1
|
Huan P, Liu B. The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae. Evol Dev 2024; 26:e12456. [PMID: 37667429 DOI: 10.1111/ede.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing "typical" trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
Collapse
Affiliation(s)
- Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Wandelt JE, Nakamoto A, Goulding MQ, Nagy LM. Embryonic organizer specification in the mud snail Ilyanassa obsoleta depends on intercellular signaling. Development 2023; 150:dev202027. [PMID: 37902104 PMCID: PMC10730015 DOI: 10.1242/dev.202027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
In early embryos of the caenogastropod snail Ilyanassa obsoleta, cytoplasmic segregation of a polar lobe is required for establishment of the D quadrant founder cell, empowering its great-granddaughter macromere 3D to act as a single-celled organizer that induces ectodermal pattern along the secondary body axis of the embryo. We present evidence that polar lobe inheritance is not sufficient to specify 3D potential, but rather makes the D macromere lineage responsive to some intercellular signal(s) required for normal expression of 3D-specific phenotypes. Experimental removal of multiple micromeres resulted in loss of organizer-linked MAPK activation, complete and specific defects of organizer-dependent larval organs, and progressive cell cycle retardation, leading to equalization of the normally accelerated division schedule of 3D (relative to the third-order macromeres of the A, B and C quadrants). Ablation of the second-quartet micromere 2d greatly potentiated the effects of first micromere quartet ablation. Our findings link organizer activation in I. obsoleta to the putative ancestral spiralian mechanism in which a signal from micromeres leads to specification of 3D among four initially equivalent macromeres.
Collapse
Affiliation(s)
- Jessica E. Wandelt
- School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ayaki Nakamoto
- Faculty of Pharmaceutical Sciences, Aomori University, Koubata 2-3-1, Aomori 030-0943, Japan
| | | | - Lisa M. Nagy
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Tan S, Huan P, Liu B. Functional evidence that FGFR regulates MAPK signaling in organizer specification in the gastropod mollusk Lottia peitaihoensis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:455-466. [PMID: 38045550 PMCID: PMC10689715 DOI: 10.1007/s42995-023-00194-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
The D-quadrant organizer sets up the dorsal-ventral (DV) axis and regulates mesodermal development of spiralians. Studies have revealed an important role of mitogen-activated protein kinase (MAPK) signaling in organizer function, but the related molecules have not been fully revealed. The association between fibroblast growth factor receptor (FGFR) and MAPK signaling in regulating organizer specification has been established in the annelid Owenia fusiformis. Now, comparable studies in other spiralian phyla are required to decipher whether this organizer-inducing function of FGFR is prevalent in Spiralia. Here, we indicate that treatment with the FGFR inhibitor SU5402 resulted in deficiency of organizer specification in the mollusk Lottia peitaihoensis. Subsequently, the bone morphogenetic protein (BMP) signaling gradient and DV patterning were disrupted, suggesting the roles of FGFR in regulating organizer function. Changes in multiple aspects of organizer function (the morphology of vegetal blastomeres, BMP signaling gradient, expression of DV patterning markers, etc.) indicate that these developmental functions have different sensitivities to FGFR/MAPK signaling. Our results reveal a functional role of FGFR in organizer specification as well as DV patterning of Lottia embryos, which expands our knowledge of spiralian organizers. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00194-x.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
4
|
Schulreich SM, Salamanca-Díaz DA, Zieger E, Calcino AD, Wanninger A. A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve. ORG DIVERS EVOL 2022; 22:893-913. [PMID: 36398106 PMCID: PMC9649484 DOI: 10.1007/s13127-022-00569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves. Supplementary information The online version contains supplementary material available at 10.1007/s13127-022-00569-5.
