attributed to pre-hypertrophic chondrocytes including high mTORC1 activity, increased cell size, and increased expression level of PTH1R (Parathyroid hormone 1 receptor) and IHH (Indian hedgehog). Lastly, treatment with rapamycin, an inhibitor of mTORC1, rescued the abnormality in synchondroses. Our results established an important role for TSC1-mTORC1 signaling in regulating cranial base bone development and showed that chondrocytes in the resting zone of synchondroses are maintained in an mTORC1-inhibitory environment.
Collapse
Affiliation(s)
- Yuan-Lynn Hsieh
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Xiaoxi Wei
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin 130021, China
| | - Yating Wang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honghao Zhang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Shuqun Qi
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Di Xie
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Daniela Mendonça
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Wan Y, Szabo-Rogers HL. Chondrocyte Polarity During Endochondral Ossification Requires Protein-Protein Interactions Between Prickle1 and Dishevelled2/3. J Bone Miner Res 2021; 36:2399-2412. [PMID: 34423861 DOI: 10.1002/jbmr.4428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
The expansion and growth of the endochondral skeleton requires organized cell behaviors that control chondrocyte maturation and oriented division. In other organs, these processes are accomplished through Wnt/planar cell polarity (Wnt/PCP) signaling pathway and require the protein-protein interactions of core components including Prickle1 (PK1) and Dishevelled (DVL). To determine the function of Wnt/PCP signaling in endochondral ossification of the cranial base and limb, we utilized the Prickle1Beetlejuice (Pk1Bj ) mouse line. The Pk1Bj allele has a missense mutation in the PK1 LIM1 domain that results in a hypomorphic protein. Similar to human patients with Robinow syndrome, the Prickle1Bj/Bj mouse mutants lack growth plate expansion resulting in shorter limbs and midfacial hypoplasia. Within the Prickle1Bj/Bj limb and cranial base growth plates we observe precocious maturation of chondrocytes and stalling of terminal differentiation. Intriguingly, we observed that the growth plate chondrocytes have randomized polarity based on the location of the primary cilia and the location of PRICKLE1, DVL2, and DVL3 localization. Importantly, mutant PK1Bj protein has decreased protein-protein interactions with both DVL2 and DVL3 in chondrocytes as revealed by in vivo co-immunoprecipitation and proximity ligation assays. Finally, we propose a model where the interaction between the Prickle1 LIM1 domain and DVL2 and DVL3 contributes to chondrocyte polarity and contributes to proximal-distal outgrowth of endochondral elements. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yong Wan
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather L Szabo-Rogers
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Unger CM, Devine J, Hallgrímsson B, Rolian C. Selection for increased tibia length in mice alters skull shape through parallel changes in developmental mechanisms. eLife 2021; 10:e67612. [PMID: 33899741 PMCID: PMC8118654 DOI: 10.7554/elife.67612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Bones in the vertebrate cranial base and limb skeleton grow by endochondral ossification, under the control of growth plates. Mechanisms of endochondral ossification are conserved across growth plates, which increases covariation in size and shape among bones, and in turn may lead to correlated changes in skeletal traits not under direct selection. We used micro-CT and geometric morphometrics to characterize shape changes in the cranium of the Longshanks mouse, which was selectively bred for longer tibiae. We show that Longshanks skulls became longer, flatter, and narrower in a stepwise process. Moreover, we show that these morphological changes likely resulted from developmental changes in the growth plates of the Longshanks cranial base, mirroring changes observed in its tibia. Thus, indirect and non-adaptive morphological changes can occur due to developmental overlap among distant skeletal elements, with important implications for interpreting the evolutionary history of vertebrate skeletal form.
Collapse
Affiliation(s)
- Colton M Unger
- Department of Biological Sciences, University of CalgaryCalgaryCanada
- McCaig Institute for Bone and Joint HealthCalgaryCanada
| | - Jay Devine
- Department of Cell Biology and Anatomy, University of CalgaryCalgaryCanada
| | - Benedikt Hallgrímsson
- McCaig Institute for Bone and Joint HealthCalgaryCanada
- Department of Cell Biology and Anatomy, University of CalgaryCalgaryCanada
- Alberta Children's Hospital Research Institute for Child and Maternal Health, University of CalgaryCalgaryCanada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint HealthCalgaryCanada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of CalgaryCalgaryCanada
| |
Collapse
|
17
|
Chen J, Tang W, Lin C, Hong Y, Mao C, Lai Y, Liao C, Lin M, Chen W. Defining the critical period of hedgehog pathway inhibitor-induced cranial base dysplasia in mice. Dev Dyn 2021; 250:527-541. [PMID: 33165989 DOI: 10.1002/dvdy.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The hedgehog signaling pathway is critical for developmental patterning of the limb, craniofacial and axial skeleton. Disruption of this pathway in mice leads to a series of structural malformations, but the exact role and critical period of the Hh pathway in the early development of the cranial base have been rarely described. RESULTS Embryos exposed to vismodegib from E7.5, E9.5, and E10.5 had a higher percentage of cranial base fenestra. The peak incidence of hypoplasia in sphenoid winglets and severe craniosynostosis in cranial base synchondroses was observed when vismodegib was administered between E9.5 and E10.5. Cranial base craniosynostosis results from accelerating terminal differentiation of chondrocytes and premature osteogenesis. CONCLUSIONS We define the critical periods for the induction of cranial base deformity by vismodegib administration at a meticulous temporal resolution. Our findings suggest that the Hh pathway may play a vital role in the early development of the cranial base. This research also establishes a novel and easy-to-establish mouse model of synostosis in the cranial base using a commercially available pathway-selective inhibitor.
Collapse
Affiliation(s)
- Jiangping Chen
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenbing Tang
- Department of Stomatology, Central Hospital of Guangdong Nongken, Zhanjiang, Guangdong, China
| | - Chengquan Lin
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuhang Hong
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chuanqing Mao
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Caiyu Liao
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Minkui Lin
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Weihui Chen
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Oral and Maxillofacial Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian, China
| |
Collapse
|
18
|
The Skull's Girder: A Brief Review of the Cranial Base. J Dev Biol 2021; 9:jdb9010003. [PMID: 33498686 PMCID: PMC7838769 DOI: 10.3390/jdb9010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
The cranial base is a multifunctional bony platform within the core of the cranium, spanning rostral to caudal ends. This structure provides support for the brain and skull vault above, serves as a link between the head and the vertebral column below, and seamlessly integrates with the facial skeleton at its rostral end. Unique from the majority of the cranial skeleton, the cranial base develops from a cartilage intermediate-the chondrocranium-through the process of endochondral ossification. Owing to the intimate association of the cranial base with nearly all aspects of the head, congenital birth defects impacting these structures often coincide with anomalies of the cranial base. Despite this critical importance, studies investigating the genetic control of cranial base development and associated disorders lags in comparison to other craniofacial structures. Here, we highlight and review developmental and genetic aspects of the cranial base, including its transition from cartilage to bone, dual embryological origins, and vignettes of transcription factors controlling its formation.
