1
|
Wu Y, Su K, Zhang Y, Liang L, Wang F, Chen S, Gao L, Zheng Q, Li C, Su Y, Mao Y, Zhu S, Chai C, Lan Q, Zhai M, Jin X, Zhang J, Xu X, Zhang Y, Gao Y, Huang H. A spatiotemporal transcriptomic atlas of mouse placentation. Cell Discov 2024; 10:110. [PMID: 39438452 PMCID: PMC11496649 DOI: 10.1038/s41421-024-00740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases. We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand-receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis. We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance. Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology.
Collapse
Affiliation(s)
- Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Kaizhen Su
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- BGI Research, Shenzhen, Guangdong, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Langchao Liang
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- BGI Research, Shenzhen, Guangdong, China
| | - Siyue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiutong Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunfei Su
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Simeng Zhu
- Department of Cardiology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochao Chai
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Lan
- BGI Research, Shenzhen, Guangdong, China
| | - Man Zhai
- BGI Research, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI Research, Shenzhen, Guangdong, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ya Gao
- BGI Research, Shenzhen, Guangdong, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, Guangdong, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Grah M, Poljak L, Starčević M, Stanojević M, Vukojević K, Saraga-Babić M, Salihagić AK. Does placental VEGF-A protein expression predict early neurological outcome of neonates from FGR complicated pregnancies? J Perinat Med 2024; 52:783-792. [PMID: 39028860 DOI: 10.1515/jpm-2024-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVES Fetal hypoxia due to placental dysfunction is the hallmark of fetal growth restriction (FGR). Preferential perfusion of the brain (brain-sparing effect), as a part of physiological placental cardiovascular compensatory mechanisms to hypoxia, in FGR was reported. Therefore, the correlation between vascular endothelial growth factor A (VEGF-A) protein expression in the FGR placentas and newborns' early neurological outcome was examined. METHODS This study included 50 women with FGR complicated pregnancies and 30 uneventful pregnancies. Fetal hemodynamic parameters, neonatal acid-base status after delivery, placental pathohistology and VEGF-A expression were followed. Early neonatal morphological brain evaluation by ultrasound and functional evaluation of neurological status by Amiel - Tison Neurological Assessment at Term (ATNAT) were performed. RESULTS VEGF-A protein expression level was significantly higher in the FGR placentas than normal term placentas (Fisher-Freeman-Halton's test, p≤0.001). No statistically significant correlation between placental VEGF-A expression and different prenatal and postnatal parameters was noticed. Whereas the alteration of an early neurological status assessed by ATNAT was found in 58 % of FGR newborns, morphological brain changes evaluated by UZV was noticed in 48 % of cases. No association between the level of placental VEGF-A expression and the early neurological deficits was found. CONCLUSIONS As far as we know this is the first study of a possible connection between VEGF-A protein expression in the FGR placentas and neonates' early neurological outcomes. The lack of correlation between the FGR placental VEGF-A expression and neonates' neurological outcome could indicate that optimal early neurodevelopment may take place due to compensatory mechanism not related to placental VEGF-A expression.
Collapse
Affiliation(s)
- Maja Grah
- Department of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", School of Medicine, 37632 University of Zagreb , Zagreb, Croatia
| | - Ljiljana Poljak
- Department of Physiology, School of Medicine, 37632 University of Zagreb , Zagreb, Croatia
| | - Mirta Starčević
- Division of Neonatology, Department of Gynecology and Obstetrics, Clinical Hospital Center "Zagreb", Zagreb, Croatia
| | - Milan Stanojević
- Neonatal Unit, Department of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", School of Medicine, 37632 University of Zagreb , Zagreb, Croatia
| | - Katarina Vukojević
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Mirna Saraga-Babić
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Aida Kadić Salihagić
- Department of Physiology, School of Medicine, 37632 University of Zagreb , Zagreb, Croatia
| |
Collapse
|
3
|
Dos Anjos Cordeiro JM, Santos LC, Santos BR, de Jesus Nascimento AE, Santos EO, Barbosa EM, de Macêdo IO, Mendonça LD, Sarmento-Neto JF, Pinho CS, Coura ETDS, Santos ADS, Rodrigues ME, Rebouças JS, De-Freitas-Silva G, Munhoz AD, de Lavor MSL, Silva JF. Manganese porphyrin-based treatment improves fetal-placental development and protects against oxidative damage and NLRP3 inflammasome activation in a rat maternal hypothyroidism model. Redox Biol 2024; 74:103238. [PMID: 38870780 PMCID: PMC11225907 DOI: 10.1016/j.redox.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1β, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.