Collapse
Affiliation(s)
- Stephan M. Schulreich
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - David A. Salamanca-Díaz
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elisabeth Zieger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andrew D. Calcino
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andreas Wanninger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
5
|
Seudre O, Carrillo-Baltodano AM, Liang Y, Martín-Durán JM. ERK1/2 is an ancestral organising signal in spiral cleavage. Nat Commun 2022; 13:2286. [PMID: 35484126 PMCID: PMC9050690 DOI: 10.1038/s41467-022-30004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Animal development is classified as conditional or autonomous based on whether cell fates are specified through inductive signals or maternal determinants, respectively. Yet how these two major developmental modes evolved remains unclear. During spiral cleavage-a stereotypic embryogenesis ancestral to 15 invertebrate groups, including molluscs and annelids-most lineages specify cell fates conditionally, while some define the primary axial fates autonomously. To identify the mechanisms driving this change, we study Owenia fusiformis, an early-branching, conditional annelid. In Owenia, ERK1/2-mediated FGF receptor signalling specifies the endomesodermal progenitor. This cell likely acts as an organiser, inducing mesodermal and posterodorsal fates in neighbouring cells and repressing anteriorising signals. The organising role of ERK1/2 in Owenia is shared with molluscs, but not with autonomous annelids. Together, these findings suggest that conditional specification of an ERK1/2+ embryonic organiser is ancestral in spiral cleavage and was repeatedly lost in annelid lineages with autonomous development.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
6
|
Liu X, Huan P, Liu B. Nonmuscle Myosin II is Required for Larval Shell Formation in a Patellogastropod. Front Cell Dev Biol 2022; 10:813741. [PMID: 35186928 PMCID: PMC8851382 DOI: 10.3389/fcell.2022.813741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying larval shell development in mollusks remain largely elusive. We previously found evident filamentous actin (F-actin) aggregations in the developing shell field of the patellogastropod Lottia goshimai, indicating roles of actomyosin networks in the process. In the present study, we functionally characterized nonmuscle myosin II (NM II), the key molecule in actomyosin networks, in the larval shell development of L. goshimai. Immunostaining revealed general colocalization of phosphorylated NM II and F-actin in the shell field. When inhibiting the phosphorylation of NM II using the specific inhibitor blebbistatin in one- or 2-h periods during shell field morphogenesis (6–8 h post-fertilization, hpf), the larval shell plate was completely lost in the veliger larva (24 hpf). Scanning electron microscopy revealed that the nascent larval shell plate could not be developed in the manipulated larvae (10 hpf). Further investigations revealed that key events in shell field morphogenesis were inhibited by blebbistatin pulses, including invagination of the shell field and cell shape changes and cell rearrangements during shell field morphogenesis. These factors caused the changed morphology of the shell field, despite the roughly retained “rosette” organization. To explore whether the specification of related cells was affected by blebbistatin treatments, we investigated the expression of four potential shell formation genes (bmp2/4, gata2/3, hox1 and engrailed). The four genes did not show evident changes in expression level, indicating unaffected cell specification in the shell field, while the gene expression patterns showed variations according to the altered morphology of the shell field. Together, our results reveal that NM II contributes to the morphogenesis of the shell field and is crucial for the formation of the larval shell plate in L. goshimai. These results add to the knowledge of the mechanisms of molluskan shell development.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Baozhong Liu,
| |
Collapse
|
7
|
Tan S, Huan P, Liu B. Molluscan dorsal-ventral patterning relying on BMP2/4 and Chordin provides insights into spiralian development and evolution. Mol Biol Evol 2021; 39:6424002. [PMID: 34751376 PMCID: PMC8789067 DOI: 10.1093/molbev/msab322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal–ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
8
|
Andrikou C, Hejnol A. FGF signaling acts on different levels of mesoderm development within Spiralia. Development 2021; 148:264929. [PMID: 33999997 PMCID: PMC8180254 DOI: 10.1242/dev.196089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023]
Abstract
FGF signaling is involved in mesoderm induction in members of deuterostomes (e.g. tunicates, hemichordates), but not in flies and nematodes, in which it has a role in mesoderm patterning and migration. However, we need comparable studies in other protostome taxa in order to decipher whether this mesoderm-inducing function of FGF extends beyond the lineage of deuterostomes. Here, we investigated the role of FGF signaling in mesoderm development in three species of lophophorates, a clade within the protostome group Spiralia. Our gene expression analyses show that the mesodermal molecular patterning is conserved between brachiopods and phoronids, but the spatial and temporal recruitment of transcription factors differs significantly. Moreover, the use of the inhibitor SU5402 demonstrates that FGF signaling is involved in different steps of mesoderm development, as well as in morphogenetic movements of gastrulation and axial elongation. Our findings suggest that the mesoderm-inducing role of FGF extends beyond the group of deuterostomes.
Collapse
Affiliation(s)
- Carmen Andrikou
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
9
|
Lanza AR, Seaver EC. Activin/Nodal signaling mediates dorsal-ventral axis formation before third quartet formation in embryos of the annelid Chaetopterus pergamentaceus. EvoDevo 2020; 11:17. [PMID: 32788949 PMCID: PMC7418201 DOI: 10.1186/s13227-020-00161-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The clade of protostome animals known as the Spiralia (e.g., mollusks, annelids, nemerteans and polyclad flatworms) shares a highly conserved program of early development. This includes shared arrangement of cells in the early-stage embryo and fates of descendant cells into embryonic quadrants. In spiralian embryos, a single cell in the D quadrant functions as an embryonic organizer to pattern the body axes. The precise timing of the organizing signal and its cellular identity varies among spiralians. Previous experiments in the annelid Chaetopterus pergamentaceus Cuvier, 1830 demonstrated that the D quadrant possesses an organizing role in body axes formation; however, the molecular signal and exact cellular identity of the organizer were unknown. RESULTS In this study, the timing of the signal and the specific signaling pathway that mediates organizing activity in C. pergamentaceus was investigated through short exposures to chemical inhibitors during early cleavage stages. Chemical interference of the Activin/Nodal pathway but not the BMP or MAPK pathways results in larvae that lack a detectable dorsal-ventral axis. Furthermore, these data show that the duration of organizing activity encompasses the 16 cell stage and is completed before the 32 cell stage. CONCLUSIONS The timing and molecular signaling pathway of the C. pergamentaceus organizer is comparable to that of another annelid, Capitella teleta, whose organizing signal is required through the 16 cell stage and localizes to micromere 2d. Since C. pergamentaceus is an early branching annelid, these data in conjunction with functional genomic investigations in C. teleta hint that the ancestral state of annelid dorsal-ventral axis patterning involved an organizing signal that occurs one to two cell divisions earlier than the organizing signal identified in mollusks, and that the signal is mediated by Activin/Nodal signaling. Our findings have significant evolutionary implications within the Spiralia, and furthermore suggest that global body patterning mechanisms may not be as conserved across bilaterians as was previously thought.
