1
|
Lin C, Liu S, Ruan N, Chen J, Chen Y, Zhang Y, Zhang J. Cleft Palate Induced by Augmented Fibroblast Growth Factor-9 Signaling in Cranial Neural Crest Cells in Mice. Stem Cells Dev 2024; 33:562-573. [PMID: 39119818 DOI: 10.1089/scd.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Although enhanced fibroblast growth factor (FGF) signaling has been demonstrated to be crucial in many cases of syndromic cleft palate caused by tongue malposition in humans, animal models that recapitulate this phenotype are limited, and the precise mechanisms remain elusive. Mutations in FGF9 with the effect of either loss- or gain-of-function effects have been identified to be associated with cleft palate in humans. Here, we generated a mouse model with a transgenic Fgf9 allele specifically activated in cranial neural crest cells, aiming to elucidate the gain-of-function effects of Fgf9 in palatogenesis. We observed cleft palate with 100% penetrance in mutant mice. Further analysis demonstrated that no inherent defects in the morphogenic competence of palatal shelves could be found, but a passively lifted tongue prevented the elevation of palatal shelves, leading to the cleft palate. This tongue malposition was induced by posterior spatial confinement that was exerted by temporomandibular joint (TMJ) dysplasia characterized by a reduction in Sox9+ progenitors within the condyle and a structural decrease in the posterior dimension of the lower jaw. Our findings highlight the critical role of excessive FGF signaling in disrupting spatial coordination during palate development and suggest a potential association between palatal shelf elevation and early TMJ development.
Collapse
Affiliation(s)
- Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Shiyu Liu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Ningsheng Ruan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Jian Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Chinese Institute for Brain Research, Beijing, P.R. China
| |
Collapse
|
2
|
Tang L, Chen M, Wu M, Liang H, Ge H, Ma Y, Shen Y, Lu S, Shen C, Zhang H, Zhang C, Wang Z. Fgf9 promotes incisor dental epithelial stem cell survival and enamel formation. Stem Cell Res Ther 2024; 15:293. [PMID: 39256850 PMCID: PMC11389439 DOI: 10.1186/s13287-024-03894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Understanding the role of cytokines in tooth development is critical for advancing dental tissue engineering. Fibroblast growth factor 9 (FGF9) is the only FGF consistently expressed throughout dental epithelial tissue, from the initiation of tooth bud formation to tooth maturation. However, mice lacking Fgf9 (Fgf9-/-) surprisingly show no obvious abnormalities in tooth development, suggesting potential compensation by other FGFs. Here we report findings from an Fgf9S99N mutation mouse model, a loss-of-function mutation with a dominant negative effect. Our study reveals that Fgf9 is crucial for dental epithelial stem cell (DESC) survival and enamel formation. METHODS To dissect the role of Fgf9 in tooth development, we performed the micro-CT, histomorphological analysis and gene expression assay in mice and embryos with S99N mutation. In addition, we assessed the effect of FGF9 on the DESC survival and dental epithelial differentiation by DESC sphere formation assay and tooth explant culture. Cell/tissue culture methods, gene expression analysis, specific inhibitors, and antibody blockage analysis were employed to explore how Fgf9 regulates enamel differentiation and DESC survival through both direct and indirect mechanisms. RESULTS The Fgf9S99N mutation in mice led to reduced ameloblasts, impaired enamel formation, and increased apoptosis in the cervical loop (CL). DESC sphere culture experiments revealed that FGF9 facilitated DESC survival via activating ERK/CREB signaling, without affecting cell proliferation. Furthermore, in vitro tissue culture experiments demonstrated that FGF9 promoted enamel formation in a manner dependent on the presence of mesenchyme. Interestingly, FGF9 stimulation inhibited enamel formation in isolated enamel epithelia and DESC spheres. Further investigation revealed that FGF9 supports DESC survival and promotes amelogenesis by stimulating the secretion of FGF3 and FGF10 in dental mesenchymal cells via the MAPK/ERK signaling pathway. CONCLUSIONS Our study demonstrates that Fgf9 is essential for DESC survival and enamel formation. Fgf9 performs as a dual-directional regulator of the dental enamel epithelium, not only inhibiting DESC differentiation into ameloblasts to preserve the stemness of DESC, but also promoting ameloblast differentiation through epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Mingmei Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to SJTUSM, Shanghai, China
| | - Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Yan Ma
- Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China
| | - Chenping Zhang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, P.R. China.
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui- Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Building #17, Shanghai, 200025, P.R. China.
| |
Collapse
|
3
|
Yin H, Staples SCR, Pickering JG. The fundamentals of fibroblast growth factor 9. Differentiation 2024; 139:100731. [PMID: 37783652 DOI: 10.1016/j.diff.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sabrina C R Staples
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Biochemistry, Western University, London, Canada; Department of Medicine, Western University, London, Canada; London Health Sciences Centre, London, Canada.
| |
Collapse
|
4
|
Dlugosova S, Spoutil F, Madureira Trufen CE, Melike Ogan B, Prochazkova M, Fedosieieva O, Nickl P, Aranaz Novaliches G, Sedlacek R, Prochazka J. Skeletal dysmorphology and mineralization defects in Fgf20 KO mice. Front Endocrinol (Lausanne) 2024; 15:1286365. [PMID: 39129916 PMCID: PMC11310068 DOI: 10.3389/fendo.2024.1286365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. Methods The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. Results The bone phenotype could be detected especially in the area of the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. Discussion Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.
Collapse
Affiliation(s)
- Sylvie Dlugosova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | | | - Betul Melike Ogan
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Michaela Prochazkova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Olha Fedosieieva
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Nickl
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Goretti Aranaz Novaliches
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
5
|
Chen M, Liang H, Wu M, Ge H, Ma Y, Shen Y, Lu S, Shen C, Zhang H, Wang Z, Tang L. Fgf9 regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis by PI3K/AKT/Hippo and MEK/ERK signaling. Int J Biol Sci 2024; 20:3461-3479. [PMID: 38993574 PMCID: PMC11234224 DOI: 10.7150/ijbs.94863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024] Open
Abstract
Bone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear. In this study, we discovered that fibroblast growth factor 9 (Fgf9), a cytokine expressed in the bone marrow niche, controlled bone-fat balance by influencing the cell fate of BMSCs. Histomorphology and cytodifferentiation analysis showed that Fgf9 loss-of-function mutation (S99N) notably inhibited bone marrow adipose tissue (BMAT) formation and alleviated ovariectomy-induced bone loss and BMAT accumulation in adult mice. Furthermore, in vitro and in vivo investigations demonstrated that Fgf9 altered the differentiation potential of BMSCs, shifting from osteogenesis to adipogenesis at the early stages of cell commitment. Transcriptomic and gene expression analyses demonstrated that FGF9 upregulated the expression of adipogenic genes while downregulating osteogenic gene expression at both mRNA and protein levels. Mechanistic studies revealed that FGF9, through FGFR1, promoted adipogenic gene expression via PI3K/AKT/Hippo pathways and inhibited osteogenic gene expression via MAPK/ERK pathway. This study underscores the crucial role of Fgf9 as a cytokine regulating the bone-fat balance in adult bone, suggesting that FGF9 is a potentially therapeutic target in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mingmei Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Ma
- Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
6
|
Dutra EH, Chen PJ, Kalajzic Z, Wadhwa S, Hurley M, Yadav S. FGF Ligands and Receptors in Osteochondral Tissues of the Temporomandibular Joint in Young and Aging Mice. Cartilage 2024; 15:195-199. [PMID: 37098717 PMCID: PMC11368896 DOI: 10.1177/19476035231163691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 04/27/2023] Open
Abstract
OBJECTIVE Fibroblast growth factors (FGFs) are a family of 22 proteins and 4 FGF receptors (FGFRs) that are crucial elements for normal development. The contribution of different FGFs and FGFRs for the homeostasis or disease of the cartilage from the mandibular condyle is unknown. Therefore, our goal was to characterize age-related alterations in the protein expression of FGF ligands and FGFRs in the mandibular condyle of mice. METHOD Mandibular condyles of 1-, 6-, 12-, 18-, and 24-month-old C57BL/6J male mice (5 per group) were collected and histologically sectioned. Immunofluorescence for FGFs that have been reported to be relevant for chondrogenesis (FGF2, FGF8, FGF9, FGF18) as well as the activated/phosphorylated FGFRs (pFGFR1, pFGFR3) was carried out. RESULTS FGF2 and FGF8 were strongly expressed in the cartilage and subchondral bone of 1-month-old mice, but the expression shifted mainly to the subchondral bone as mice aged. FGF18 and pFGFR3 expression was limited to the cartilage of 1-month-old mice only. Meanwhile, pFGFR1 and FGF9 were mostly limited to the cartilage with a significant increase in expression as mice aged. CONCLUSIONS Our results indicate FGF2 and FGF8 are important growth factors for mandibular condylar cartilage growth in young mice but with limited role in the cartilage of older mice. In addition, the increased expression of pFGFR1 and FGF9 and the decreased expression of pFGFR3 and FGF18 as mice aged suggest the association of these factors with aging and osteoarthritis of the cartilage of the mandibular condyle.