Collapse
Affiliation(s)
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Emilly Oliveira Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Isabela Oliveira de Macêdo
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - José Ferreira Sarmento-Neto
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Clarice Santos Pinho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Acácio de Sá Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Marciel Elio Rodrigues
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual Do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Júlio Santos Rebouças
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Gilson De-Freitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Dias Munhoz
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Mário Sérgio Lima de Lavor
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil.
| |
Collapse
|
4
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
5
|
Guerrero-Arroyo J, Jiménez-Córdova MI, Aztatzi-Aguilar OG, Del Razo LM. Impact of Fluoride Exposure on Rat Placenta: Foetal/Placental Morphometric Alterations and Decreased Placental Vascular Density. Biol Trace Elem Res 2024; 202:3237-3247. [PMID: 37882978 DOI: 10.1007/s12011-023-03916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Inorganic fluoride is a geogenic and anthropogenic contaminant widely distributed in the environment and commonly identified in contaminated groundwater. There is limited information on the effect of fluoride exposure on pregnancy. The aim of this study was to evaluate possible placental alterations of fluoride exposure in a rat model simulating preconception and pregnancy exposure conditions in endemic areas. Fluoride exposure was administered orally to foetuses of dams exposed to 2.5 and 5 mg fluoride/kg/d. Foetal weight, height, foetal/placental weight ratio, placental zone thickness, levels of malondialdehyde (MDA) and vascular endothelial growth factor-A (VEGF-A) and vascular density in placental tissue were evaluated. The results showed a nonlinear relationship between these outcomes and the dose of fluoride exposure. In addition, a significant increase in the fluoride concentration in placental tissue was observed. The group that was exposed to 2.5 mg fluoride/kg/d had a greater increase in both MDA levels and VEGF-A levels than the higher dose group. A significant increase in the thickness of the placental zones and a decrease in the vascular density of the labyrinth zone area were also observed in the fluoride-exposed groups. In conclusion, the data obtained demonstrate that fluoride exposure results in morpho-structural alterations in the placenta and that non-monotonic changes in MDA, VEGF-A levels and placental foetal weight ratio were at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Jonathan Guerrero-Arroyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México
| | - Mónica I Jiménez-Córdova
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México
| | - Octavio G Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, México City, México.
| |
Collapse
|
6
|
Ghosh A, Kumar R, Kumar RP, Ray S, Saha A, Roy N, Dasgupta P, Marsh C, Paul S. The GATA transcriptional program dictates cell fate equilibrium to establish the maternal-fetal exchange interface and fetal development. Proc Natl Acad Sci U S A 2024; 121:e2310502121. [PMID: 38346193 PMCID: PMC10895349 DOI: 10.1073/pnas.2310502121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.