Collapse
Affiliation(s)
- Alexis R. Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| |
Collapse
|
10
|
Lyons DC, Perry KJ, Batzel G, Henry JQ. BMP signaling plays a role in anterior-neural/head development, but not organizer activity, in the gastropod Crepidula fornicata. Dev Biol 2020; 463:135-157. [PMID: 32389712 PMCID: PMC7444637 DOI: 10.1016/j.ydbio.2020.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BMP signaling is involved in many aspects of metazoan development, with two of the most conserved functions being to pattern the dorsal-ventral axis and to specify neural versus epidermal fates. An active area of research within developmental biology asks how BMP signaling was modified over evolution to build disparate body plans. Animals belonging to the superclade Spiralia/Lophotrochozoa are excellent experimental subjects for studying the evolution of BMP signaling because a highly conserved, stereotyped early cleavage program precedes the emergence of distinct body plans. In this study we examine the role of BMP signaling in one representative, the slipper snail Crepidula fornicata. We find that mRNAs encoding BMP pathway components (including the BMP ligand decapentaplegic, and BMP antagonists chordin and noggin-like proteins) are not asymmetrically localized along the dorsal-ventral axis in the early embryo, as they are in other species. Furthermore, when BMP signaling is perturbed by adding ectopic recombinant BMP4 protein, or by treating embryos with the selective Activin receptor-like kinase-2 (ALK-2) inhibitor Dorsomorphin Homolog 1 (DMH1), we observe no obvious effects on dorsal-ventral patterning within the posterior (post-trochal) region of the embryo. Instead, we see effects on head development and the balance between neural and epidermal fates specifically within the anterior, pre-trochal tissue derived from the 1q1 lineage. Our experiments define a window of BMP signaling sensitivity that ends at approximately 44-48 hours post fertilization, which occurs well after organizer activity has ended and after the dorsal-ventral axis has been determined. When embryos were exposed to BMP4 protein during this window, we observed morphogenetic defects leading to the separation of the anterior, 1q lineage from the rest of the embryo. The 1q-derived organoid remained largely undifferentiated and was radialized, while the post-trochal portion of the embryo developed relatively normally and exhibited clear signs of dorsal-ventral patterning. When embryos were exposed to DMH1 during the same time interval, we observed defects in the head, including protrusion of the apical plate, enlarged cerebral ganglia and ectopic ocelli, but otherwise the larvae appeared normal. No defects in shell development were noted following DMH1 treatments. The varied roles of BMP signaling in the development of several other spiralians have recently been examined. We discuss our results in this context, and highlight the diversity of developmental mechanisms within spiral-cleaving animals.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Kimberly J Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Grant Batzel
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Abstract
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development and evolution. However, our knowledge of spiral cleavage is still in its infancy. Recent technical and conceptual advances, such as the establishment of genome editing and improved phylogenetic resolution, are paving the way for a fresher and deeper look into this fascinating early cleavage mode.
Collapse
Affiliation(s)
- José M Martín-Durán
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1, Tancha, Onna 904-0495, Japan
| |
Collapse
|
12
|
Wanninger A, Wollesen T. The evolution of molluscs. Biol Rev Camb Philos Soc 2019; 94:102-115. [PMID: 29931833 PMCID: PMC6378612 DOI: 10.1111/brv.12439] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023]
Abstract
Molluscs are extremely diverse invertebrate animals with a rich fossil record, highly divergent life cycles, and considerable economical and ecological importance. Key representatives include worm-like aplacophorans, armoured groups (e.g. polyplacophorans, gastropods, bivalves) and the highly complex cephalopods. Molluscan origins and evolution of their different phenotypes have largely remained unresolved, but significant progress has been made over recent years. Phylogenomic studies revealed a dichotomy of the phylum, resulting in Aculifera (shell-less aplacophorans and multi-shelled polyplacophorans) and Conchifera (all other, primarily uni-shelled groups). This challenged traditional hypotheses that proposed that molluscs gradually evolved complex phenotypes from simple, worm-like animals, a view that is corroborated by developmental studies that showed that aplacophorans are secondarily simplified. Gene expression data indicate that key regulators involved in anterior-posterior patterning (the homeobox-containing Hox genes) lost this function and were co-opted into the evolution of taxon-specific novelties in conchiferans. While the bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signalling pathway, that mediates dorso-ventral axis formation, and molecular components that establish chirality appear to be more conserved between molluscs and other metazoans, variations from the common scheme occur within molluscan sublineages. The deviation of various molluscs from developmental pathways that otherwise appear widely conserved among metazoans provides novel hypotheses on molluscan evolution that can be tested with genome editing tools such as the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein9) system.