Collapse
Affiliation(s)
| | - Po-Jung Chen
- Department of Growth and Development, University of Nebraska,
Lincoln, NE, USA
| | - Zana Kalajzic
- Department of Oral Health and Diagnostic Sciences, UConn Health, Farmington, CT, USA
| | - Sunil Wadhwa
- Division of Orthodontics, Columbia College of Dental Medicine, New York, NY, USA
| | - Marja Hurley
- Health Career Opportunity Programs, UConn Health, Farmington, CT, USA
| | - Sumit Yadav
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| |
Collapse
|
7
|
Wang H, Qi LL, Shema C, Jiang KY, Ren P, Wang H, Wang L. Advances in the role and mechanism of fibroblasts in fracture healing. Front Endocrinol (Lausanne) 2024; 15:1350958. [PMID: 38469138 PMCID: PMC10925620 DOI: 10.3389/fendo.2024.1350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
With the development of social population ageing, bone fracture has become a global public health problem due to its high morbidity, disability and mortality. Fracture healing is a complex phenomenon involving the coordinated participation of immigration, differentiation and proliferation of inflammatory cells, angioblasts, fibroblasts, chondroblasts and osteoblasts which synthesize and release bioactive substances of extracellular matrix components, Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. Fibroblasts play an important role in the process of fracture healing. However, it is not clear how the growth factors and extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts in healing process. Therefore, this article focuses on the role of fibroblasts in the process of fracture healing and mechanisms of research progress.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-li Qi
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- International Education College of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kui-ying Jiang
- National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, China
| | - Ping Ren
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - He Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Chang CC, Takada YK, Cheng CW, Maekawa Y, Mori S, Takada Y. FGF9, a Potent Mitogen, Is a New Ligand for Integrin αvβ3, and the FGF9 Mutant Defective in Integrin Binding Acts as an Antagonist. Cells 2024; 13:307. [PMID: 38391921 PMCID: PMC10887216 DOI: 10.3390/cells13040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
FGF9 is a potent mitogen and survival factor, but FGF9 protein levels are generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvβ3, and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here, we show that docking simulation of the interaction between FGF9 and αvβ3 predicted that FGF9 binds to the classical ligand-binding site of αvβ3. We show that FGF9 bound to integrin αvβ3 and generated FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.
Collapse
Affiliation(s)
- Chih-Chieh Chang
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA 95817, USA; (C.-C.C.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yoko K. Takada
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA 95817, USA; (C.-C.C.); (Y.K.T.)
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yukina Maekawa
- Department of Medical Technology, Faculty of Health Science, Morinomiya University of Medical Sciences, Osaka 536-0025, Japan; (Y.M.); (S.M.)
| | - Seiji Mori
- Department of Medical Technology, Faculty of Health Science, Morinomiya University of Medical Sciences, Osaka 536-0025, Japan; (Y.M.); (S.M.)
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshikazu Takada
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA 95817, USA; (C.-C.C.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Chang CC, Takada YK, Cheng CW, Maekawa Y, Mori S, Takada Y. FGF9, a potent mitogen, is a new ligand for integrin αvβ3, and the FGF9 mutant defective in integrin binding acts as an antagonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569657. [PMID: 38076804 PMCID: PMC10705552 DOI: 10.1101/2023.12.01.569657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
FGF9 is a potent mitogen and survival factor, but FGF9 protein level is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvβ3 and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR, and suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here we show that docking simulation of interaction between FGF9 and αvβ3 predicted that FGF9 binds to the classical ligand-binding site of αvβ3. We showed that FGF9 actually bound to integrin αvβ3, and generated an FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis induced by WT FGF9 and suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.
Collapse
|
10
|
Dlamini SB, Saunders CJ, Laguette MJN, Gibbon A, Gamieldien J, Collins M, September AV. Application of an in silico approach identifies a genetic locus within ITGB2, and its interactions with HSPG2 and FGF9, to be associated with anterior cruciate ligament rupture risk. Eur J Sport Sci 2023; 23:2098-2108. [PMID: 36680346 DOI: 10.1080/17461391.2023.2171906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We developed a Biomedical Knowledge Graph model that is phenotype and biological function-aware through integrating knowledge from multiple domains in a Neo4j, graph database. All known human genes were assessed through the model to identify potential new risk genes for anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritised and explored in a case-control study comparing participants with ACL ruptures (ACL-R), including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured control individuals (CON). After gene filtering, 3376 genes, including 411 genes identified through previous whole exome sequencing, were found to be potentially linked to AT and ACL ruptures. Four variants were prioritised: HSPG2:rs2291826A/G, HSPG2:rs2291827G/A, ITGB2:rs2230528C/T and FGF9:rs2274296C/T. The rs2230528 CC genotype was over-represented in the CON group compared to ACL-R (p < 0.001) and ACL-NON (p < 0.001) and the TT genotype and T allele were over-represented in the ACL-R group and ACL-NON compared to CON (p < 0.001) group. Several significant differences in distributions were noted for the gene-gene interactions: (HSPG2:rs2291826, rs2291827 and ITGB2:rs2230528) and (ITGB2:rs2230528 and FGF9:rs2297429). This study substantiates the efficiency of using a prior knowledge-driven in silico approach to identify candidate genes linked to tendon and ACL injuries. Our biomedical knowledge graph identified and, with further testing, highlighted novel associations of the ITGB2 gene which has not been explored in a genetic case control association study, with ACL rupture risk. We thus recommend a multistep approach including bioinformatics in conjunction with next generation sequencing technology to improve the discovery potential of genomics technologies in musculoskeletal soft tissue injuries.HighlightsA biomedical knowledge graph was modelled for musculoskeletal soft tissue injuries to efficiently identify candidate genes for genetic susceptibility analyses.The biomedical knowledge graph and sequencing data identified potential biologically relevant variants to explore susceptibility to common tendon and ligament injuries. Specifically genetic variants within the ITGB2 and FGF9 genes were associated with ACL risk.Novel allele combinations (HSPG2-ITGB2 and ITGB2-FGF9) showcase the potential effect of ITGB2 in influencing risk of ACL rupture.