Collapse
|
19
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
20
|
Abstract
PURPOSE It is known from both anatomic and radiographic studies that the majority of cranial sutures begin fusing in early adulthood and are fused by late adulthood. However, most of the studies focus on the cranial vault rather than the cranial base. Most clinicians treating patients with craniosynostosis are interpreting the behavior of cranial sutures on CT imaging. Therefore, the purpose of this study was to further clarify the radiographic appearance of cranial base sutures over the natural human life span. METHODS Thirty CT scans of the head and face were reviewed for each decade starting at 1 year of life up to age 90. Scans were evaluated for the appearance of the occipitomastoid, petrosoocciptial, sphenosquamous, sphenopetrosal, frontosphenoidal, sphenozygomatic, petrososquamosal, frontoethmoidal, sphenoethmoidal and sphenoccipital sutures. Sutures were categorized as obliterated, present with fusion, present without fusion and unable to visualize. RESULTS The majority of cranial base sutures are visible up through the eighth decade, although evidence of ossification across the suture starts as early as the second decade. Some sutures such as the occipitomastoid appeared > 90% open even as late as the ninth decade. Other sutures such as the sphenosquamosal and frontozygomatic are mostly fused by that age. CONCLUSION Cranial base sutures appear to behave radiographically similar, to the cranial vault sutures in that they largely remain visible throughout adulthood but show varying amounts of ossification. There are some cranial base sutures which appear to remain open throughout life although the significance of this has yet to be determined.
Collapse
|
21
|
Heubel BP, Bredesen CA, Schilling TF, Le Pabic P. Endochondral growth zone pattern and activity in the zebrafish pharyngeal skeleton. Dev Dyn 2020; 250:74-87. [PMID: 32852849 DOI: 10.1002/dvdy.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endochondral ossification is a major bone forming mechanism in vertebrates, defects in which can result in skeletal dysplasia or craniofacial anomalies in humans. The zebrafish holds great potential to advance our understanding of endochondral growth zone development and genetics, yet several important aspects of its biology remain unexplored. Here we provide a comprehensive description of endochondral growth zones in the pharyngeal skeleton, including their developmental progression, cellular activity, and adult fates. RESULTS Postembryonic growth of the pharyngeal skeleton is supported by endochondral growth zones located either at skeletal epiphyses or synchondroses. Col2a1a and col10a1a in situ hybridization and anti-PCNA immunostaining identify resting-, hypertrophic- and proliferative zones, respectively, in pharyngeal synchondroses. Cellular hypertrophy and matrix deposition contribute little, if at all, to axial growth in most skeletal elements. Zebrafish endochondral growth zones develop during metamorphosis and arrest in adults. CONCLUSIONS Two endochondral growth zone configurations in the zebrafish pharyngeal skeleton produce either unidirectional (epiphyses) or bidirectional (synchondroses) growth. Cell proliferation drives endochondral growth and its modulation, in contrast to mammalian long bones in which bone length depends more on cell enlargement during hypertrophy and intramembranous ossification is the default mechanism of bone growth in zebrafish adults.
Collapse
Affiliation(s)
- Brian P Heubel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Carson A Bredesen
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, USA
| | - Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
22
|
Funato N. New Insights Into Cranial Synchondrosis Development: A Mini Review. Front Cell Dev Biol 2020; 8:706. [PMID: 32850826 PMCID: PMC7432265 DOI: 10.3389/fcell.2020.00706] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
The synchondroses formed via endochondral ossification in the cranial base are an important growth center for the neurocranium. Abnormalities in the synchondroses affect cranial base elongation and the development of adjacent regions, including the craniofacial bones. In the central region of the cranial base, there are two synchondroses present—the intersphenoid synchondrosis and the spheno-occipital synchondrosis. These synchondroses consist of mirror image bipolar growth plates. The cross-talk of several signaling pathways, including the parathyroid hormone-like hormone (PTHLH)/parathyroid hormone-related protein (PTHrP), Indian hedgehog (Ihh), Wnt/β-catenin, and fibroblast growth factor (FGF) pathways, as well as regulation by cilium assembly and the transcription factors encoded by the RUNX2, SIX1, SIX2, SIX4, and TBX1 genes, play critical roles in synchondrosis development. Deletions or activation of these gene products in mice causes the abnormal ossification of cranial synchondrosis and skeletal elements. Gene disruption leads to both similar and markedly different abnormalities in the development of intersphenoid synchondrosis and spheno-occipital synchondrosis, as well as in the phenotypes of synchondroses and skeletal bones. This paper reviews the development of cranial synchondroses, along with its regulation by the signaling pathways and transcription factors, highlighting the differences between intersphenoid synchondrosis and spheno-occipital synchondrosis.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Tokyo Medical and Dental University, Tokyo, Japan.,Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Camacho J, Moon R, Smith SK, Lin JD, Randolph C, Rasweiler JJ, Behringer RR, Abzhanov A. Differential cellular proliferation underlies heterochronic generation of cranial diversity in phyllostomid bats. EvoDevo 2020; 11:11. [PMID: 32514331 PMCID: PMC7268441 DOI: 10.1186/s13227-020-00156-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Skull diversity in the neotropical leaf-nosed bats (Phyllostomidae) evolved through a heterochronic process called peramorphosis, with underlying causes varying by subfamily. The nectar-eating (subfamily Glossophaginae) and blood-eating (subfamily Desmondontinae) groups originate from insect-eating ancestors and generate their uniquely shaped faces and skulls by extending the ancestral ontogenetic program, appending new developmental stages and demonstrating peramorphosis by hypermorphosis. However, the fruit-eating phyllostomids (subfamilies Carollinae and Stenodermatinae) adjust their craniofacial development by speeding up certain developmental processes, displaying peramorphosis by acceleration. We hypothesized that these two forms of peramorphosis detected by our morphometric studies could be explained by differential growth and investigated cell proliferation during craniofacial morphogenesis. Results We obtained cranial tissues from four wild-caught bat species representing a range of facial diversity and