Collapse
Affiliation(s)
- Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Rajnish Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ram P Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Abhik Saha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Namrata Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
7
|
Bose R, Jana SS, Ain R. Cellular Prion protein moonlights vascular smooth muscle cell fate: Surveilled by trophoblast cells. J Cell Physiol 2023; 238:2794-2811. [PMID: 37819170 DOI: 10.1002/jcp.31130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Uterine spiral artery remodeling (uSAR) is a hallmark of hemochorial placentation. Compromised uSAR leads to adverse pregnancy outcomes. Salient developmental events involved in uSAR are active areas of research and include (a) trophendothelial cell invasion into the spiral arteries, selected demise of endothelial cells; (b) de-differentiation of vascular smooth muscle cells (VSMC); and (c) migration and/or death of VSMCs surrounding spiral arteries. Here we demonstrated that cellular prion (PRNP) is expressed in the rat metrial gland, the entry point of spiral arteries with the highest expression on E16.5, the day at which trophoblast invasion peaks. PRNP is expressed in VSMCs that drift away from the arterial wall. RNA interference of Prnp functionally restricted migration and invasion of rat VSMCs. Furthermore, PRNP interacted with two migration-promoting factors, focal adhesion kinase (FAK) and platelet-derived growth factor receptor-β (PDGFR-β), forming a ter-molecular complex in both the metrial gland and A7r5 cells. The presence of multiple putative binding site of odd skipped related-1 (OSR1) transcription factor on the Prnp promoter was observed using in silico promoter analysis. Ectopic overexpression of OSR1 increased, and knockdown of OSR1 decreased expression of PRNP in VSMCs. Coculture of VSMCs with rat primary trophoblast cells decreased the levels of OSR1 and PRNP. Interestingly, PRNP knockdown led to apoptotic death in ~9% of VSMCs and activated extrinsic apoptotic pathways. PRNP interacts with TRAIL-receptor DR4 and protects VSMCs from TRAIL-mediated apoptosis. These results highlight the biological functions of PRNP in VSMC cell-fate determination during uteroplacental development, an important determinant of healthy pregnancy outcome.
Collapse
Affiliation(s)
- Rumela Bose
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sarmita Sanjay Jana
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Abstract
Establishment of the hemochorial uterine-placental interface requires exodus of trophoblast cells from the placenta and their transformative actions on the uterus, which represent processes critical for a successful pregnancy, but are poorly understood. We examined the involvement of CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) in rat and human trophoblast cell development. The rat and human exhibit deep hemochorial placentation. CITED2 was distinctively expressed in the junctional zone (JZ) and invasive trophoblast cells of the rat. Homozygous Cited2 gene deletion resulted in placental and fetal growth restriction. Small Cited2 null placentas were characterized by disruptions in the JZ, delays in intrauterine trophoblast cell invasion, and compromised plasticity. In the human placentation site, CITED2 was uniquely expressed in the extravillous trophoblast (EVT) cell column and importantly contributed to the development of the EVT cell lineage. We conclude that CITED2 is a conserved regulator of deep hemochorial placentation.
Collapse
|
9
|
Zhu Y, Liu X, Xu Y, Lin Y. Hyperglycemia disturbs trophoblast functions and subsequently leads to failure of uterine spiral artery remodeling. Front Endocrinol (Lausanne) 2023; 14:1060253. [PMID: 37091848 PMCID: PMC10113679 DOI: 10.3389/fendo.2023.1060253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Uterine spiral artery remodeling is necessary for fetal growth and development as well as pregnancy outcomes. During remodeling, trophoblasts invade the arteries, replace the endothelium and disrupt the vascular smooth muscle, and are strictly regulated by the local microenvironment. Elevated glucose levels at the fetal-maternal interface are associated with disorganized placental villi and poor placental blood flow. Hyperglycemia disturbs trophoblast proliferation and invasion via inhibiting the epithelial-mesenchymal transition, altering the protein expression of related proteases (MMP9, MMP2, and uPA) and angiogenic factors (VEGF, PIGF). Besides, hyperglycemia influences the cellular crosstalk between immune cells, trophoblast, and vascular cells, leading to the failure of spiral artery remodeling. This review provides insight into molecular mechanisms and signaling pathways of hyperglycemia that influence trophoblast functions and uterine spiral artery remodeling.