Collapse
Affiliation(s)
- Senanile B Dlamini
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Health through Physical Activity Lifestyle and Sport Research Centre (HPALS), Newlands, South Africa
| | - Colleen J Saunders
- Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Mary-Jessica N Laguette
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Health through Physical Activity Lifestyle and Sport Research Centre (HPALS), Newlands, South Africa
| | - Andrea Gibbon
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Junaid Gamieldien
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Malcolm Collins
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Health through Physical Activity Lifestyle and Sport Research Centre (HPALS), Newlands, South Africa
- Department of Human Biology, International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, University of Cape Town, Newlands, South Africa
| | - Alison V September
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Health through Physical Activity Lifestyle and Sport Research Centre (HPALS), Newlands, South Africa
- Department of Human Biology, International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, University of Cape Town, Newlands, South Africa
| |
Collapse
|
11
|
Wernlé KK, Sonnenfelt MA, Leek CC, Ganji E, Sullivan AL, Offutt C, Shuff J, Ornitz DM, Killian ML. Loss of Fgfr1 and Fgfr2 in Scleraxis-lineage cells leads to enlarged bone eminences and attachment cell death. Dev Dyn 2023; 252:1180-1188. [PMID: 37212424 PMCID: PMC10524747 DOI: 10.1002/dvdy.600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Tendons and ligaments attach to bone are essential for joint mobility and stability in vertebrates. Tendon and ligament attachments (ie, entheses) are found at bony protrusions (ie, eminences), and the shape and size of these protrusions depend on both mechanical forces and cellular cues during growth. Tendon eminences also contribute to mechanical leverage for skeletal muscle. Fibroblast growth factor receptor (FGFR) signaling plays a critical role in bone development, and Fgfr1 and Fgfr2 are highly expressed in the perichondrium and periosteum of bone where entheses can be found. RESULTS AND CONCLUSIONS We used transgenic mice for combinatorial knockout of Fgfr1 and/or Fgfr2 in tendon/attachment progenitors (ScxCre) and measured eminence size and shape. Conditional deletion of both, but not individual, Fgfr1 and Fgfr2 in Scx progenitors led to enlarged eminences in the postnatal skeleton and shortening of long bones. In addition, Fgfr1/Fgfr2 double conditional knockout mice had more variation collagen fibril size in tendon, decreased tibial slope, and increased cell death at ligament attachments. These findings identify a role for FGFR signaling in regulating growth and maintenance of tendon/ligament attachments and the size and shape of bony eminences.
Collapse
Affiliation(s)
- Kendra K. Wernlé
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - Michael A. Sonnenfelt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Connor C. Leek
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| | - Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
- Department of Mechanical Engineering, University of Delaware, 130 Academy St, Newark, DE 19716
| | - Anna Lia Sullivan
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Claudia Offutt
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri, 63110
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, 150 Academy St, Newark, Delaware, 19716
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Colombini A, Doro G, Ragni E, Forte L, de Girolamo L, Zerbinati F. Treatment with CR500® improves algofunctional scores in patients with knee osteoarthritis: a post-market confirmatory interventional, single arm clinical investigation. BMC Musculoskelet Disord 2023; 24:647. [PMID: 37573322 PMCID: PMC10422714 DOI: 10.1186/s12891-023-06754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a progressive and degenerative condition. Several pharmacological and non-pharmacological treatments are able to improve the OA symptoms and the structural characteristics of the affected joints. Among these, infiltrative therapy with hyaluronic acid (HA) is the most used and consolidated procedure for the pain management. The addition of skin conditioning peptides to HA promotes the cartilage remodeling processes and a better permeation of the HA-based gel containing a peptide mixture, CR500®. Furthermore, the topic route of administration is convenient over the routinely used intra-articular injective procedures. In this study, the effectiveness of CR500® was evaluated in terms of improvement of the algo-functional symptoms related to unilateral knee OA. METHODS 38 mild and moderate OA patients were enrolled at a screening visit (V-1), treated at baseline visit (V1), and then continued the topical application of CR500® twice a week for 4 weeks, and followed-up for 3 visits (V2-V4) from week 2 to 4. Lequesne Knee Index (LKI) and Knee injury and Osteoarthritis Outcome Score (KOOS) were collected. Synovial fluid was collected and used for the quantification of neoepitope of type II collagen (C2C), C-terminal telopeptide of type II collagen (CTX-II), type II collagen propeptide (CPII), tumor necrosis factor alpha (TNFα) and HA. The expression of CD11c and CD206 was evaluated on cell pellets. RESULTS Three patients were excluded, thus 35 patients were included in the analysis. The treatment with CR500® was safe and well tolerated, with 7.9% patients had mild adverse events, not related to the device. The LKI total score showed a significant decrease from V1 to V4. KOOS score also showed a significant improvement of patient condition at V2, V3 and V4 in comparison with V1 for all subscales, except for KOOS sport subscale which improved only from V3. At V1 a negative correlation among KOOS pain subscale values and C2C, CPII and TNFα levels was observed, as well as a positive correlation between KOOS pain subscale and CD11c/CD206 ratio. CONCLUSION CR500® is safe and appear to be effective in improving pain and function in OA patients during the 4 weeks of treatment. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT05661162. This trial was registered on 22/12/2022.
Collapse
Affiliation(s)
- Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy
| | - Gianluca Doro
- Orthopedics and Traumatology Department, Humanitas Mater Domini, Varese, Italy
| | - Enrico Ragni
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy
| | | | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy.
| | - Fabio Zerbinati
- Orthopedics and Traumatology Department, Humanitas Mater Domini, Varese, Italy
| |
Collapse
|
13
|
Ribatti D, d’Amati A. Bone angiocrine factors. Front Cell Dev Biol 2023; 11:1244372. [PMID: 37601109 PMCID: PMC10435078 DOI: 10.3389/fcell.2023.1244372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Angiogenesis in the bone is unique and involves distinctive signals. Whether they are created through intramembranous ossification or endochondral ossification, bones are highly vascularized tissues. Long bones undergo a sequence of processes known as endochondral osteogenesis. Angiogenesis occurs during the creation of endochondral bone and is mediated by a variety of cells and factors. An initially avascular cartilage template is invaded by blood vessels from the nearby subchondral bone thanks to the secreted angiogenic chemicals by hypertrophic chondrocytes. Vascular endothelial growth factor (VEGF), one of several angiogenic molecules, is a significant regulator of blood vessel invasion, cartilage remodeling, and ossification of freshly created bone matrix; chondrocyte proliferation and hypertrophy are facilitated by the production of VEGFA and VEGF receptor-2 (VEGFR-2), which is stimulated by fibroblast growth factors (FGFs). NOTCH signaling controls blood capillaries formation during bone maturation and regeneration, while hypoxia-inducible factor 1 alpha (HIF1-a) promotes chondrocyte development by switching to anaerobic metabolism. To control skeletal remodeling and repair, osteogenic cells release angiogenic factors, whereas endothelial cells secrete angiocrine factors. One of the better instances of functional blood vessels specialization for certain organs is the skeletal system. A subpopulation of capillary endothelial cells in the bone regulate the activity of osteoprogenitor cells, which in turn affects bone formation during development and adult homeostasis. Angiogenesis and osteogenesis are strictly connected, and their crosstalk is essential to guarantee bone formation and to maintain bone homeostasis. Additionally, pathological processes including inflammation, cancer, and aging include both bone endothelial cells and angiocrine factors. Therefore, the study and understanding of these mechanisms is fundamental, because molecules and factors involved may represent key targets for novel and advanced therapies.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari Medical School, Bari, Italy
| | | |
Collapse
|
14
|
Shigley C, Trivedi J, Meghani O, Owens BD, Jayasuriya CT. Suppressing Chondrocyte Hypertrophy to Build Better Cartilage. Bioengineering (Basel) 2023; 10:741. [PMID: 37370672 DOI: 10.3390/bioengineering10060741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Current clinical strategies for restoring cartilage defects do not adequately consider taking the necessary steps to prevent the formation of hypertrophic tissue at injury sites. Chondrocyte hypertrophy inevitably causes both macroscopic and microscopic level changes in cartilage, resulting in adverse long-term outcomes following attempted restoration. Repairing/restoring articular cartilage while minimizing the risk of hypertrophic neo tissue formation represents an unmet clinical challenge. Previous investigations have extensively identified and characterized the biological mechanisms that regulate cartilage hypertrophy with preclinical studies now beginning to leverage this knowledge to help build better cartilage. In this comprehensive article, we will provide a summary of these biological mechanisms and systematically review the most cutting-edge strategies for circumventing this pathological hallmark of osteoarthritis.