Collapse
Affiliation(s)
- Andreas Wanninger
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| | - Tim Wollesen
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| |
Collapse
|
13
|
Namigai† EKO, Shimeld SM. Live Imaging of Cleavage Variability and Vesicle Flow Dynamics in Dextral and Sinistral Spiralian Embryos. Zoolog Sci 2019; 36:5-16. [DOI: 10.2108/zs180088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Erica K. O. Namigai†
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| | - Sebastian M. Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| |
Collapse
|
14
|
Lanza AR, Seaver EC. An organizing role for the TGF-β signaling pathway in axes formation of the annelid Capitella teleta. Dev Biol 2018; 435:26-40. [DOI: 10.1016/j.ydbio.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 01/12/2023]
|
15
|
Henry JQ, Lyons DC, Perry KJ, Osborne C. Establishment and activity of the D quadrant organizer in the marine gastropod Crepidula fornicata. Dev Biol 2017; 431:282-296. [DOI: 10.1016/j.ydbio.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
|
16
|
Lesoway MP, Collin R, Abouheif E. Early Activation of MAPK and Apoptosis in Nutritive Embryos of Calyptraeid Gastropods. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:449-461. [DOI: 10.1002/jez.b.22745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Maryna P. Lesoway
- Department of Biology McGill University Montreal Quebec Canada
- Smithsonian Tropical Research Institute Balboa Ancón Panamá
| | - Rachel Collin
- Smithsonian Tropical Research Institute Balboa Ancón Panamá
| | - Ehab Abouheif
- Department of Biology McGill University Montreal Quebec Canada
| |
Collapse
|
17
|
Kostyuchenko RP, Dondua AK. Peculiarities of isolated blastomere development of the polyhaete Alitta virens. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417030067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
19
|
Huan P, Wang H, Liu B. Assessment of housekeeping genes as internal references in quantitative expression analysis during early development of oyster. Genes Genet Syst 2016; 91:257-265. [PMID: 27582049 DOI: 10.1266/ggs.16-00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The early development of mollusks exhibits important characteristics from the developmental and evolutionary perspective. With the increasing number of genome-wide studies, accurate analyses of quantitative gene expression during development are impeded by the lack of validated reference genes. To improve the situation, in this study, we analyzed the expression stability of seven candidate housekeeping genes during early development of the Pacific oyster Crassostrea gigas: actin, glyceraldehyde-3-phosphate dehydrogenase (gapdh), α subunit of elongation factor 1 (elf1α), adp-ribosylation factor 1 (arf1), heterogeneous nuclear ribonucleoprotein q, ubiquitin-conjugating enzyme e2d2 and ribosomal protein s18. We focused on 11 stages from oocyte to D-veliger, which include crucial developmental processes such as axis determination, gastrulation and shell formation. Gene expression stabilities were assessed with the three commonly used programs geNorm, NormFinder and BestKeeper. Although the results obtained with the three programs varied to some extent, in general, arf1, elf1α and gapdh were highly ranked and actin was poorly ranked. This analysis also indicated that multiple genes should be used for normalization, and we concluded that arf1-elf1α-gapdh should be used as internal references. The findings of this study will help researchers to obtain accurate results in future quantitative gene expression analysis of development in bivalve mollusks.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences
| | | | | |
Collapse
|
20
|
Goulding MQ, Lambert JD. Mollusc models I. The snail Ilyanassa. Curr Opin Genet Dev 2016; 39:168-174. [PMID: 27497839 DOI: 10.1016/j.gde.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
Abstract
Ilyanassa obsoleta has been a model system for experimental embryology for over a century. Here we highlight new insight into early cell lineage specification in Ilyanassa. As in all molluscs and other spiralians, stereotyped cleavage patterns establish a homunculus of regional founder cells. Ongoing studies are beginning to dissect mechanisms of asymmetric cell division that specify these cells' fates. This is only part of the story: overlaid on intrinsic cell identities is a graded 'organizer' signal, and emerging evidence suggests wider roles for short-range intercellular signaling. Modern methods, combined with the intrinsic experimental advantages of Ilyanassa, offer attractive opportunities for studying basic developmental cell biology as well as its evolution over a wide range of phylogenetic scales.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Division of Natural Science, Bethel University, McKenzie, TN 38201, United States.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
21
|
Dpp/BMP2-4 Mediates Signaling from the D-Quadrant Organizer in a Spiralian Embryo. Curr Biol 2016; 26:2003-2010. [DOI: 10.1016/j.cub.2016.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
|
22
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
23
|
Kocot KM, Aguilera F, McDougall C, Jackson DJ, Degnan BM. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Front Zool 2016; 13:23. [PMID: 27279892 PMCID: PMC4897951 DOI: 10.1186/s12983-016-0155-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes underlying molluscan shell formation may be applied more broadly to understanding the evolution of metazoan biomineralization.