Collapse
Affiliation(s)
- Yueyue Zhu
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yi Lin,
| |
Collapse
|
10
|
Reliability of Rodent and Rabbit Models in Preeclampsia Research. Int J Mol Sci 2022; 23:ijms232214344. [PMID: 36430816 PMCID: PMC9696504 DOI: 10.3390/ijms232214344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
In vivo studies on the pathology of gestation, including preeclampsia, often use small mammals such as rabbits or rodents, i.e., mice, rats, hamsters, and guinea pigs. The key advantage of these animals is their short reproductive cycle; in addition, similar to humans, they also develop a haemochorial placenta and present a similar transformation of maternal spiral arteries. Interestingly, pregnant dams also demonstrate a similar reaction to inflammatory factors and placentally derived antiangiogenic factors, i.e., soluble fms-like tyrosine kinase 1 (sFlt-1) or soluble endoglin-1 (sEng), as preeclamptic women: all animals present an increase in blood pressure and usually proteinuria. These constitute the classical duet that allows for the recognition of preeclampsia. However, the time of initiation of maternal vessel remodelling and the depth of trophoblast invasion differs between rabbits, rodents, and humans. Unfortunately, at present, no known animal replicates a human pregnancy exactly, and hence, the use of rabbit and rodent models is restricted to the investigation of individual aspects of human gestation only. This article compares the process of placentation in rodents, rabbits, and humans, which should be considered when planning experiments on preeclampsia; these aspects might determine the success, or failure, of the study. The report also reviews the rodent and rabbit models used to investigate certain aspects of the pathomechanism of human preeclampsia, especially those related to incorrect trophoblast invasion, placental hypoxia, inflammation, or maternal endothelial dysfunction.
Collapse
|
11
|
Abstract
The hemochorial placentation site is characterized by a dynamic interplay between trophoblast cells and maternal cells. These cells cooperate to establish an interface required for nutrient delivery to promote fetal growth. In the human, trophoblast cells penetrate deep into the uterus. This is not a consistent feature of hemochorial placentation and has hindered the establishment of suitable animal models. The rat represents an intriguing model for investigating hemochorial placentation with deep trophoblast cell invasion. In this study, we used single-cell RNA sequencing to characterize the transcriptome of the invasive trophoblast cell lineage, as well as other cell populations within the rat uterine-placental interface during early (gestation day [gd] 15.5) and late (gd 19.5) stages of intrauterine trophoblast cell invasion. We identified a robust set of transcripts that define invasive trophoblast cells, as well as transcripts that distinguished endothelial, smooth muscle, natural killer, and macrophage cells. Invasive trophoblast, immune, and endothelial cell populations exhibited distinct spatial relationships within the uterine-placental interface. Furthermore, the maturation stage of invasive trophoblast cell development could be determined by assessing gestation stage-dependent changes in transcript expression. Finally, and most importantly, expression of a prominent subset of rat invasive trophoblast cell transcripts is conserved in the invasive extravillous trophoblast cell lineage of the human placenta. These findings provide foundational data to identify and interrogate key conserved regulatory mechanisms essential for the development and function of an important compartment within the hemochorial placentation site that is essential for a healthy pregnancy.