Collapse
Affiliation(s)
- Christian Shigley
- The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jay Trivedi
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Ozair Meghani
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Sports Surgery, Department of Orthopaedic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
15
|
Singhal S, Garrett SH, Somji S, Schaefer K, Bansal B, Gill JS, Singhal SK, Sens DA. Arsenite Exposure to Human RPCs (HRTPT) Produces a Reversible Epithelial Mesenchymal Transition (EMT): In-Vitro and In-Silico Study. Int J Mol Sci 2023; 24:5092. [PMID: 36982180 PMCID: PMC10048886 DOI: 10.3390/ijms24065092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The human kidney is known to possess renal progenitor cells (RPCs) that can assist in the repair of acute tubular injury. The RPCs are sparsely located as single cells throughout the kidney. We recently generated an immortalized human renal progenitor cell line (HRTPT) that co-expresses PROM1/CD24 and expresses features expected on RPCs. This included the ability to form nephrospheres, differentiate on the surface of Matrigel, and undergo adipogenic, neurogenic, and osteogenic differentiation. These cells were used in the present study to determine how the cells would respond when exposed to nephrotoxin. Inorganic arsenite (iAs) was chosen as the nephrotoxin since the kidney is susceptible to this toxin and there is evidence of its involvement in renal disease. Gene expression profiles when the cells were exposed to iAs for 3, 8, and 10 passages (subcultured at 1:3 ratio) identified a shift from the control unexposed cells. The cells exposed to iAs for eight passages were then referred with growth media containing no iAs and within two passages the cells returned to an epithelial morphology with strong agreement in differential gene expression between control and cells recovered from iAs exposure. Results show within three serial passages of the cells exposed to iAs there was a shift in morphology from an epithelial to a mesenchymal phenotype. EMT was suggested based on an increase in known mesenchymal markers. We found RPCs can undergo EMT when exposed to a nephrotoxin and undergo MET when the agent is removed from the growth media.
Collapse
Affiliation(s)
- Sonalika Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Kalli Schaefer
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Benu Bansal
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jappreet Singh Gill
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
16
|
Ganji E, Leek C, Duncan W, Patra D, Ornitz DM, Killian ML. Targeted deletion of Fgf9 in tendon disrupts mineralization of the developing enthesis. FASEB J 2023; 37:e22777. [PMID: 36734881 PMCID: PMC10108073 DOI: 10.1096/fj.202201614r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
The enthesis is a transitional tissue between tendon and bone that matures postnatally. The development and maturation of the enthesis involve cellular processes likened to an arrested growth plate. In this study, we explored the role of fibroblast growth factor 9 (Fgf9), a known regulator of chondrogenesis and vascularization during bone development, on the structure and function of the postnatal enthesis. First, we confirmed spatial expression of Fgf9 in the tendon and enthesis using in situ hybridization. We then used Cre-lox recombinase to conditionally knockout Fgf9 in mouse tendon and enthesis (Scx-Cre) and characterized enthesis morphology as well as mechanical properties in Fgf9ScxCre and wild-type (WT) entheses. Fgf9ScxCre mice had smaller calcaneal and humeral apophyses, thinner cortical bone at the attachment, increased cellularity, and reduced failure load in mature entheses compared to WT littermates. During postnatal development, we found reduced chondrocyte hypertrophy and disrupted type X collagen (Col X) in Fgf9ScxCre entheses. These findings support that tendon-derived Fgf9 is important for functional development of the enthesis, including its postnatal mineralization. Our findings suggest the potential role of FGF signaling during enthesis development.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Mechanical Engineering, University of Delaware, Delaware, Newark, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, IL, Urbana, United States.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Connor Leek
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - William Duncan
- Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| |
Collapse
|
17
|
Fibroblast Growth Factors and Cellular Communication Network Factors: Intimate Interplay by the Founding Members in Cartilage. Int J Mol Sci 2022; 23:ijms23158592. [PMID: 35955724 PMCID: PMC9369280 DOI: 10.3390/ijms23158592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development.
Collapse
|
18
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
19
|
Growth and mechanobiology of the tendon-bone enthesis. Semin Cell Dev Biol 2022; 123:64-73. [PMID: 34362655 PMCID: PMC8810906 DOI: 10.1016/j.semcdb.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone. In this review, we focus on emerging areas in enthesis development related to its structure, function, and mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes that influence the formation and adaptation of this important transitional tissue.
Collapse
|
20
|
Abstract
Hypertrophic chondrocytes are the master regulators of endochondral ossification; however, their ultimate cell fates cells remain largely elusive due to their transient nature. Historically, hypertrophic chondrocytes have been considered as the terminal state of growth plate chondrocytes, which are destined to meet their inevitable demise at the primary spongiosa. Chondrocyte hypertrophy is accompanied by increased organelle synthesis and rapid intracellular water uptake, which serve as the major drivers of longitudinal bone growth. This process is delicately regulated by major signaling pathways and their target genes, including growth hormone (GH), insulin growth factor-1 (IGF-1), indian hedgehog (Ihh), parathyroid hormone-related protein (PTHrP), bone morphogenetic proteins (BMPs), sex determining region Y-box 9 (Sox9), runt-related transcription factors (Runx) and fibroblast growth factor receptors (FGFRs). Hypertrophic chondrocytes orchestrate endochondral ossification by regulating osteogenic-angiogenic and osteogenic-osteoclastic coupling through the production of vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metallopeptidases-9/13 (MMP-9/13). Hypertrophic chondrocytes also indirectly regulate resorption of the cartilaginous extracellular matrix, by controlling formation of a special subtype of osteoclasts termed "chondroclasts". Notably, hypertrophic chondrocytes may possess innate potential for plasticity, reentering the cell cycle and differentiating into osteoblasts and other types of mesenchymal cells in the marrow space. We may be able to harness this unique plasticity for therapeutic purposes, for a variety of skeletal abnormalities and injuries. In this review, we discuss the morphological and molecular properties of hypertrophic chondrocytes, which carry out important functions during skeletal growth and regeneration.
Collapse
Affiliation(s)
- Shawn A Hallett
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
| |
Collapse
|
21
|
Qi J, Yu T, Hu B, Wu H, Ouyang H. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int J Mol Sci 2021; 22:10233. [PMID: 34638571 PMCID: PMC8508818 DOI: 10.3390/ijms221910233] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Bone defects cause significant socio-economic costs worldwide, while the clinical "gold standard" of bone repair, the autologous bone graft, has limitations including limited graft supply, secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed up bone healing, innovative therapies are needed. Bone tissue engineering (BTE), a new cross-disciplinary science arisen in the 21st century, creates artificial environments specially constructed to facilitate bone regeneration and growth. By combining stem cells, scaffolds and growth factors, BTE fabricates biological substitutes to restore the functions of injured bone. Although BTE has made many valuable achievements, there remain some unsolved challenges. In this review, the latest research and application of stem cells, scaffolds, and growth factors in BTE are summarized with the aim of providing references for the clinical application of BTE.
Collapse
Affiliation(s)
- Jingqi Qi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tianqi Yu
- Department of Mechanical Engineering, Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China;
| | - Bangyan Hu
- Section of Molecular and Cell Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310003, China
| |
Collapse
|
22
|
Huang K, Wang Y, Zhu J, Xiong Y, Lin Y. Regulation of fibroblast growth factor 9 on the differentiation of goat intramuscular adipocytes. Anim Sci J 2021; 92:e13627. [PMID: 34477270 DOI: 10.1111/asj.13627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022]
Abstract
It has been found that fibroblast growth factor receptor (FGF-FGFR) signaling can regulate the expression of adipocyte differentiation genes. FGF9 is one of the members of FGFs that mainly binds receptors FGFR2 and FGFR3. FGF9 is highly expressed in the adipose tissue of humans and mice, but there are few reports on the role of FGF9 in goat intramuscular adipocyte differentiation. Therefore, this study explored the effect of FGF9 on adipocyte differentiation through cell culture, interference, and overexpression. The expression of receptors FGFR1-FGFR4 in adipocyte differentiation and their effects on differentiation were detected to screen receptor gene of FGF9. Finally, the interaction between FGF9 and the receptor was tested by cotransfection. Our results showed that FGF9 interacts with FGFR2 to inhibit goat intramuscular adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma (PPARγ) and preadipocyte factor 1 (Pref1), which is a data support for subsequent pathway research.