Collapse
Affiliation(s)
- Kevin M Kocot
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, Alabama 35487 USA
| | - Felipe Aguilera
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Carmel McDougall
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| | - Daniel J Jackson
- Department of Geobiology, Goldschmidtstr.3, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| |
Collapse
|
24
|
Kozin VV, Kostyuchenko RP. Evolutionary conservation and variability of the mesoderm development in spiralia: A peculiar pattern of nereid polychaetes. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016030079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Kozin VV, Filimonova DA, Kupriashova EE, Kostyuchenko RP. Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling. Mech Dev 2016; 140:1-11. [PMID: 27000638 DOI: 10.1016/j.mod.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Mesoderm represents the evolutionary youngest germ layer and forms numerous novel tissues in bilaterian animals. Despite the established conservation of the gene regulatory networks that drive mesoderm differentiation (e.g. myogenesis), mechanisms of mesoderm specification are highly variable in distant model species. Thus, broader phylogenetic sampling is required to reveal common features of mesoderm formation across bilaterians. Here we focus on a representative of Spiralia, the marine annelid Alitta virens, whose mesoderm development is still poorly investigated on the molecular level. We characterize three novel early mesodermal markers for A. virens - Twist, Mox, and Evx - which are differentially expressed within the mesodermal lineages. The Twist mRNA is ubiquitously distributed in the fertilized egg and exhibits specific expression in endomesodermal- and ectomesodermal-founder cells at gastrulation. Twist is expressed around the blastopore and later in a segmental metameric pattern. We consider this expression to be ancestral, and in support of the enterocoelic hypothesis of mesoderm evolution. We also revealed an early pattern of the MAPK activation in A. virens that is different from the previously reported pattern in spiralians. Inhibition of the MAPK pathway by U0126 disrupts the metameric Twist and Mox expression, indicating an early requirement of the MAPK cascade for proper morphogenesis of endomesodermal tissues.
Collapse
Affiliation(s)
- Vitaly V Kozin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| | - Daria A Filimonova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina E Kupriashova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| |
Collapse
|
26
|
Jackson DJ, Herlitze I, Hohagen J. A Whole Mount In Situ Hybridization Method for the Gastropod Mollusc Lymnaea stagnalis. J Vis Exp 2016:53968. [PMID: 27023483 PMCID: PMC4829025 DOI: 10.3791/53968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Whole mount in situ hybridization (WMISH) is a technique that allows for the spatial resolution of nucleic acid molecules (often mRNAs) within a 'whole mount' tissue preparation, or developmental stage (such as an embryo or larva) of interest. WMISH is extremely powerful because it can significantly contribute to the functional characterization of complex metazoan genomes, a challenge that is becoming more of a bottleneck with the deluge of next generation sequence data. Despite the conceptual simplicity of the technique much time is often needed to optimize the various parameters inherent to WMISH experiments for novel model systems; subtle differences in the cellular and biochemical properties between tissue types and developmental stages mean that a single WMISH method may not be appropriate for all situations. We have developed a set of WMISH methods for the re-emerging gastropod model Lymnaea stagnalis that generate consistent and clear WMISH signals for a range of genes, and across all developmental stages. These methods include the assignment of larvae of unknown chronological age to an ontogenetic window, the efficient removal of embryos and larvae from their egg capsules, the application of an appropriate Proteinase-K treatment for each ontogenetic window, and hybridization, post-hybridization and immunodetection steps. These methods provide a foundation from which the resulting signal for a given RNA transcript can be further refined with probe specific adjustments (primarily probe concentration and hybridization temperature).
Collapse
Affiliation(s)
| | - Ines Herlitze
- Department of Geobiology, Georg-August University of Göttingen
| | | |
Collapse
|
27
|
Zukaite V, Cook RT, Walker AJ. Multiple roles for protein kinase C in gastropod embryogenesis. Cell Tissue Res 2015; 364:117-24. [DOI: 10.1007/s00441-015-2288-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
|
28
|
Shigeno S, Ragsdale CW. The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 2015; 523:1297-317. [DOI: 10.1002/cne.23755] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/23/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Shuichi Shigeno
- Department of Marine Biodiversity Research; Japan Agency for Marine-Earth Science and Technology; Yokosuka 237-0061 Japan
- Department of Neurobiology; The University of Chicago; Chicago Illinois 60637
| | - Clifton W. Ragsdale
- Department of Neurobiology; The University of Chicago; Chicago Illinois 60637
| |
Collapse
|
29
|
Pfeifer K, Schaub C, Domsch K, Dorresteijn A, Wolfstetter G. Maternal inheritance of twist and analysis of MAPK activation in embryos of the polychaete annelid Platynereis dumerilii. PLoS One 2014; 9:e96702. [PMID: 24792484 PMCID: PMC4008618 DOI: 10.1371/journal.pone.0096702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to identify molecular mechanisms involved in the specification of the 4d (mesentoblast) lineage in Platynereis dumerilii. We employ RT-PCR and in situ hybridization against the Platynereis dumerilii twist homolog (Pdu-twist) to reveal mesodermal specification within this lineage. We show that Pdu-twist mRNA is already maternally distributed. After fertilization, ooplasmatic segregation leads to relocation of Pdu-twist transcripts into the somatoblast (2d) lineage and 4d, indicating that the maternal component of Pdu-twist might be an important prerequisite for further mesoderm specification but does not represent a defining characteristic of the mesentoblast. However, after the primordial germ cells have separated from the 4d lineage, zygotic transcription of Pdu-twist is exclusively observed in the myogenic progenitors, suggesting that mesodermal specification occurs after the 4d stage. Previous studies on spiral cleaving embryos revealed a spatio-temporal correlation between the 4d lineage and the activity of an embryonic organizer that is capable to induce the developmental fates of certain micromeres. This has raised the question if specification of the 4d lineage could be connected to the organizer activity. Therefore, we aimed to reveal the existence of such a proposed conserved organizer in Platynereis employing antibody staining against dpERK. In contrast to former observations in other spiralian embryos, activation of MAPK signaling during 2d and 4d formation cannot be detected which questions the existence of a conserved connection between organizer function and specification of the 4d lineage. However, our experiments unveil robust MAPK activation in the prospective nephroblasts as well as in the macromeres and some micromeres at the blastopore in gastrulating embryos. Inhibition of MAPK activation leads to larvae with a shortened body axis, defects in trunk muscle spreading and improper nervous system condensation, indicating a critical function for MAPK signaling for the reorganization of embryonic tissues during the gastrulation process.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Christoph Schaub