labeled mitotic cells using immunohistochemistry. During craniofacial development, all bats display a conserved spatiotemporal distribution of proliferative cells with distinguishable zones of elevated mitosis. These areas were identified as modules by the spatial distribution analysis. Ancestral state reconstruction of proliferation rates and patterns in the facial module between species provided support, and a degree of explanation, for the developmental mechanisms underlying the two models of peramorphosis. In the long-faced species, Glossophaga soricina, whose facial shape evolved by hypermorphosis, cell proliferation rate is maintained at lower levels and for a longer period of time compared to the outgroup species Miniopterus natalensis. In both species of studied short-faced fruit bats, Carollia perspicillata and Artibeus jamaicensis, which evolved under the acceleration model, cell proliferation rate is increased compared to the outgroup. Conclusions This is the first study which links differential cellular proliferation and developmental modularity with heterochronic developmental changes, leading to the evolution of adaptive cranial diversity in an important group of mammals.![]()
Collapse
Affiliation(s)
- Jasmin Camacho
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Rachel Moon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Samantha K Smith
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
| | - Jacky D Lin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Charles Randolph
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - John J Rasweiler
- Department of Obstetrics and Gynecology, State University Downstate Medical Center, Brooklyn, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus Buckhurst Road, Ascot, Berkshire, SL5 7PY UK.,Natural History Museum, Cromwell Road, London, SW7 5BD UK
| |
Collapse
|
24
|
Che X, Chen T, Wei L, Gu X, Gao Y, Liang S, Li P, Shi D, Liang B, Wang C, Li P. MicroRNA‑1 regulates the development of osteoarthritis in a Col2a1‑Cre‑ERT2/GFPfl/fl‑RFP‑miR‑1 mouse model of osteoarthritis through the downregulation of Indian hedgehog expression. Int J Mol Med 2020; 46:360-370. [PMID: 32626917 PMCID: PMC7255451 DOI: 10.3892/ijmm.2020.4601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/21/2020] [Indexed: 11/06/2022] Open
Abstract
The present study assessed the effects of microRNA‑1 (miR‑1) on the development of osteoarthritis using human tissues and a Col2a1‑Cre‑ERT2/GFPfl/fl‑RFP‑miR‑1 mouse model of osteoarthritis. Human cartilage tissues (n=20) were collected for reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), histological analysis and immunohistochemistry experiments. A transgenic mouse model of osteoarthritis was established by subjecting Col2a1‑Cre‑ERT2/GFPfl/fl‑RFP‑miR‑1 transgenic mice to anterior cruciate ligament transection (ACLT). Mice were subjected to radiography and in vivo fluorescence molecular tomography (FMT), while mouse tissues were collected for histological analysis, RT‑qPCR and Safranin O staining. It was found that the miR‑1 level was downregulated, whereas the levels of Indian hedgehog (Ihh), as well as those of its downstream genes were upregulated in human osteoarthritic cartilage. In the transgenic mice, treatment with tamoxifen induced miR‑1, as well as collagen, type II (Col2a1) and Aggrecan (Acan) expression; however, it decreased Ihh, glioma‑associated oncogene homolog (Gli)1, Gli2, Gli3, smoothened homolog (Smo), matrix metalloproteinase (MMP)‑13 and collagen type X (Col10) expression. Safranin O staining revealed cartilage surface damage in the non‑tamoxifen + ACLT group, compared with that in the tamoxifen + ACLT group. Histologically, an intact cartilage surface and less fibrosis were observed in the tamoxifen + ACLT group. Immunohistochemistry revealed that the protein expression of Ihh, Col10, and MMP‑13 was significantly higher in the joint tissues of the non‑tamoxifen + ACLT group than in those of the tamoxifen + ACLT group. However, Col2a1 expression was lower in the joint tissues of the non‑tamoxifen + ACLT group than in those of the tamoxifen + ACLT group. The results of RT‑qPCR and FMT further confirmed these findings. On the whole, the findings of the present study demonstrate that miR‑1 expression protects against osteoarthritis‑induced cartilage damage and gene expression by inhibiting Ihh signaling.
Collapse
Affiliation(s)
- Xianda Che
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Taoyu Chen
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lei Wei
- Department of Orthopedics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Xiaodong Gu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yangyang Gao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shufen Liang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Penghua Li
- Fengyang Hospital of Shanxi Province, Fengyang, Shanxi 032200, P.R. China
| | - Dongping Shi
- Fengyang Hospital of Shanxi Province, Fengyang, Shanxi 032200, P.R. China
| | - Bin Liang
- Fengyang Hospital of Shanxi Province, Fengyang, Shanxi 032200, P.R. China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
25
|
Amano K, Okuzaki D, Aikawa T, Kogo M. Indian hedgehog in craniofacial neural crest cells links to skeletal malocclusion by regulating associated cartilage formation and gene expression. FASEB J 2020; 34:6791-6807. [PMID: 32223017 DOI: 10.1096/fj.201903269r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/29/2022]
Abstract
The frontal craniofacial skeleton derived from neural crest cells is vital for facial structure and masticatory functions. The exact role of Indian hedgehog (Ihh) in facial and masticatory development has not been fully explored. In this study, we generated craniofacial neural crest cells-specific Ihh deletion mice (Wnt1-Cre;Ihhfl/fl ;Tomatofl/+ ) and found the gradual dwarfism without perinatal lethality. Morphological and histological analyses revealed unambiguous craniofacial phenotypes in mutants, where we observed skeletal malocclusion accompanied by markedly hypoplastic nasomaxillary complex and reversed incisor occlusion. Both the replacement of nasal concha cartilage by turbinate bones and the endochondral ossification of nasal septum ethmoid bone were substantially delayed. We also observed hypoplastic mandibles in mutants where the mandibular ramus was unexpectedly the most affected. Both the condylar process and mandibular angle cartilages were distorted. However, dental examination showed no significant changes in teeth and dentition. Finally, a comprehensive RNA sequence analysis utilizing condylar cartilage identified Ihh-associated gene network including several cell cycle genes and 16 genes related to the extracellular matrix, sulfate transporters, transcription factors, receptors, a ciliogenesis factor, and an adhesion molecule. Our data provide direct in vivo evidence that Ihh plays crucial roles in midface and masticatory system formation, likely by activating key genes.