Collapse
Affiliation(s)
- Kai Huang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, China
| |
Collapse
|
23
|
Bird AD, Croft BM, Harada M, Tang L, Zhao L, Ming Z, Bagheri-Fam S, Koopman P, Wang Z, Akita K, Harley VR. Ovotesticular disorders of sex development in FGF9 mouse models of human synostosis syndromes. Hum Mol Genet 2021; 29:2148-2161. [PMID: 32452519 DOI: 10.1093/hmg/ddaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints). Whether these synostosis-causing FGF9 mutations impact upon gonadal development and DSD etiology has not been explored. We therefore examined embryonic gonads in the well-characterized Fgf9 missense mouse mutants, Fgf9S99N and Fgf9N143T, which phenocopy the skeletal defects of FGF9S99N and FGF9R62G variants, respectively. XY Fgf9S99N/S99N and XY Fgf9N143T/N143T fetal mouse gonads showed severely disorganized testis cords and partial XY sex reversal at 12.5 days post coitum (dpc), suggesting loss of FGF9 function. By 15.5 dpc, testis development in both mutants had partly recovered. Mitotic analysis in vivo and in vitro suggested that the testicular phenotypes in these mutants arise in part through reduced proliferation of the gonadal supporting cells. These data raise the possibility that human FGF9 mutations causative for dominant skeletal conditions can also lead to loss of FGF9 function in the developing testis, at least in mice. Our data suggest that, in humans, testis development is largely tolerant of deleterious FGF9 mutations which lead to skeletal defects, thus offering an explanation as to why XY DSDs are rare in patients with pathogenic FGF9 variants.
Collapse
Affiliation(s)
- Anthony D Bird
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Brittany M Croft
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Masayo Harada
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenhua Ming
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stefan Bagheri-Fam
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
24
|
Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono K, Krejci P. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci Transl Med 2021; 13:13/592/eaba4226. [PMID: 33952673 DOI: 10.1126/scitranslmed.aba4226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 01/04/2023]
Abstract
Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3. In cultured rat chondrocytes or mouse embryonal tibia organ culture, RBM-007 rescued the proliferation arrest, degradation of cartilaginous extracellular matrix, premature senescence, and impaired hypertrophic differentiation induced by FGFR3 signaling. In cartilage xenografts derived from induced pluripotent stem cells from individuals with achondroplasia, RBM-007 rescued impaired chondrocyte differentiation and maturation. When delivered by subcutaneous injection, RBM-007 restored defective skeletal growth in a mouse model of achondroplasia. We thus demonstrate a ligand-trap concept of targeting the cartilage FGFR3 and delineate a potential therapeutic approach for achondroplasia and other FGFR3-related skeletal dysplasias.
Collapse
Affiliation(s)
- Takeshi Kimura
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | | | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Kie Yasuda
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | | | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Regina Gomolkova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Silvie Belaskova
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,First Department of Internal Medicine-Cardioangiology, St. Anne's University Hospital, Masaryk University, 65691 Brno, Czech Republic
| | - Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN)-LABRET, University of Málaga, IBIMA-BIONAND, 29071 Málaga, Spain
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN)-LABRET, University of Málaga, IBIMA-BIONAND, 29071 Málaga, Spain
| | | | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Josef Kaiser
- Central European Institute of Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yoshikazu Nakamura
- RIBOMIC Inc., Tokyo 108-0071, Japan. .,Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 565-0871 Osaka, Japan.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
25
|
Leek CC, Soulas JM, Bhattacharya I, Ganji E, Locke RC, Smith MC, Bhavsar JD, Polson SW, Ornitz DM, Killian ML. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev Dyn 2021; 250:1778-1795. [PMID: 34091985 PMCID: PMC8639753 DOI: 10.1002/dvdy.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.
Collapse
Affiliation(s)
- Connor C Leek
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jaclyn M Soulas
- College of Engineering, University of Delaware, Newark, Delaware, USA.,College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware, USA
| | - Iman Bhattacharya
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Elahe Ganji
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Ryan C Locke
- College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Megan C Smith
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Megan L Killian
- College of Engineering, University of Delaware, Newark, Delaware, USA.,Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
27
|
Li R, Sun Y, Chen Z, Zheng M, Shan Y, Ying X, Weng M, Chen Z. The Fibroblast Growth Factor 9 (Fgf9) Participates in Palatogenesis by Promoting Palatal Growth and Elevation. Front Physiol 2021; 12:653040. [PMID: 33959039 PMCID: PMC8093392 DOI: 10.3389/fphys.2021.653040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
Cleft palate, a common global congenital malformation, occurs due to disturbances in palatal growth, elevation, contact, and fusion during palatogenesis. The Fibroblast growth factor 9 (FGF9) mutation has been discovered in humans with cleft lip and palate. Fgf9 is expressed in both the epithelium and mesenchyme, with temporospatial diversity during palatogenesis. However, the specific role of Fgf9 in palatogenesis has not been extensively discussed. Herein, we used Ddx4-Cre mice to generate an Fgf9–/– mouse model (with an Fgf9 exon 2 deletion) that exhibited a craniofacial syndrome involving a cleft palate and deficient mandibular size with 100% penetrance. A smaller palatal shelf size, delayed palatal elevation, and contact failure were investigated to be the intrinsic causes for cleft palate. Hyaluronic acid accumulation in the extracellular matrix (ECM) sharply decreased, while the cell density correspondingly increased in Fgf9–/– mice. Additionally, significant decreases in cell proliferation were discovered in not only the palatal epithelium and mesenchyme but also among cells in Meckel’s cartilage and around the mandibular bone in Fgf9–/– mice. Serial sections of embryonic heads dissected at embryonic day 14.5 (E14.5) were subjected to craniofacial morphometric measurement. This highlighted the reduced oral volume owing to abnormal tongue size and descent, and insufficient mandibular size, which disturbed palatal elevation in Fgf9–/– mice. These results indicate that Fgf9 facilitates palatal growth and timely elevation by regulating cell proliferation and hyaluronic acid accumulation. Moreover, Fgf9 ensures that the palatal elevation process has adequate space by influencing tongue descent, tongue morphology, and mandibular growth.