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Katrin Domsch
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Adriaan Dorresteijn
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
- * E-mail:
| |
Collapse
|
30
|
WEISBLAT DAVIDA, KUO DIANHAN. Developmental biology of the leech Helobdella. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 58:429-43. [PMID: 25690960 PMCID: PMC4416490 DOI: 10.1387/ijdb.140132dw] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glossiphoniid leeches of the genus Helobdella provide experimentally tractable models for studies in evolutionary developmental biology (Evo-Devo). Here, after a brief rationale, we will summarize our current understanding of Helobdella development and highlight the near term prospects for future investigations, with respect to the issues of: D quadrant specification; the transition from spiral to bilaterally symmetric cleavage; segmentation, and the connections between segmental and non-segmental tissues; modifications of BMP signaling in dorsoventral patterning and the O-P equivalence group; germ line specification and genome rearrangements. The goal of this contribution is to serve as a summary of, and guide to, published work.
Collapse
Affiliation(s)
- DAVID A. WEISBLAT
- Dept. of Molecular and Cell Biology, University of California, Berkeley, USA
| | - DIAN-HAN KUO
- Dept. of Life Science, National Taiwan University, Taiwan
| |
Collapse
|
31
|
Amiel AR, Henry JQ, Seaver EC. An organizing activity is required for head patterning and cell fate specification in the polychaete annelid Capitella teleta: New insights into cell–cell signaling in Lophotrochozoa. Dev Biol 2013; 379:107-22. [DOI: 10.1016/j.ydbio.2013.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022]
|
32
|
Werner GDA, Gemmell P, Grosser S, Hamer R, Shimeld SM. Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca: Gastropoda: Patellidae) reveals candidate biomineralising genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:230-243. [PMID: 22865210 DOI: 10.1007/s10126-012-9481-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
The gastropod Patella vulgata is abundant on rocky shores in Northern Europe and a significant grazer of intertidal algae. Here we report the application of Illumina sequencing to develop a transcriptome from the adult mantle tissue of P. vulgata. We obtained 47,237,104 paired-end reads of 51 bp, trialled de novo assembly methods and settled on the additive multiple K method followed by redundancy removal as resulting in the most comprehensive assembly. This yielded 29,489 contigs of at least 500 bp in length. We then used three methods to search for candidate genes relevant to biomineralisation: searches via BLAST and Hidden Markov Models for homologues of biomineralising genes from other molluscs, searches for predicted proteins containing tandem repeats and searches for secreted proteins that lacked a transmembrane domain. From the results of these searches we selected 15 contigs for verification by RT-PCR, of which 14 were successfully amplified and cloned. These included homologues of Pif-177/BSMP, Perlustrin, SPARC, AP24, Follistatin-like and Carbonic anhydrase, as well as three containing extensive G-X-Y repeats as found in nacrein. We selected two for further verification by in situ hybridisation, demonstrating expression in the larval shell field. We conclude that de novo assembly of Illumina data offers a cheap and rapid route to a predicted transcriptome that can be used as a resource for further biological study.
Collapse
Affiliation(s)
- Gijsbert D A Werner
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | |
Collapse
|
33
|
Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development 2013; 140:1024-33. [PMID: 23344709 DOI: 10.1242/dev.083790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.
Collapse
Affiliation(s)
- Stephen A Green
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
34
|
Kozin VV, Babakhanova RA, Kostyuchenko RP. Functional role for MAP kinase signaling in cell lineage and dorsoventral axis specification in the basal gastropod Testudinalia testudinalis (Patellogastropoda, Mollusca). Russ J Dev Biol 2013. [DOI: 10.1134/s1062360413010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Rebscher N, Lidke AK, Ackermann CF. Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerillii are two distinct cell populations. EvoDevo 2012; 3:9. [PMID: 22512981 PMCID: PMC3348064 DOI: 10.1186/2041-9139-3-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/18/2012] [Indexed: 01/09/2023] Open
Abstract
Background In the polychaete Platynereis, the primordial germ cells (PGCs) emerge from the vasa, piwi, and PL10 expressing mesodermal posterior growth zone (MPGZ) at the end of larval development, suggesting a post-embryonic formation from stem cells. Methods In order to verify this hypothesis, embryos and larvae were pulse labeled with the proliferation marker 5-ethynyl-2'-deoxyuridine (EdU) at different stages of development. Subsequently, the PGCs were visualized in 7-day-old young worms using antibodies against the Vasa protein. Results Surprisingly, the primordial germ cells of Platynereis incorporate EdU only shortly before gastrulation (6-8 hours post fertilization (hpf)), which coincides with the emergence of four small blastomeres from the mesoblast lineage. We conclude that these so-called 'secondary mesoblast cells' constitute the definitive PGCs in Platynereis. In contrast, the cells of the MPGZ incorporate EdU only from the pre-trochophore stage onward (14 hpf). Conclusion While PGCs and the cells of the MPGZ in Platynereis are indistinguishable in morphology and both express the germline markers vasa, nanos, and piwi, a distinct cluster of PGCs is detectable anterior of the MPGZ following EdU pulse-labeling. Indeed the PGCs form independently from the stem cells of the MPGZ prior to gastrulation. Our data suggest an early PGC formation in the polychaete by preformation rather than by epigenesis.