Collapse
Affiliation(s)
- Katsuhiko Amano
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomonao Aikawa
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mikihiko Kogo
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
26
|
Park SR, Kim SR, Park CH, Lim S, Ha SY, Hong IS, Lee HY. Sonic Hedgehog, a Novel Endogenous Damage Signal, Activates Multiple Beneficial Functions of Human Endometrial Stem Cells. Mol Ther 2019; 28:452-465. [PMID: 31866117 DOI: 10.1016/j.ymthe.2019.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023] Open
Abstract
Local endometrial stem cells play an important role in regulating endometrial thickness, which is an essential factor for successful embryo implantation and pregnancy outcomes. Importantly, defects in endometrial stem cell function can be responsible for thin endometrium and subsequent recurrent pregnancy losses. Therefore, many researchers have directed their efforts toward finding a novel stimulatory factor that can enhance the regenerative capacity of endometrial stem cells. Sonic hedgehog (SHH) is a morphogen that plays a key role in regulating pattern formation throughout embryonic limb development. In addition to this canonical function, we identified for the first time that SHH is actively secreted as a stem cell-activating factor in response to tissue injury and subsequently stimulates tissue regeneration by promoting various beneficial functions of endometrial stem cells. Our results also showed that SHH exerts stimulatory effects on endometrial stem cells via the FAK/ERK1/2 and/or phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. More importantly, we also observed that endometrial stem cells stimulated with SHH showed markedly enhanced differentiation and migratory capacities and subsequent in vivo therapeutic effects in an endometrial ablation animal model.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Soyi Lim
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| | - Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Republic of Korea.
| |
Collapse
|
27
|
Takabatake K, Shimo T, Murakami J, Anqi C, Kawai H, Yoshida S, Wathone Oo M, Haruka O, Sukegawa S, Tsujigiwa H, Nakano K, Nagatsuka H. The Role of Sonic Hedgehog Signaling in the Tumor Microenvironment of Oral Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20225779. [PMID: 31744214 PMCID: PMC6888610 DOI: 10.3390/ijms20225779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of SHH expression appear to correlate with cancer progression. However, the role of SHH in the tumor microenvironment (TME) of oral squamous cell carcinoma (OSCC) is still unclear. No studies have compared the expression of SHH in different subtypes of OSCC and focused on the relationship between the tumor parenchyma and stroma. In this study, we analyzed SHH and expression of its receptor, Patched-1 (PTCH), in the TME of different subtypes of OSCC. Fifteen endophytic-type cases (ED type) and 15 exophytic-type cases (EX type) of OSCC were used. H&E staining, immunohistochemistry (IHC), double IHC, and double-fluorescent IHC were performed on these samples. ED-type parenchyma more strongly expressed both SHH and PTCH than EX-type parenchyma. In OSCC stroma, CD31-positive cancer blood vessels, CD68- and CD11b-positive macrophages, and α-smooth muscle actin-positive cancer-associated fibroblasts partially expressed PTCH. On the other hand, in EX-type stroma, almost no double-positive cells were observed. These results suggest that autocrine effects of SHH induce cancer invasion, and paracrine effects of SHH govern parenchyma-stromal interactions of OSCC. The role of the SHH pathway is to promote growth and invasion.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
- Correspondence: ; Tel.: +81-086-235-6651
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 0610293, Japan;
| | - Jun Murakami
- Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan;
| | - Chang Anqi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin 150081, China
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
| | - Saori Yoshida
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
| | - Omori Haruka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Kagawa 7608557, Japan
| | - Hidetsugu Tsujigiwa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 7000005, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan (H.K.); (S.Y.); (M.W.O.); (O.H.); (S.S.); (H.T.); (K.N.); (H.N.)
| |
Collapse
|
28
|
Catala M. [Development and growth of the skull base]. Neurochirurgie 2019; 65:216-220. [PMID: 31568778 DOI: 10.1016/j.neuchi.2019.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/15/2022]
Abstract
The skull base is a part of the neuro-cranium formed by endochondral ossification. The embryological origin of the skull base is not perfectly known, but there seems to be an anterior region derived from the neural crest and a posterior part derived from the mesoderm. Further studies are needed to define reliable presumptive maps. The origin of the different components of the occipital bone is just as poorly known. Much fundamental work remains to be done to suggest any solution to these problems in humans.
Collapse
Affiliation(s)
- M Catala
- Sorbonne Université, CNRS UMR7622, Inserm ERL 1156, IBPS, 9, quai Saint-Bernard, bâtiment C, 75252 Paris cedex 05, France.
| |
Collapse
|
29
|
Kaucka M, Adameyko I. Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Semin Cell Dev Biol 2019; 91:2-12. [DOI: 10.1016/j.semcdb.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022]
|
30
|
Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, Wang C, Wei L. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther 2019; 21:109. [PMID: 31046827 PMCID: PMC6498579 DOI: 10.1186/s13075-019-1895-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To determine if ipriflavone, a novel and safe inhibitor of Indian hedgehog (Ihh) signaling, can attenuate cartilage degeneration by blocking the Ihh pathway. METHODS Human chondrocytes were used to evaluate Ihh signaling, cell proliferation, apoptosis, gene, and protein expression of chondrocytes by cell proliferation and apoptosis assays, real-time qPCR, and Western blotting at 48 h after ipriflavone treatment. Human cartilage explants were further used to validate the cell culture results. The effects of ipriflavone on cartilage degeneration in vivo were assessed using the rat ACLT OA model. Two-month-old male SD rats were randomized into 3 groups (n = 75): (1) sham, (2) ACLT alone, and (3) ACLT+ ipriflavone. Ipriflavone was administered intragastrically at 24 h after ACLT for 6 weeks. The extent of OA progression was evaluated by the OARSI score and immunohistochemistry at 12 weeks after surgery. The Ihh signaling pathway and OA-related genes were quantified by real-time PCR. RESULTS Cell proliferation in the cells treated with ipriflavone was increased to 36.40% ± 1.32% (5 μM) and 28.54% ± 0.74% (10 μM) from 11.99% ± 0.35% (DMSO) (P < 0.001), and apoptosis was decreased to 12.64% ± 3.7% (5 μM) and 15.18% ± 3.13% (10 μM) from 25.76% ± 5.1% (DMSO) (P < 0.05). Ipriflavone blocked Runx-2 mainly through the Smo-Gli2 pathway. A similar result was found in the cartilage explant culture. Ihh signaling in vivo was inhibited in animals treated with ipriflavone. Safranin-O staining revealed a less cartilage damage with lower OARSI scores (P < 0.05) in the ipriflavone-treated animals compared with untreated animals. The gene expression of Smo and Gli2 was inhibited significantly by ipriflavone (P < 0.05). The OA-related gene and protein type X, MMP-13, and type II collagen-C fragment were reduced, while type II collagen and Agg were increased in the ipriflavone-treated animals (P < 0.05). CONCLUSIONS Catabolic genes were disrupted by blocking the Ihh pathway. This finding suggests that disruption of Ihh signaling with ipriflavone provides chondral protection in rat posttraumatic OA.