Collapse
Affiliation(s)
- Ruomei Li
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yidan Sun
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengxi Chen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Resident, Department of General Dentistry, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Mengting Zheng
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Shan
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiyu Ying
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjia Weng
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenqi Chen
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Tang L, Wu M, Lu S, Zhang H, Shen Y, Shen C, Liang H, Ge H, Ding X, Wang Z. Fgf9 Negatively Regulates Bone Mass by Inhibiting Osteogenesis and Promoting Osteoclastogenesis Via MAPK and PI3K/AKT Signaling. J Bone Miner Res 2021; 36:779-791. [PMID: 33316109 DOI: 10.1002/jbmr.4230] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 01/16/2023]
Abstract
Fibroblast growth factor 9 (Fgf9) is a well-known factor that regulates bone development; however, its function in bone homeostasis is still unknown. Previously, we identified a point mutation in the FGF9 gene (p.Ser99Asn, S99N) and generated an isogeneic knock-in mouse model, which revealed that this loss-of-function mutation impaired early joint formation and was responsible for human multiple synostosis syndrome 3 (SYNS3). Moreover, newborn and adult S99N mutant mice exhibited significantly increased bone mass, suggesting that Fgf9 also participated in bone homeostasis. Histomorphology, tomography, and serological analysis of homozygous newborns and heterozygous adults showed that the Fgf9S99N mutation immensely increased bone mass and bone formation in perinatal and adult bones and decreased osteoclastogenesis in adult bone. An in vitro differentiation assay further revealed that the S99N mutation enhanced bone formation by promoting osteogenesis and mineralization of bone marrow mesenchymal stem cells (BMSCs) and attenuating osteoclastogenesis of bone marrow monocytes (BMMs). Considering the loss-of-function effect of the S99N mutation, we hypothesized that Fgf9 itself inhibits osteogenesis and promotes osteoclastogenesis. An in vitro differentiation assay revealed that Fgf9 prominently inhibited BMSC osteogenic differentiation and mineralization and showed for the first time that Fgf9 promoted osteoclastogenesis by enhancing preosteoclast aggregation and cell-cell fusion. Furthermore, specific inhibitors and in vitro differentiation assays were used and showed that Fgf9 inhibited BMSC osteogenesis mainly via the MEK/ERK pathway and partially via the PI3K/AKT pathway. Fgf9 also promoted osteoclastogenesis as a potential costimulatory factor with macrophage colony-stimating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) by coactivating the MAPK and PI3K/AKT signaling pathways. Taken together, our study demonstrated that Fgf9 is a negative regulator of bone homeostasis by regulating osteogenesis and osteoclastogenesis and provides a potential therapeutic target for bone degenerative diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Min Wu
- Shanghai Institute of Hematology, Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to SJTUSM, Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoyi Ding
- Department of Radiology, Rui-Jin Hospital Affiliated to SJTUSM, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
29
|
Zhang X, Weng M, Chen Z. Fibroblast Growth Factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. PLoS One 2021; 16:e0241281. [PMID: 33529250 PMCID: PMC7853451 DOI: 10.1371/journal.pone.0241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor signaling is essential for mammalian bone morphogenesis and growth, involving membranous ossification and endochondral ossification. FGF9 has been shown to be an important regulator of endochondral ossification; however, its role in the early differentiation of chondrocytes remains unknown. Therefore, in this study, we aimed to determine the role of FGF9 in the early differentiation of chondrogenesis. We found an increase in FGF9 expression during proliferating chondrocyte hypertrophy in the mouse growth plate. Silencing of FGF9 promotes the growth of ATDC5 cells and promotes insulin-induced differentiation of ATDC5 chondrocytes, which is due to increased cartilage matrix formation and type II collagen (col2a1) and X (col10a1), Acan, Ihh, Mmp13 gene expression. Then, we evaluated the effects of AKT, GSK-3β, and mTOR. Inhibition of FGF9 significantly inhibits phosphorylation of AKT and GSK-3β, but does not affected the activation of mTOR. Furthermore, phosphorylation of inhibited AKT and GSK-3β was compensated using the AKT activator SC79, and differentiation of ATDC5 cells was inhibited. In conclusion, our results indicate that FGF9 acts as an important regulator of early chondrogenesis partly through the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Tongji University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjia Weng
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Chen
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
31
|
Wuelling M, Vortkamp A. Murine Limb Explant Cultures to Assess Cartilage Development. Methods Mol Biol 2021; 2230:139-149. [PMID: 33197013 DOI: 10.1007/978-1-0716-1028-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To investigate chondrocyte biology in an organized structure, limb explant cultures have been established that allow for the cultivation of the entire cartilaginous skeletal elements. In these organ cultures, the arrangement of chondrocytes in the cartilage elements and their interaction with the surrounding perichondrium and joint tissue are maintained. Chondrocyte proliferation and differentiation can thus be studied under nearly in vivo conditions. Growth factors and other soluble agents can be administered to the explants and their effect on limb morphogenesis, gene expression and cell-matrix interactions can be studied. Cotreatment with distinct growth factors and their inhibitors as well as the use of transgenic mice will allow one to decipher the epistatic relationship between different signaling systems and other regulators of chondrocyte differentiation. Here we describe the protocol to culture cartilage explants ex vivo and discuss the advantages and disadvantages of the culture system.
Collapse
Affiliation(s)
- Manuela Wuelling
- Developmental Biology, Centre for Medical Biology, University Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Developmental Biology, Centre for Medical Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
32
|
Zhou E, Lui J. Physiological regulation of bone length and skeletal proportion in mammals. Exp Physiol 2020; 106:389-395. [PMID: 33369789 DOI: 10.1113/ep089086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Mechanisms regulating bone length and skeletal proportions What advances does it highlight? The study of differential bone length between leg and finger bones, metatarsals of the Egyptian jerboa and genomic analysis of giraffes. ABSTRACT Among mammalian species, skeletal structures vary greatly in size and shape, leading to a dramatic variety of body sizes and proportions. How different bones grow to different lengths, whether among different species, different individuals of the same species, or even in different anatomical parts of our the body, has always been a fascinating subject of research in biology and physiology. In the current review, we focus on some of the recent advances in the field and discuss how these provided important new insights into the mechanisms regulating bone length and skeletal proportions.
Collapse
Affiliation(s)
- Elaine Zhou
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Julian Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
35
|
Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol 2020; 16:547-564. [PMID: 32807927 DOI: 10.1038/s41584-020-0469-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Regulated fibroblast growth factor (FGF) signalling is a prerequisite for the correct development and homeostasis of articular cartilage, as evidenced by the fact that aberrant FGF signalling contributes to the maldevelopment of joints and to the onset and progression of osteoarthritis. Of the four FGF receptors (FGFRs 1-4), FGFR1 and FGFR3 are strongly implicated in osteoarthritis, and FGFR1 antagonists, as well as agonists of FGFR3, have shown therapeutic efficacy in mouse models of spontaneous and surgically induced osteoarthritis. FGF18, a high affinity ligand for FGFR3, is the only FGF-based drug currently in clinical trials for osteoarthritis. This Review covers the latest advances in our understanding of the molecular mechanisms that regulate FGF signalling during normal joint development and in the pathogenesis of osteoarthritis. Strategies for FGF signalling-based treatment of osteoarthritis and for cartilage repair in animal models and clinical trials are also introduced. An improved understanding of FGF signalling from a structural biology perspective, and of its roles in skeletal development and diseases, could unlock new avenues for discovery of modulators of FGF signalling that can slow or stop the progression of osteoarthritis.
Collapse
|
36
|
Chiarelli F, Primavera M, Mastromauro C. Evaluation and management of a child with short stature. Minerva Pediatr 2020; 72:452-461. [PMID: 32686926 DOI: 10.23736/s0026-4946.20.05980-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growth monitoring is a fundamental approach to evaluate a child's health and it is part of preventive programs to timely identify and treat a possible disease. Height and weight measurements, calculation of height velocity over time are main instruments to discover pathological deviations. Short stature is defined as a height that is greater than or equal 2 standard deviations (SDS) below the mean height for reference children comparable for sex and age. According to the International Classification of Pediatric Endocrine Diagnosis (ICPED) the possible causes of short stature could be divided into three groups: primary growth disorders (intrinsic diseases of the growth plate), secondary growth disorders (diseases that interfere on the growth plate setting) and the idiopathic short stature in which no possible cause is identified. The etiology of short stature is not always a disease, but it could be a variant of normal growth. Furthermore, to date there are new advances in the genetic causes of short stature. A detailed evaluation of a child with growth impairment should include an accurate history, a standardize physical examination, general and specific laboratory evaluations, radiologic investigations and genetic testing. Short stature could represent an important threat for physical and psychological health in a child, so a prompt identification of abnormal growth deviations offers the possibility to early treat the possible cause of shortness. This review aimed to discuss a practical approach to a child with short stature on the bases of the most recent scientific evidence.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Bone elongation is a complex process driven by multiple intrinsic (hormones, growth factors) and extrinsic (nutrition, environment) variables. Bones grow in length by endochondral ossification in cartilaginous growth plates at ends of developing long bones. This review provides an updated overview of the important factors that influence this process. RECENT FINDINGS Insulin-like growth factor-1 (IGF-1) is the major hormone required for growth and a drug for treating pediatric skeletal disorders. Temperature is an underrecognized environmental variable that also impacts linear growth. This paper reviews the current state of knowledge regarding the interaction of IGF-1 and environmental factors on bone elongation. Understanding how internal and external variables regulate bone lengthening is essential for developing and improving treatments for an array of bone elongation disorders. Future studies may benefit from understanding how these unique relationships could offer realistic new approaches for increasing bone length in different growth-limiting conditions.