Collapse
|
12
|
Dos Anjos Cordeiro JM, Santos LC, de Oliveira LS, Santos BR, Santos EO, Barbosa EM, de Macêdo IO, de Freitas GJC, Santos DDA, de Lavor MSL, Silva JF. Maternal hypothyroidism causes oxidative stress and endoplasmic reticulum stress in the maternal-fetal interface of rats. Free Radic Biol Med 2022; 191:24-39. [PMID: 36038036 DOI: 10.1016/j.freeradbiomed.2022.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Maternal hypothyroidism is associated with pre-eclampsia and intrauterine growth restriction, gestational diseases involving oxidative stress (OS) and endoplasmic reticulum stress (ERS) in the placenta. However, it is not known whether hypothyroidism also causes OS and ERS at the maternal-fetal interface. The aim was to evaluate the fetal-placental development and the expression of mediators of OS and of the unfolded protein response (UPR) in the maternal-fetal interface of hypothyroid rats. Hypothyroidism was induced in Wistar rats with propylthiouracil and the fetal-placental development and placental and decidual expression of antioxidant, hypoxia, and UPR mediators were analyzed at 14 and 18 days of gestation (DG), as well the expression of 8-OHdG and MDA, and reactive oxygen species (ROS) and peroxynitrite levels. Hypothyroidism reduced fetal weight at 14 and 18 DG, in addition to increasing the percentage of fetal death and reducing the weight of the uteroplacental unit at 18 DG. At 14 DG, there was greater decidual and/or placental immunostaining of Hif1α, 8-OHdG, MDA, SOD1, GPx1/2, Grp78 and CHOP in hypothyroid rats, while there was a reduction in placental and/or decidual gene expression of Sod1, Gpx1, Atf6, Perk, Ho1, Xbp1, Grp78 and Chop in the same gestational period. At 18 DG, hypothyroidism increased the placental ROS levels and the decidual and/or placental immunostaining of HIF1α, 8-OHdG, MDA, ATF4, GRP78 and CHOP, while it reduced the immunostaining and enzymatic activity of SOD1, CAT, GST. Hypothyroidism increased the placental mRNA expression of Hifα, Nrf2, Sod2, Gpx1, Cat, Perk, Atf6 and Chop at 18 DG, while decreasing the decidual expression of Sod2, Cat and Atf6. These findings demonstrated that fetal-placental restriction in female rats with hypothyroidism is associated with hypoxia and dysregulation in placental and decidual expression of UPR mediators and antioxidant enzymes, and activation of oxidative stress and endoplasmic reticulum stress at the maternal-fetal interface.
Collapse
Affiliation(s)
- Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Luciana Santos de Oliveira
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Isabela Oliveira de Macêdo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil
| | - Gustavo José Cota de Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel de Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mário Sérgio Lima de Lavor
- Hospital Veterinario, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilheus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus SoaneNazare de Andrade, 45662-900, Ilheus, Brazil.
| |
Collapse
|
13
|
Kozlosky D, Barrett E, Aleksunes LM. Regulation of Placental Efflux Transporters during Pregnancy Complications. Drug Metab Dispos 2022; 50:1364-1375. [PMID: 34992073 PMCID: PMC9513846 DOI: 10.1124/dmd.121.000449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
The placenta is essential for regulating the exchange of solutes between the maternal and fetal circulations. As a result, the placenta offers support and protection to the developing fetus by delivering crucial nutrients and removing waste and xenobiotics. ATP-binding cassette transporters, including multidrug resistance protein 1, multidrug resistance-associated proteins, and breast cancer resistance protein, remove chemicals through active efflux and are considered the primary transporters within the placental barrier. Altered transporter expression at the barrier could result in fetal exposure to chemicals and/or accumulation of xenobiotics within trophoblasts. Emerging data demonstrate that expression of these transporters is changed in women with pregnancy complications, suggesting potentially compromised integrity of placental barrier function. The purpose of this review is to summarize the regulation of placental efflux transporters during medical complications of pregnancy, including 1) placental inflammation/infection and chorioamnionitis, 2) hypertensive disorders of pregnancy, 3) metabolic disorders including gestational diabetes and obesity, and 4) fetal growth restriction/altered fetal size for gestational age. For each disorder, we review the basic pathophysiology and consider impacts on the expression and function of placental efflux transporters. Mechanisms of transporter dysregulation and implications for fetal drug and toxicant exposure are discussed. Understanding how transporters are up- or downregulated during pathology is important in assessing possible exposures of the fetus to potentially harmful chemicals in the environment as well as the disposition of novel therapeutics intended to treat placental and fetal diseases. SIGNIFICANCE STATEMENT: Diseases of pregnancy are associated with reduced expression of placental barrier transporters that may impact fetal pharmacotherapy and exposure to dietary and environmental toxicants.