Collapse
Affiliation(s)
- Li Guo
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Xiaochun Wei
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Zhiwei Zhang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Xiaojian Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Chunli Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Pengcui Li
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Chunfang Wang
- Shanxi Key Laboratory of Laboratory Animal and Animal Model of Human Diseases, Department of Experimental Animal Center, Shanxi Medical University, No. 56, Xinjian Southern Road, Taiyuan, 030001, China
| | - Lei Wei
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China. .,Department of Orthopedics, Warren Alpert Medical School of Brown University, Suite 402A, 1 Hoppin Street, Providence, RI, 02903, USA.
| |
Collapse
|
31
|
An Endogenous Anti-aging Factor, Sonic Hedgehog, Suppresses Endometrial Stem Cell Aging through SERPINB2. Mol Ther 2019; 27:1286-1298. [PMID: 31080015 DOI: 10.1016/j.ymthe.2019.04.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
Endometrial stem cells are located in the basal layer of the endometrium, and they are responsible for the cyclic regeneration of the uterus during the menstrual cycle. Recent studies have revealed that recurrent pregnancy loss is associated with an age-related stem cell deficiency in the endometrium. Therefore, intensive study of endometrial stem cell aging may provide new insights for preventing recurrent pregnancy loss. Sonic hedgehog (SHH) signaling has been identified as a morphogen during the embryonic development processes. In addition to this canonical function, we found that the age-associated decline in regenerative potential in the endometrium may be due to decreased SHH-signaling integrity in local stem cells with aging. Importantly, the current study also showed that SHH activity clearly declines with aging both in vitro and in vivo, and exogenous SHH treatment significantly alleviates various aging-associated declines in multiple endometrial stem cell functions, suggesting that SHH may act as an endogenous anti-aging factor in human endometrial stem cells. Moreover, we found that stem cell senescence may enhance SERPINB2 expression, which in turn mediates the effect of SHH on alleviating senescence-induced endometrial stem cell dysfunctions, suggesting that SERPINB2 is a master regulator of SHH signaling during the aging process.
Collapse
|
32
|
Defining a critical period in calvarial development for Hedgehog pathway antagonist-induced frontal bone dysplasia in mice. Int J Oral Sci 2019; 11:3. [PMID: 30783111 PMCID: PMC6381108 DOI: 10.1038/s41368-018-0040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/09/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway is essential for cellular proliferation and differentiation during embryonic development. Gain and loss of function of Hh signalling are known to result in an array of craniofacial malformations. To determine the critical period for Hh pathway antagonist-induced frontal bone hypoplasia, we examined patterns of dysmorphology caused by Hh signalling inhibition. Pregnant mice received a single oral administration of Hh signalling inhibitor GDC-0449 at 100 mg•kg−1 or 150 mg•kg−1 body weight at preselected time points between embryonic days (E)8.5 and 12.5. The optimal teratogenic concentration of GDC-0449 was determined to be 150 mg•kg−1. Exposure between E9.5 and E10.5 induced frontal bone dysplasia, micrognathia and limb defects, with administration at E10.5 producing the most pronounced effects. This model showed decreased ossification of the frontal bone with downregulation of Hh signalling. The osteoid thickness of the frontal bone was significantly reduced. The amount of neural crest-derived frontal bone primordium was reduced after GDC-0449 exposure owing to a decreased rate of cell proliferation and increased cell death. During embryonic development, the Hedgehog signalling pathway regulates the migration, proliferation and differentiation of cranial neural crest cells in the early frontal bone. The Hedgehog signalling pathway transmits information to embryonic cells for their proper cell differentiation, and increased or reduced function of that signalling results in various craniofacial malformations. A team headed by Weihui Chen at Fujian Medical University in China investigated the patterns of abnormalities caused by inhibition of Hedgehog signalling in pregnant mice at preselected embryonic time points. The team was able to identify the critical period for sensitivity to GDC-0449, a potent Hedgehog signalling inhibitor. The authors believe that their mouse model can be effective in further investigating the mechanisms of craniofacial malformations and will have a profound impact on identifying candidate human disease genes and associated environmental factors.
Collapse
|
33
|
Craniofacial abnormality with skeletal dysplasia in mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase-1. Sci Rep 2018; 8:17134. [PMID: 30459452 PMCID: PMC6244165 DOI: 10.1038/s41598-018-35412-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/02/2018] [Indexed: 02/03/2023] Open
Abstract
Chondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and plays an important part in organogenesis. To elucidate the roles of CS for craniofacial development, we analyzed the craniofacial morphology in CS N-acetylgalactosaminyltransferase-1 (T1) gene knockout (KO) mice. T1KO mice showed the impaired intramembranous ossification in the skull, and the final skull shape of adult mice included a shorter face, higher and broader calvaria. Some of T1KO mice exhibited severe facial developmental defect, such as eye defects and cleft lip and palate, causing embryonic lethality. At the postnatal stages, T1KO mice with severely reduced CS amounts showed malocclusion, general skeletal dysplasia and skin hyperextension, closely resembling Ehlers-Danlos syndrome-like connective tissue disorders. The production of collagen type 1 was significantly downregulated in T1KO mice, and the deposition of CS-binding molecules, Wnt3a, was decreased with CS in extracellular matrices. The collagen fibers were irregular and aggregated, and connective tissues were dysorganized in the skin and calvaria of T1KO mice. These results suggest that CS regulates the shape of the craniofacial skeleton by modulating connective tissue organization and that the remarkable reduction of CS induces hypoplasia of intramembranous ossification and cartilage anomaly, resulting in skeletal dysplasia.
Collapse
|
34
|
Abstract
The cranial base is a central and integral component of the cranioskeleton, yet little is known about its growth. Despite the dissimilarities between human and murine cranioskeletal form, mouse models are proving instrumental in studying craniofacial growth. The objectives of this review are to summarize recent findings from numerous mouse models that display growth defects in one or more cranial base synchondroses, with accompanying changes in chondrocyte cellular zones. Many of these models also display altered growth of the cranial vault and/or the facial region. FGFR, PTHrP, Ihh, BMP and Wnt/β-catenin, as well as components of primary cilia, are the major genes and signalling pathways identified in cranial base synchondroses. Together, these models are helping to uncover specific genetic influences and signalling pathways operational at the cranial base synchondroses. Many of these genes are in common with those of importance in the cranial vault and the facial skeleton, emphasizing the molecular integration of growth between the cranial base and other cranial regions. Selected models are also being utilized in testing therapeutic agents to correct defective craniofacial and cranial base growth.