Collapse
Affiliation(s)
- Nicole Rebscher
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Karl von Frisch Strasse 8, 35032 Marburg, Germany.
| | | | | |
Collapse
|
36
|
Shimizu K, Sarashina I, Kagi H, Endo K. Possible functions of Dpp in gastropod shell formation and shell coiling. Dev Genes Evol 2011; 221:59-68. [PMID: 21556857 DOI: 10.1007/s00427-011-0358-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
We examined dpp expression patterns in the pulmonate snail Lymnaea stagnalis and analyzed the functions of dpp using the Dpp signal inhibitor dorsomorphin in order to understand developmental mechanisms and evolution of shell formation in gastropods. The dpp gene is expressed in the right half of the circular area around the shell gland at the trochophore stage and at the right-hand side of the mantle at the veliger stage in the dextral snails. Two types of shell malformations were observed when the Dpp signals were inhibited by dorsomorphin. When the embryos were treated with dorsomorphin at the 2-cell and blastula stages before the shell gland is formed, the juvenile shells grew imperfectly and were not mineralized. On the other hand, when treated at the trochophore and veliger stage after the shell gland formation, juvenile shells grew to show a cone-like form rather than a normal coiled form. These results indicated that dpp plays important roles in the formation and coiling of the shell in this gastropod species.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Master's Program in Education, Secondary Education, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Japan
| | | | | | | |
Collapse
|
37
|
Chan XY, Lambert JD. Patterning a spiralian embryo: A segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the Ilyanassa embryo. Dev Biol 2011; 349:102-12. [DOI: 10.1016/j.ydbio.2010.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/10/2023]
|
38
|
Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM. Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:267-79. [PMID: 20095031 DOI: 10.1002/jez.b.21336] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Members of the Vasa and Nanos gene families are important for the specification and development of the germline in diverse animals. Here, we determine spatial and temporal expression of Vasa and Nanos to investigate germline development in the vetigastropod Haliotis asinina. This is the first time these genes have been examined in an equally cleaving lophotrochozoan species. We find that HasVasa and HasNanos have largely overlapping, but not identical, expression patterns during embryonic and larval development, with both being maternally expressed and localized to the micromere cell lineages during cleavage. As embryonic development continues, HasVasa and HasNanos become progressively more enriched in the dorsal quadrant of the embryo. By the trochophore stage, both HasVasa and HasNanos are expressed in the putative mesodermal bands of the larva. This differs from the unequally cleaving gastropod Illyanasa obsoleta, in which IoVasa and IoNanos expression is detectable only in the early embryo and not during gastrulation and larval development. Our results suggest that the H. asinina germline arises from the 4d cell lineage and that primordial germ cells (PGCs) are not specified exclusively by maternally inherited determinants (preformation). As such, we infer that inductive signals (epigenesis) play an important role in specifying PGCs in H. asinina. We hypothesize that HasVasa is expressed in a population of undifferentiated multipotent cells, from which the PGCs are segregated later during development.
Collapse
Affiliation(s)
- Alexandrea M Kranz
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
39
|
Hejnol A. A twist in time--the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol 2010; 50:695-706. [PMID: 21558233 DOI: 10.1093/icb/icq103] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent progress in reconstructing animal relationships enables us to draw a better picture of the evolution of important characters such as organ systems and developmental processes. By mapping these characters onto the phylogenetic framework, we can detect changes that have occurred in them during evolution. The spiral mode of development is a complex of characters that is present in many lineages, such as nemerteans, annelids, mollusks, and polyclad platyhelminthes. However, some of these lineages show variations of this general program in which sub-characters are modified without changing the overlying pattern. Recent molecular phylogenies suggest that spiral cleavage was lost, or at least has deviated from its original pattern, in more lineages than was previously thought (e.g., in rotifers, gastrotrichs, bryozoans, brachiopods, and phoronids). Here, I summarize recent progress in reconstructing the spiralian tree of life and discuss its significance for our understanding of the spiral-cleavage character complex. I conclude that more detailed knowledge of the development of spiralian taxa is necessary to understand the mechanisms behind these changes, and to understand the evolutionary changes and adaptations of spiralian embryos.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, NO-5008, Bergen, Norway.