Collapse
Affiliation(s)
- Danielle Kozlosky
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| | - Emily Barrett
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| |
Collapse
|
14
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
15
|
Chen X, Song QL, Ji R, Wang JY, Li ZH, Xiao ZN, Guo D, Yang J. Hypoxia-induced polarization of M2 macrophages and CCL5 secretion promotes the migration and invasion of trophoblasts. Biol Reprod 2022; 107:834-845. [PMID: 35594449 DOI: 10.1093/biolre/ioac100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
In the early stage of pregnancy, hypoxia in the placenta is of great significance to the migration and invasion of trophoblasts. In addition, changes to the polarity and activity of macrophages can affect embryo implantation, trophoblast migration and invasion, and vascular remodeling by affecting cytokine secretion. However, the mechanism of the effects of hypoxic conditions in the placenta on trophoblasts remains unknown. We used gene knockdown on macrophages, and drug treatment on trophoblasts, and cultured them under hypoxic and normoxic conditions. The cells were then subjected to wound healing assays, Transwell cell invasion experiments, quantitative real-time reverse transcription PCR, western blotting, and immunofluorescence. The polarization of macrophages in each group, the migration and invasion ability of trophoblasts, and changes to the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway were detected. Hypoxic conditions induce M2 polarization of macrophages. The conditioned medium from macrophages under hypoxic conditions increased the migration and invasion of trophoblasts, and enhanced the levels of phosphorylated (p)-PI3K and p-AKT in trophoblasts. After CCL5 knockdown in macrophages, the ability of conditioned medium from macrophages cultured under hypoxic conditions to promote the migration and invasion of trophoblasts was weakened significantly. The use of PI3K/AKT signaling pathway agonists could reverse the attenuation effect caused by CCL5 knockdown.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Qian Lin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Jia Yu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Ze Hong Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Zhuo Ni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - DuanYing Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| |
Collapse
|
16
|
Physiological Function of the Dynamic Oxygen Signaling Pathway at the Maternal-fetal Interface. J Reprod Immunol 2022; 151:103626. [DOI: 10.1016/j.jri.2022.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
17
|
Kostyleva O, Stabayeva L, Tussupbekova M, Mukhammad I, Kotov Y, Kossitsyn D, Zhuravlev SN. Erythroblasts in the Vessels of the Placenta – An Independent Factor of Chronic Hypoxic Damage to the Fetus. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The aim is a comparative histological study of the relative number of fetal erythroblasts in the vessels of the placentas from a full term pregnancy with a low and high risk of fetal hypoxic damage.
Material and methods. Based on data on the course of pregnancy, the state of health of the mother and the fetus/newborn, as well as histological examination of the placenta, 388 archived placenta tissue samples were selected in 2 groups: a high risk group for chronic hypoxic damage to the fetus and a group without clinical and laboratory signs of fetal/newborn hypoxia. The relationship between the number of erythroblasts in the vessels of the placenta and chronic hypoxic damage to the fetus was analyzed.
Results: The high risk of chronic hypoxic fetal damage is higher for placentas with ≥8 fetal erythroblasts in chorionic villi vessels (OR=3.175; 95% CI =1.921-5.248, p<0.001), with maternal vascular malperfusion (OR=2.798; 95% CI = 1.506-5.164, p=0.001) and combined (cross) placental lesions (OR=2.245; 95%CI=1.246-4.046, p =0.007) with damage of ≥30% of placental tissue.
Conclusion: 8 or more fetal erythroblasts in the lumen of the vessels of the placenta is an additional independent factor in chronic hypoxic damage to the fetus. These results are of practical importance for identifying a group of newborns with a high risk of chronic hypoxic damage in the perinatal period and stratification of the risk group in the postnatal period in order to reduce infant morbidity and mortality.