Collapse
Affiliation(s)
- S R Vora
- Oral Health Sciences, Orthodontics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Sinha S, Mundy C, Bechtold T, Sgariglia F, Ibrahim MM, Billings PC, Carroll K, Koyama E, Jones KB, Pacifici M. Unsuspected osteochondroma-like outgrowths in the cranial base of Hereditary Multiple Exostoses patients and modeling and treatment with a BMP antagonist in mice. PLoS Genet 2017; 13:e1006742. [PMID: 28445472 PMCID: PMC5425227 DOI: 10.1371/journal.pgen.1006742] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/10/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Hereditary Multiple Exostoses (HME) is a rare pediatric disorder caused by loss-of-function mutations in the genes encoding the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. HME is characterized by formation of cartilaginous outgrowths-called osteochondromas- next to the growth plates of many axial and appendicular skeletal elements. Surprisingly, it is not known whether such tumors also form in endochondral elements of the craniofacial skeleton. Here, we carried out a retrospective analysis of cervical spine MRI and CT scans from 50 consecutive HME patients that included cranial skeletal images. Interestingly, nearly half of the patients displayed moderate defects or osteochondroma-like outgrowths in the cranial base and specifically in the clivus. In good correlation, osteochondromas developed in the cranial base of mutant Ext1f/f;Col2-CreER or Ext1f/f;Aggrecan-CreER mouse models of HME along the synchondrosis growth plates. Osteochondroma formation was preceded by phenotypic alteration of cells at the chondro-perichondrial boundary and was accompanied by ectopic expression of major cartilage matrix genes -collagen 2 and collagen X- within the growing ectopic masses. Because chondrogenesis requires bone morphogenetic protein (BMP) signaling, we asked whether osteochondroma formation could be blocked by a BMP signaling antagonist. Systemic administration with LDN-193189 effectively inhibited osteochondroma growth in conditional Ext1-mutant mice. In vitro studies with mouse embryo chondrogenic cells clarified the mechanisms of LDN-193189 action that turned out to include decreases in canonical BMP signaling pSMAD1/5/8 effectors but interestingly, concurrent increases in such anti-chondrogenic mechanisms as pERK1/2 and Chordin, Fgf9 and Fgf18 expression. Our study is the first to reveal that the cranial base can be affected in patients with HME and that osteochondroma formation is amenable to therapeutic drug intervention.
Collapse
Affiliation(s)
- Sayantani Sinha
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Till Bechtold
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Federica Sgariglia
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mazen M. Ibrahim
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kristen Carroll
- Shriner’s Hospital for Children, Salt Lake City, Utah, United States of America
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kevin B. Jones
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (MP); (KBJ)
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MP); (KBJ)
| |
Collapse
|
36
|
Kaucka M, Zikmund T, Tesarova M, Gyllborg D, Hellander A, Jaros J, Kaiser J, Petersen J, Szarowska B, Newton PT, Dyachuk V, Li L, Qian H, Johansson AS, Mishina Y, Currie JD, Tanaka EM, Erickson A, Dudley A, Brismar H, Southam P, Coen E, Chen M, Weinstein LS, Hampl A, Arenas E, Chagin AS, Fried K, Adameyko I. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. eLife 2017; 6. [PMID: 28414273 PMCID: PMC5417851 DOI: 10.7554/elife.25902] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale. DOI:http://dx.doi.org/10.7554/eLife.25902.001
Collapse
Affiliation(s)
- Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Daniel Gyllborg
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Hellander
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Josef Jaros
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Julian Petersen
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Bara Szarowska
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hong Qian
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, United States
| | - Joshua D Currie
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Alek Erickson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Andrew Dudley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Hjalmar Brismar
- Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | | | | | - Min Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Ales Hampl
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Ernest Arenas
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
37
|
Wei X, Hu M, Mishina Y, Liu F. Developmental Regulation of the Growth Plate and Cranial Synchondrosis. J Dent Res 2016; 95:1221-9. [PMID: 27250655 DOI: 10.1177/0022034516651823] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long bones and the cranial base are both formed through endochondral ossification. Elongation of long bones is primarily through the growth plate, which is a cartilaginous structure at the end of long bones made up of chondrocytes. Growth plate chondrocytes are organized in columns along the longitudinal axis of bone growth. The cranial base is the growth center of the neurocranium. Synchondroses, consisting of mirror-image growth plates, are critical for cranial base elongation and development. Over the last decade, considerable progress has been made in determining the roles of the parathyroid hormone-related protein, Indian hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling pathways in various aspects of skeletal development. Furthermore, recent evidence indicates the important role of the primary cilia signaling pathway in bone elongation. Here, we review the development of the growth plate and cranial synchondrosis and the regulation by the above-mentioned signaling pathways, highlighting the similarities and differences between these 2 structures.
Collapse
Affiliation(s)
- X Wei
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - M Hu
- Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - Y Mishina
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - F Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Shimo T, Matsumoto K, Takabatake K, Aoyama E, Takebe Y, Ibaragi S, Okui T, Kurio N, Takada H, Obata K, Pang P, Iwamoto M, Nagatsuka H, Sasaki A. The Role of Sonic Hedgehog Signaling in Osteoclastogenesis and Jaw Bone Destruction. PLoS One 2016; 11:e0151731. [PMID: 27007126 PMCID: PMC4805186 DOI: 10.1371/journal.pone.0151731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 03/03/2016] [Indexed: 01/28/2023] Open
Abstract
Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
- * E-mail:
| | - Kenichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Yuichiro Takebe
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Naito Kurio
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Hiroyuki Takada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Pai Pang
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Masahiro Iwamoto
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| |
Collapse
|
39
|
Nishioka T, Arima N, Kano K, Hama K, Itai E, Yukiura H, Kise R, Inoue A, Kim SH, Solnica-Krezel L, Moolenaar WH, Chun J, Aoki J. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation. Sci Rep 2016; 6:23433. [PMID: 27005960 PMCID: PMC4804234 DOI: 10.1038/srep23433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.
Collapse
Affiliation(s)
- Tatsuji Nishioka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan
| | - Naoaki Arima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan
| | - Kotaro Hama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan
| | - Eriko Itai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroshi Yukiura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan.,Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi City, Saitama 332-0012, Japan
| | - Seok-Hyung Kim
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wouter H Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA-92037, USA
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki-aza, Aoba-ku, Sendai, 980-8578, Japan.,Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004 Japan
| |
Collapse
|
40
|
Singh N, Dutka T, Reeves RH, Richtsmeier JT. Chronic up-regulation of sonic hedgehog has little effect on postnatal craniofacial morphology of euploid and trisomic mice. Dev Dyn 2015; 245:114-22. [PMID: 26509735 DOI: 10.1002/dvdy.24361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In Ts65Dn, a mouse model of Down syndrome (DS), brain and craniofacial abnormalities that parallel those in people with DS are linked to an attenuated cellular response to sonic hedgehog (SHH) signaling. If a similarly reduced response to SHH occurs in all trisomic cells, then chronic up-regulation of the pathway might have a positive effect on development in trisomic mice, resulting in amelioration of the craniofacial anomalies. RESULTS We crossed Ts65Dn with Ptch1(tm1Mps/+) mice and quantified the craniofacial morphology of Ts65Dn;Ptch(+/-) offspring to assess whether a chronic up-regulation of the SHH pathway rescued DS-related anomalies. Ts65Dn;Ptch1(+/-) mice experience a chronic increase in SHH in SHH-receptive cells due to haploinsufficiency of the pathway suppressor, Ptch1. Chronic up-regulation had minimal effect on craniofacial shape and did not correct facial abnormalities in Ts65Dn;Ptch(+/-) mice. We further compared effects of this chronic up-regulation of SHH with acute pathway stimulation in mice treated on the day of birth with a SHH pathway agonist, SAG. We found that SHH affects facial morphology differently based on chronic vs. acute postnatal pathway up-regulation. CONCLUSIONS Our findings have implications for understanding the function of SHH in craniofacial development and for the potential use of SHH-based agonists to treat DS-related abnormalities.