| |
Collapse
|
40
|
Henry JJ, Collin R, Perry KJ. The slipper snail, Crepidula: an emerging lophotrochozoan model system. THE BIOLOGICAL BULLETIN 2010; 218:211-229. [PMID: 20570845 DOI: 10.1086/bblv218n3p211] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent developmental and genomic research focused on "slipper snails" in the genus Crepidula has positioned Crepidula fornicata as a de facto model system for lophotrochozoan development. Here we review recent developments, as well as earlier reports demonstrating the widespread use of this system in studies of development and life history. Recent studies have resulted in a well-resolved fate map of embryonic cell lineage, documented mechanisms for axis determination and D quadrant specification, preliminary gene expression patterns, and the successful application of loss- and gain-of-function assays. The recent development of expressed sequence tags and preliminary genomics work will promote the use of this system, particularly in the area of developmental biology. A wealth of comparative information on phylogenetic relationships, variation in mode of development within the family, and numerous studies on larval biology and metamorphosis, primarily in Crepidula fornicata, make these snails a powerful tool for studies of the evolution of the mechanisms of development in the Mollusca and Lophotrochozoa. By bringing a review of the current state of knowledge of Crepidula life histories and development together with some detailed experimental methods, we hope to encourage further use of this system in various fields of investigation.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
41
|
Abstract
At least five animal phyla exhibit spiralian development, which is characterized by striking similarities in the geometry of the early cleavage pattern and the fate map of the blastula, along with similarities in larval morphology. Recent advances in reconstructing the phylogeny of spiralians and their relatives suggest that the common ancestor of a large clade of protostome phyla known as the Lophotrochozoa had spiralian development. In this minireview, I describe characteristics of spiralian development and some recent insights into its mechanisms and evolution.
Collapse
Affiliation(s)
- J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14607, USA.
| |
Collapse
|
42
|
A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 2009; 329:152-66. [PMID: 19382296 DOI: 10.1016/j.ydbio.2009.01.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the molluscan evolution leading to the bivalves, the single dorsal shell was doubled. To elucidate the molecular developmental basis underlying this prominent morphological transition, we described the cell cleavage and expression patterns of three genes, brachyury, engrailed, and dpp in the Japanese spiny oyster Saccostrea kegaki, and examined the function of dpp in this species. The cleavage pattern of the S. kegaki embryo was nearly the same as the previously described pattern of other bivalve species, suggesting that the pattern itself is highly important for the establishment or the maintenance of the bivalve body plan. The expression pattern of a brachyury homolog in S. kegaki (SkBra) was similar to the pattern in gastopods even at the single cell level despite the deep divergence of gastropods and bivalves. Engrailed and dpp were previously found to be expressed around the shell anlagen in gastropods. Like that of gastropods, an engrailed homolog in S. kegaki (SkEn) was found to be expressed around the shell anlagen. However, the dpp homologin S. kegaki (SkDpp) was expressed only in the cells along the dorsal midline. ZfBMP4 treatment experiments revealed the importance of dpp in establishing the characteristic shape of the bivalve shell anlagen.
Collapse
|
43
|
WILLIAMS ELIZABETHA, DEGNAN BERNARDM, GUNTER HELEN, JACKSON DANIELJ, WOODCROFT BENJ, DEGNAN SANDIEM. Widespread transcriptional changes pre-empt the critical pelagic-benthic transition in the vetigastropodHaliotis asinina. Mol Ecol 2009; 18:1006-25. [DOI: 10.1111/j.1365-294x.2008.04078.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
|
45
|
Gunter HM, Degnan BM. Impact of ecologically relevant heat shocks on Hsp developmental function in the vetigastropodHaliotis asinina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:450-64. [DOI: 10.1002/jez.b.21217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Henry JJ, Perry KJ. MAPK activation and the specification of the D quadrant in the gastropod mollusc, Crepidula fornicata. Dev Biol 2007; 313:181-95. [PMID: 18022612 DOI: 10.1016/j.ydbio.2007.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/24/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Embryos of the gastropod snail Crepidula fornicata exhibit a typical spiral cleavage pattern. Although a small polar lobe is formed at the first and second cleavage divisions, the embryo of C. fornicata exhibits a mode of development similar to that of equal-cleaving spiralians in which the D quadrant is conditionally specified by inductive interactions involving the derivatives of the first quartet micromeres. This study demonstrates that mitogen activated protein kinases, MAPK, are initially activated in the progeny of the first quartet micromeres, just prior to the birth of the third quartet (e.g., late during the 16-cell and subsequently during the 20-cell stages). Afterwards, MAPK is activated in 3D just prior to the 24-cell stage, transiently in 4d and finally in a subset of animal micromeres immediately following those stages. This pattern of MAPK activation differs from that reported for other spiralians. Using an inhibitor of MAPK kinase (MEK), we demonstrated that activated MAPK is required for the specification of the 3D macromere, during the late 16-cell through early 24-cell stages. This corresponds to the interval when the progeny of the first quartet micromeres specify the D quadrant macromere. Activated MAPK is not required in 3D later during the 24-cell stage or in the embryonic organizer, 4d, for its normal activity. Likewise, activated MAPK is not required in the animal micromeres during subsequent stages of development. Additional experiments suggest that the polar lobe, though not required for normal development, may play a role in restricting the activation of MAPK and biasing the specification of the 3D macromere.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | |
Collapse
|