Collapse
Affiliation(s)
- Holly L Racine
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, 26074, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
38
|
Kagan BJ, Rosello‐Diez A. Integrating levels of bone growth control: From stem cells to body proportions. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e384. [DOI: 10.1002/wdev.384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/09/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Brett J. Kagan
- Australian Regenerative Medicine Institute Monash University Clayton Australia
| | | |
Collapse
|
39
|
Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models. Math Biosci 2020; 322:108319. [PMID: 32001201 DOI: 10.1016/j.mbs.2020.108319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/20/2022]
Abstract
The phenomenon of chondrogenic pattern formation in the vertebrate limb is one of the best studied examples of organogenesis. Many different models, mathematical as well as conceptual, have been proposed for it in the last fifty years or so. In this review, we give a brief overview of the fundamental biological background, then describe in detail several models which aim to describe qualitatively and quantitatively the corresponding biological phenomena. We concentrate on several new models that have been proposed in recent years, taking into account recent experimental progress. The major mathematical tools in these approaches are ordinary and partial differential equations. Moreover, we discuss models with non-local flux terms used to account for cell-cell adhesion forces and a structured population model with diffusion. We also include a detailed list of gene products and potential morphogens which have been identified to play a role in the process of limb formation and its growth.
Collapse
|
40
|
McKenzie J, Smith C, Karuppaiah K, Langberg J, Silva MJ, Ornitz DM. Osteocyte Death and Bone Overgrowth in Mice Lacking Fibroblast Growth Factor Receptors 1 and 2 in Mature Osteoblasts and Osteocytes. J Bone Miner Res 2019; 34:1660-1675. [PMID: 31206783 PMCID: PMC6744314 DOI: 10.1002/jbmr.3742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
Fibroblast growth factor (FGF) signaling pathways have well-established roles in skeletal development, with essential functions in both chondrogenesis and osteogenesis. In mice, previous conditional knockout studies suggested distinct roles for FGF receptor 1 (FGFR1) signaling at different stages of osteogenesis and a role for FGFR2 in osteoblast maturation. However, the potential for redundancy among FGFRs and the mechanisms and consequences of stage-specific osteoblast lineage regulation were not addressed. Here, we conditionally inactivate Fgfr1 and Fgfr2 in mature osteoblasts with an Osteocalcin (OC)-Cre or Dentin matrix protein 1 (Dmp1)-CreER driver. We find that young mice lacking both receptors or only FGFR1 are phenotypically normal. However, between 6 and 12 weeks of age, OC-Cre Fgfr1/Fgfr2 double- and Fgfr1 single-conditional knockout mice develop a high bone mass phenotype with increased periosteal apposition, increased and disorganized endocortical bone with increased porosity, and biomechanical properties that reflect increased bone mass but impaired material properties. Histopathological and gene expression analyses show that this phenotype is preceded by a striking loss of osteocytes and accompanied by activation of the Wnt/β-catenin signaling pathway. These data identify a role for FGFR1 signaling in mature osteoblasts/osteocytes that is directly or indirectly required for osteocyte survival and regulation of bone mass during postnatal bone growth. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer McKenzie
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kannan Karuppaiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua Langberg
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Ornitz
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Wang J, Liu S, Li J, Yi Z. The role of the fibroblast growth factor family in bone-related diseases. Chem Biol Drug Des 2019; 94:1740-1749. [PMID: 31260189 DOI: 10.1111/cbdd.13588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor (FGF) family members are important regulators of cell growth, proliferation, differentiation, and regeneration. The abnormal expression of certain FGF family members can cause skeletal diseases, including achondroplasia, craniosynostosis syndrome, osteoarthritis, and Kashin-Beck disease. Accumulating evidence shows that FGFs play a crucial role in the growth and proliferation of bone and in the pathogenesis of certain bone-related diseases. Here, we review the involvement of FGFs in bone-related processes and diseases; FGF1 in the differentiation of human bone marrow mesenchymal stem cells and fracture repair; FGF2, FGF9, and FGF18 in osteoarthritis; FGF6 in bone and muscle injury; FGF8 in osteoarthritis and Kashin-Beck disease; and FGF21 and FGF23 on bone regulation. These findings indicate that FGFs are targets for novel therapeutic interventions for bone-related diseases.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhi Yi
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
42
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
43
|
Okada D, Endo S, Matsuda H, Ogawa S, Taniguchi Y, Katsuta T, Watanabe T, Iwaisaki H. An intersection network based on combining SNP coassociation and RNA coexpression networks for feed utilization traits in Japanese Black cattle. J Anim Sci 2018; 96:2553-2566. [PMID: 29762780 DOI: 10.1093/jas/sky170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/11/2018] [Indexed: 11/12/2022] Open
Abstract
Genome-wide association studies (GWAS) of quantitative traits have detected numerous genetic associations, but they encounter difficulties in pinpointing prominent candidate genes and inferring gene networks. The present study used a systems genetics approach integrating GWAS results with external RNA-expression data to detect candidate gene networks in feed utilization and growth traits of Japanese Black cattle, which are matters of concern. A SNP coassociation network was derived from significant correlations between SNPs with effects estimated by GWAS across 7 phenotypic traits. The resulting network genes contained significant numbers of annotations related to the traits. Using bovine transcriptome data from a public database, an RNA coexpression network was inferred based on the similarity of expression patterns across different tissues. An intersection network was then generated by superimposing the SNP and RNA networks and extracting shared interactions. This intersection network contained 4 tissue-specific modules: nervous system, reproductive system, muscular system, and glands. To characterize the structure (topographical properties) of the 3 networks, their scale-free properties were evaluated, which revealed that the intersection network was the most scale-free. In the subnetwork containing the most connected transcription factors (URI1, ROCK2, and ETV6), most genes were widely expressed across tissues, and genes previously shown to be involved in the traits were found. Results indicated that the current approach might be used to construct a gene network that better reflects biological information, providing encouragement for the genetic dissection of economically important quantitative traits.
Collapse
Affiliation(s)
- Daigo Okada
- Faculty of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoko Endo
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Yukio Taniguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Toshio Watanabe
- National Livestock Breeding Center, Nishigo, Fukushima, Japan.,Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Nishigo, Fukushima, Japan
| | | |
Collapse
|
44
|
Kenyon JD, Sergeeva O, Somoza RA, Li M, Caplan AI, Khalil AM, Lee Z. Analysis of -5p and -3p Strands of miR-145 and miR-140 During Mesenchymal Stem Cell Chondrogenic Differentiation. Tissue Eng Part A 2018; 25:80-90. [PMID: 29676203 DOI: 10.1089/ten.tea.2017.0440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The chondrogenic differentiation of mesenchymal stem cells (MSCs) is mediated by transcription factors and small noncoding RNAs such as microRNAs (miRNAs). Each miRNA is initially transcribed as a long transcript, which matures to produce -5p and -3p strands. It is widely believed that the mature and functional miRNA from any given pre-miRNA, usually the -5p strand, is functional, while the opposing -3p strand is degraded. However, recent cartilage literature started to show functional -3p strands for a few miRNAs. This study aimed at examining both -5p and -3p strands of two key miRNAs miR-140 and miR-145, known to be involved in the chondrogenic differentiation of MSCs. The level (copy number) of both -5p and -3p strands of miR-145 and miR-140 along the time line of MSC chondrogenic differentiation was determined by polymerase chain reaction. The gene expression profiles of several genes related to MSC chondrogenesis were compared with these miRNA profiles along the same timeline. While miR-145-3p is declining in step with miR-145-5p in pellet cultures during the process, the -3p strand is only 1-2% of the total miR-145 products. In contrast, the mature -3p and -5p products of miR-140 are found to increase with near-equal molar expression throughout chondrogenic differentiation. Numerous genes are expressed by cartilage progenitor cells during development. One such target gene, Sox9, is a regulatory target of the dominant miR-145-5p, consistent with the data. Further experimental validations are warranted to confirm that ACAN, FOXO1, and RUNX3 as direct targets of miR-145-5p in the context of MSC chondrogenesis. Similarly, TRSP1 and ACAN are worth further validation as direct targets of miR-145-3p. For miR-140, SOX4 shall be further validated as a direct target of miR-140-5p, while KLF4, PTHLH, and WNT5A can be validated as direct targets of miR-140-3p.