Collapse
Affiliation(s)
- Nandini Singh
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Tara Dutka
- Institute of Genetic Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger H Reeves
- Institute of Genetic Medicine and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
41
|
Reid SN, Ziermann JM, Gondré-Lewis MC. Genetically induced abnormal cranial development in human trisomy 18 with holoprosencephaly: comparisons with the normal tempo of osteogenic-neural development. J Anat 2015; 227:21-33. [PMID: 26018729 PMCID: PMC4475356 DOI: 10.1111/joa.12326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
Craniofacial malformations are common congenital defects caused by failed midline inductive signals. These midline defects are associated with exposure of the fetus to exogenous teratogens and with inborn genetic errors such as those found in Down, Patau, Edwards' and Smith-Lemli-Opitz syndromes. Yet, there are no studies that analyze contributions of synchronous neurocranial and neural development in these disorders. Here we present the first in-depth analysis of malformations of the basicranium of a holoprosencephalic (HPE) trisomy 18 (T18; Edwards' syndrome) fetus with synophthalmic cyclopia and alobar HPE. With a combination of traditional gross dissection and state-of-the-art computed tomography, we demonstrate the deleterious effects of T18 caused by a translocation at 18p11.31. Bony features included a single developmentally unseparated frontal bone, and complete dual absence of the anterior cranial fossa and ethmoid bone. From a superior view with the calvarium plates removed, there was direct visual access to the orbital foramen and hard palate. Both the eyes and the pituitary gland, normally protected by bony structures, were exposed in the cranial cavity and in direct contact with the brain. The middle cranial fossa was shifted anteriorly, and foramina were either missing or displaced to an abnormal location due to the absence or misplacement of its respective cranial nerve (CN). When CN development was conserved in its induction and placement, the respective foramen developed in its normal location albeit with abnormal gross anatomical features, as seen in the facial nerve (CNVII) and the internal acoustic meatus. More anteriorly localized CNs and their foramina were absent or heavily disrupted compared with posterior ones. The severe malformations exhibited in the cranial fossae, orbital region, pituitary gland and sella turcica highlight the crucial involvement of transcription factors such as TGIF, which is located on chromosome 18 and contributes to neural patterning, in the proper development of neural and cranial structures. Our study of a T18 specimen emphasizes the intricate interplay between bone and brain development in midline craniofacial abnormalities in general.
Collapse
Affiliation(s)
- Shaina N Reid
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of MedicineWashington, DC, USA
| | - Janine M Ziermann
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of MedicineWashington, DC, USA
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of MedicineWashington, DC, USA
| |
Collapse
|
42
|
Rot C, Stern T, Blecher R, Friesem B, Zelzer E. A mechanical Jack-like Mechanism drives spontaneous fracture healing in neonatal mice. Dev Cell 2015; 31:159-70. [PMID: 25373776 DOI: 10.1016/j.devcel.2014.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/22/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Treatment of fractured bones involves correction of displacement or angulation, known as reduction. However, angulated long-bone fractures in infants often heal and regain proper morphology spontaneously, without reduction. To study the mechanism underlying spontaneous regeneration of fractured bones, we left humeral fractures induced in newborn mice unstabilized, and rapid realignment of initially angulated bones was seen. This realignment was surprisingly not mediated by bone remodeling, but instead involved substantial movement of the two fragments prior to callus ossification. Analysis of gene expression profiles, cell proliferation, and bone growth revealed the formation of a functional, bidirectional growth plate at the concave side of the fracture. This growth plate acts like a mechanical jack, generating opposing forces that straighten the two fragments. Finally, we show that muscle force is important in this process, as blocking muscle contraction disrupts growth plate formation, leading to premature callus ossification and failed reduction.
Collapse
Affiliation(s)
- Chagai Rot
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Ronen Blecher
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Ben Friesem
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel.
| |
Collapse
|
43
|
Singh N, Dutka T, Devenney BM, Kawasaki K, Reeves RH, Richtsmeier JT. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology. Dis Model Mech 2014; 8:271-9. [PMID: 25540129 PMCID: PMC4348564 DOI: 10.1242/dmm.017889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH pathway (SAG) normalizes cerebellar morphology and restores some cognitive deficits, suggesting a possible therapeutic application of SAG for treating the cognitive impairments of DS. Although the beneficial effects on the cerebellum are compelling, inappropriate activation of the HH pathway causes anomalies elsewhere in the head, particularly in the formation and patterning of the craniofacial skeleton. To determine whether an acute treatment of SAG has an effect on craniofacial morphology, we quantitatively analyzed the cranial form of adult euploid and Ts65Dn mice that were injected with either SAG or vehicle at birth. We found significant deformation of adult craniofacial shape in some animals that had received SAG at birth. The most pronounced differences between the treated and untreated mice were in the midline structures of the facial skeleton. The SAG-driven craniofacial dysmorphogenesis was dose-dependent and possibly incompletely penetrant at lower concentrations. Our findings illustrate that activation of HH signaling, even with an acute postnatal stimulation, can lead to localized dysmorphology of the skull by generating modular shape changes in the facial skeleton. These observations have important implications for translating HH-agonist-based treatments for DS.
Collapse
Affiliation(s)
- Nandini Singh
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tara Dutka
- Johns Hopkins University School of Medicine, Institute of Genetic Medicine, Baltimore, MD 21287, USA
| | - Benjamin M Devenney
- Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, MD 21205, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Roger H Reeves
- Johns Hopkins University School of Medicine, Institute of Genetic Medicine, Baltimore, MD 21287, USA Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, MD 21205, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
44
|
Nguyen J, Alliston T. Calluses flex their muscles to align bone fragments during fracture repair. Dev Cell 2014; 31:137-8. [PMID: 25373771 PMCID: PMC4492116 DOI: 10.1016/j.devcel.2014.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neonatal animals spontaneously reduce fractures, yet the mechanical forces influencing this process are poorly understood. In this issue of Developmental Cell, Rot et al. (2014) show that muscle and the fracture callus actively position fractured neonatal bone fragments to restore their alignment, highlighting the multifaceted roles of mechanical cues in skeletal regeneration.