Collapse
Affiliation(s)
- Jonathan D Kenyon
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Olga Sergeeva
- 2 Department of Radiology, Case Western Reserve University, Cleveland, Ohio
| | - Rodrigo A Somoza
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Ming Li
- 3 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Arnold I Caplan
- 1 Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio
| | - Ahmad M Khalil
- 4 Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Zhenghong Lee
- 2 Department of Radiology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
45
|
Moore ER, Jacobs CR. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36:533-545. [PMID: 28901584 PMCID: PMC5839937 DOI: 10.1002/jor.23732] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
The primary cilium is a solitary, antenna-like sensory organelle with many important roles in cartilage and bone development, maintenance, and function. The primary cilium's potential role as a signaling nexus in the growth plate makes it an attractive therapeutic target for diseases and disorders associated with bone development and maintenance. Many signaling pathways that are mediated by the cilium-such as Hh, Wnt, Ihh/PTHrP, TGFβ, BMP, FGF, and Notch-are also known to influence endochondral ossification, primarily by directing growth plate formation and chondrocyte behavior. Although a few studies have demonstrated that these signaling pathways can be directly tied to the primary cilium, many pathways have yet to be evaluated in context of the cilium. This review serves to bridge this knowledge gap in the literature, as well as discuss the cilium's importance in the growth plate's ability to sense and respond to chemical and mechanical stimuli. Furthermore, we explore the importance of using the appropriate mechanism to study the cilium in vivo and suggest IFT88 deletion is the best available technique. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:533-545, 2018.
Collapse
Affiliation(s)
- Emily R. Moore
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| | - Christopher R. Jacobs
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| |
Collapse
|
46
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Yano K, Washio K, Tsumanuma Y, Yamato M, Ohta K, Okano T, Izumi Y. The role of Tsukushi (TSK), a small leucine-rich repeat proteoglycan, in bone growth. Regen Ther 2017; 7:98-107. [PMID: 30271858 PMCID: PMC6147151 DOI: 10.1016/j.reth.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Endochondral ossification is one of a key process for bone maturation. Tsukushi (TSK) is a novel member of the secreted small leucine-rich repeat proteoglycan (SLRP) family. SLRPs localize to skeletal regions and play significant roles during whole phases of bone development. Although prior evidence suggests that TSK may be involved in the regulation of bone formation, its role in skeletal development has not yet been elucidated. METHODS In the present study, we examined TSK's function during bone growth by comparing skeletal growth of TSK deficient (TSK-/-) mice and wild type (WT) mice. And an in vitro experiment using siRNA transfection of a chondrogenic cell line was performed. RESULTS TSK-/- mice exhibited decreased weight and short stature at 3 weeks of age due to decreased longitudinal bone growth coupled with low bone mass. Furthermore, an in vitro experiment using siRNA transfection into a chondrogenic cell line revealed that decreased TSK expression induced down-regulation of key chondrogenic marker gene expression and up-regulation of mid-to-late chondrogenic markers gene expression. CONCLUSIONS Our results reveal that TSK regulates bone elongation and bone mass by modulating growth plate chondrocyte function and consequently, overall body size.
Collapse
Key Words
- BMP, bone morphogenetic protein
- Chondrocyte
- ECM, extracellular matrix
- EDTA, ethylenediaminetetraacetic Acid
- Endochondral ossification
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- Growth plate
- ITS, insulin-transferrin-selenium supplements
- SLRP, small leucine-rich repeat proteoglycan
- SLRPs
- Skeletal development
- TGF, transforming growth factor
- TRAP, tartrate-resistant acid phosphatase
- TSK, Tsukushi
- Tsukushi
- WT, wild type
- β-gal, β-Galactosidase
Collapse
Affiliation(s)
- Kosei Yano
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Yuka Tsumanuma
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
48
|
Aukes K, Forsman C, Brady NJ, Astleford K, Blixt N, Sachdev D, Jensen ED, Mansky KC, Schwertfeger KL. Breast cancer cell-derived fibroblast growth factors enhance osteoclast activity and contribute to the formation of metastatic lesions. PLoS One 2017; 12:e0185736. [PMID: 28968431 PMCID: PMC5624603 DOI: 10.1371/journal.pone.0185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) have been implicated in promoting breast cancer growth and progression. While the autocrine effects of FGFR activation in tumor cells have been extensively studied, little is known about the effects of tumor cell-derived FGFs on cells in the microenvironment. Because FGF signaling has been implicated in the regulation of bone formation and osteoclast differentiation, we hypothesized that tumor cell-derived FGFs are capable of modulating osteoclast function and contributing to growth of metastatic lesions in the bone. Initial studies examining FGFR expression during osteoclast differentiation revealed increased expression of FGFR1 in osteoclasts during differentiation. Therefore, studies were performed to determine whether tumor cell-derived FGFs are capable of promoting osteoclast differentiation and activity. Using both non-transformed and transformed cell lines, we demonstrate that breast cancer cells express a number of FGF ligands that are known to activate FGFR1. Furthermore our results demonstrate that inhibition of FGFR activity using the clinically relevant inhibitor BGJ398 leads to reduced osteoclast differentiation and activity in vitro. Treatment of mice injected with tumor cells into the femurs with BGJ398 leads to reduced osteoclast activity and bone destruction. Together, these studies demonstrate that tumor cell-derived FGFs enhance osteoclast function and contribute to the formation of metastatic lesions in breast cancer.
Collapse
Affiliation(s)
- Kelly Aukes
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cynthia Forsman
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas J. Brady
- Microbiology, Cancer Biology and Immunology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristina Astleford
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicholas Blixt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deepali Sachdev
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric D. Jensen
- Department of Diagnostic and Biological Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kim C. Mansky
- Developmental and Surgical Science, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| | - Kathryn L. Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KLS); (KCM)
| |
Collapse
|
49
|
Abstract
In addition to their conventional role as a conduit system for gases, nutrients, waste products or cells, blood vessels in the skeletal system play active roles in controlling multiple aspects of bone formation and provide niches for hematopoietic stem cells that reside within the bone marrow. In addition, recent studies have highlighted roles for blood vessels during bone healing. Here, we provide an overview of the architecture of the bone vasculature and discuss how blood vessels form within bone, how their formation is modulated, and how they function during development and fracture repair.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis and University of Münster, Faculty of Medicine, Münster D-48149, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis and University of Münster, Faculty of Medicine, Münster D-48149, Germany
| |
Collapse
|
50
|
Charoenlarp P, Rajendran AK, Iseki S. Role of fibroblast growth factors in bone regeneration. Inflamm Regen 2017; 37:10. [PMID: 29259709 PMCID: PMC5725923 DOI: 10.1186/s41232-017-0043-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022] Open
Abstract
Bone is a metabolically active organ that undergoes continuous remodeling throughout life. However, many complex skeletal defects such as large traumatic bone defects or extensive bone loss after tumor resection may cause failure of bone healing. Effective therapies for these conditions typically employ combinations of cells, scaffolds, and bioactive factors. In this review, we pay attention to one of the three factors required for regeneration of bone, bioactive factors, especially the fibroblast growth factor (FGF) family. This family is composed of 22 members and associated with various biological functions including skeletal formation. Based on the phenotypes of genetically modified mice and spatio-temporal expression levels during bone fracture healing, FGF2, FGF9, and FGF18 are regarded as possible candidates useful for bone regeneration. The role of these candidate FGFs in bone regeneration is also discussed in this review.
Collapse
Affiliation(s)
- Pornkawee Charoenlarp
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Arun Kumar Rajendran
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| |
Collapse
|