Collapse
Affiliation(s)
- Jacqueline Nguyen
- Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Tamara Alliston
- Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Yakkioui Y, van Overbeeke JJ, Santegoeds R, van Engeland M, Temel Y. Chordoma: the entity. Biochim Biophys Acta Rev Cancer 2014; 1846:655-69. [PMID: 25193090 DOI: 10.1016/j.bbcan.2014.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023]
Abstract
Chordomas are malignant tumors of the axial skeleton, characterized by their locally invasive and slow but aggressive growth. These neoplasms are presumed to be derived from notochordal remnants with a molecular alteration preceding their malignant transformation. As these tumors are most frequently observed on the skull base and sacrum, patients suffering from a chordoma present with debilitating neurological disease, and have an overall 5-year survival rate of 65%. Surgical resection with adjuvant radiotherapy is the first-choice treatment modality in these patients, since chordomas are resistant to conventional chemotherapy. Even so, management of chordomas can be challenging, as chordoma patients often present with recurrent disease. Recent advances in the understanding of the molecular events that contribute to the development of chordomas are promising; the most novel finding being the identification of brachyury in the disease process. Here we present an overview of the current paradigms and summarize relevant research findings.
Collapse
Affiliation(s)
- Youssef Yakkioui
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Jacobus J van Overbeeke
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Remco Santegoeds
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
46
|
Abstract
INTRODUCTION The skull base represents a central and complex bone structure of the skull and forms the floor of the cranial cavity on which the brain lies. Anatomical knowledge of this particular region is important for understanding several pathologic conditions as well as for planning surgical procedures. Embryology of the cranial base is of great interest due to its pronounced impact on the development of adjacent regions including the brain, neck, and craniofacial skeleton. MATERIALS AND METHODS Information from human and comparative anatomy, anthropology, embryology, surgery, and computed modelling was integrated to provide a perspective to interpret skull base formation and variability within the cranial functional and structural system. RESULTS AND CONCLUSIONS The skull base undergoes an elaborate sequence of development stages and represents a key player in skull, face and brain development. Furthering our holistic understanding of the embryology of the skull base promises to expand our knowledge and enhance our ability to treat associated anomalies.
Collapse
|
47
|
Romereim SM, Conoan NH, Chen B, Dudley AT. A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage. Development 2014; 141:2085-95. [PMID: 24764078 DOI: 10.1242/dev.105452] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The architecture and morphogenetic properties of tissues are founded in the tissue-specific regulation of cell behaviors. In endochondral bones, the growth plate cartilage promotes bone elongation via regulated chondrocyte maturation within an ordered, three-dimensional cell array. A key event in the process that generates this cell array is the transformation of disordered resting chondrocytes into clonal columns of discoid proliferative cells aligned with the primary growth vector. Previous analysis showed that column-forming chondrocytes display planar cell divisions, and the resulting daughter cells rearrange by ∼90° to align with the lengthening column. However, these previous studies provided limited information about the mechanisms underlying this dynamic process. Here we present new mechanistic insights generated by application of a novel time-lapse confocal microscopy method along with immunofluorescence and electron microscopy. We show that, during cell division, daughter chondrocytes establish a cell-cell adhesion surface enriched in cadherins and β-catenin. Rearrangement into columns occurs concomitant with expansion of this adhesion surface in a process more similar to cell spreading than to migration. Column formation requires cell-cell adhesion, as reducing cadherin binding via chelation of extracellular calcium inhibits chondrocyte rearrangement. Importantly, physical indicators of cell polarity, such as cell body alignment, are not prerequisites for oriented cell behavior. Our results support a model in which regulation of adhesive surface dynamics and cortical tension by extrinsic signaling modifies the thermodynamic landscape to promote organization of daughter cells in the context of the three-dimensional growth plate tissue.
Collapse
Affiliation(s)
- Sarah M Romereim
- Department of Genetics, Cell Biology, and Anatomy and the Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, 985965 Nebraska Medical Center, Omaha, NE 68198-5965, USA
| | | | | | | |
Collapse
|
48
|
Ishizuka Y, Shibukawa Y, Nagayama M, Decker R, Kinumatsu T, Saito A, Pacifici M, Koyama E. TMJ degeneration in SAMP8 mice is accompanied by deranged Ihh signaling. J Dent Res 2014; 93:281-7. [PMID: 24453178 DOI: 10.1177/0022034513519649] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The temporomandibular joint (TMJ) functions as a load-bearing diarthrodial joint during mastication, and its continuous use and stress can lead to degeneration over age. Using senescence-accelerated (SAMP8) mice that develop early osteoarthritis-like changes in synovial joints at high frequency, we analyzed possible molecular mechanisms of TMJ degeneration and tested whether and how malocclusion may accelerate it. Condylar articular cartilage in young SAMP8 mice displayed early-onset osteoarthritic changes that included reductions in superficial/chondroprogenitor cell number, proteoglycan/collagen content, and Indian hedgehog (Ihh)-expressing chondrocytes. Following malocclusion induced by tooth milling, the SAMP8 condyles became morphologically defective, displayed even lower proteoglycan levels, and underwent abnormal chondrocyte maturation compared with malocclusion-treated condyles in wild-type mice. Malocclusion also induced faster progression of pathologic changes with increasing age in SAMP8 condyles as indicated by decreased PCNA-positive proliferating chondroprogenitors and increased TUNEL-positive apoptotic cells. These changes were accompanied by steeper reductions in Ihh signaling and by expression of matrix metalloproteinase 13 at the chondro-osseous junction in SAMP8 articular cartilage. In sum, we show for the first time that precocious TMJ degeneration in SAMP8 mice is accompanied by--and possibly attributable to--altered Ihh signaling and that occlusal dysfunction accelerates progression toward degenerative TMJ disease in this model.
Collapse
Affiliation(s)
- Y Ishizuka
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Feng W, Choi I, Clouthier DE, Niswander L, Williams T. The Ptch1(DL) mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome-associated skeletal defects. Genesis 2013; 51:677-89. [PMID: 23897749 DOI: 10.1002/dvg.22416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022]
Abstract
Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. By using an N-ethyl-N-nitrosourea-based screen for recessive mutations affecting craniofacial anatomy, we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. By using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1(DL) gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis.
Collapse
Affiliation(s)
- Weiguo Feng
- Department of Craniofacial Biology and Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | |
Collapse
|
50
|
Pan A, Chang L, Nguyen A, James AW. A review of hedgehog signaling in cranial bone development. Front Physiol 2013; 4:61. [PMID: 23565096 PMCID: PMC3613593 DOI: 10.3389/fphys.2013.00061] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/13/2013] [Indexed: 12/20/2022] Open
Abstract
During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development.
Collapse
Affiliation(s)
- Angel Pan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|