Collapse
|
18
|
Shukla V, Soares MJ. Modeling Trophoblast Cell-Guided Uterine Spiral Artery Transformation in the Rat. Int J Mol Sci 2022; 23:ijms23062947. [PMID: 35328368 PMCID: PMC8950824 DOI: 10.3390/ijms23062947] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022] Open
Abstract
The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-guided uterine spiral artery remodeling, which resembles human placentation. Uterine spiral arteries are extensively remodeled to deliver sufficient supply of maternal blood and nutrients to the developing fetus. Inadequacies in these key processes negatively impact fetal growth and development. Recent innovations in genome editing combined with effective phenotyping strategies have provided new insights into placental development. Application of these research approaches has highlighted both conserved and species-specific features of hemochorial placentation. The review provides foundational information on rat hemochorial placental development and function during physiological and pathological states, especially as related to the invasive trophoblast cell-guided transformation of uterine spiral arteries. Our goal is to showcase the utility of the rat as a model for in vivo mechanistic investigations targeting regulatory events within the uterine-placental interface.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: (V.S.); (M.J.S.)
| | - Michael J. Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO 64108, USA
- Correspondence: (V.S.); (M.J.S.)
| |
Collapse
|
19
|
Santos BR, dos Anjos Cordeiro JM, Santos LC, Barbosa EM, Mendonça LD, Santos EO, de Macedo IO, de Lavor MSL, Szawka RE, Serakides R, Silva JF. Kisspeptin treatment improves fetal-placental development and blocks placental oxidative damage caused by maternal hypothyroidism in an experimental rat model. Front Endocrinol (Lausanne) 2022; 13:908240. [PMID: 35966095 PMCID: PMC9365946 DOI: 10.3389/fendo.2022.908240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Maternal hypothyroidism is associated with fetal growth restriction, placental dysfunction, and reduced kisspeptin/Kiss1R at the maternal-fetal interface. Kisspeptin affects trophoblastic migration and has antioxidant and immunomodulatory activities. This study aimed to evaluate the therapeutic potential of kisspeptin in the fetal-placental dysfunction of hypothyroid Wistar rats. Hypothyroidism was induced by daily administration of propylthiouracil. Kisspeptin-10 (Kp-10) treatment was performed every other day or daily beginning on day 8 of gestation. Feto-placental development, placental histomorphometry, and expression levels of growth factors (VEGF, PLGF, IGF1, IGF2, and GLUT1), hormonal (Dio2) and inflammatory mediators (TNFα, IL10, and IL6), markers of hypoxia (HIF1α) and oxidative damage (8-OHdG), antioxidant enzymes (SOD1, Cat, and GPx1), and endoplasmic reticulum stress mediators (ATF4, GRP78, and CHOP) were evaluated on day 18 of gestation. Daily treatment with Kp-10 increased free T3 and T4 levels and improved fetal weight. Both treatments reestablished the glycogen cell population in the junctional zone. Daily treatment with Kp-10 increased the gene expression levels of Plgf, Igf1, and Glut1 in the placenta of hypothyroid animals, in addition to blocking the increase in 8-OHdG and increasing protein and/or mRNA expression levels of SOD1, Cat, and GPx1. Daily treatment with Kp-10 did not alter the higher protein expression levels of VEGF, HIF1α, IL10, GRP78, and CHOP caused by hypothyroidism in the junctional zone compared to control, nor the lower expression of Dio2 caused by hypothyroidism. However, in the labyrinth zone, this treatment restored the expression of VEGF and IL10 and reduced the GRP78 and CHOP immunostaining. These findings demonstrate that daily treatment with Kp-10 improves fetal development and placental morphology in hypothyroid rats, blocks placental oxidative damage, and increases the expression of growth factors and antioxidant enzymes in the placenta.
Collapse
Affiliation(s)
- Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Jeane Martinha dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Mário Sergio Lima de Lavor
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogeria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
- *Correspondence: Juneo Freitas Silva,
| |
Collapse
|
20
|
Roberts H, Woodman AG, Baines KJ, Jeyarajah MJ, Bourque SL, Renaud SJ. Maternal Iron Deficiency Alters Trophoblast Differentiation and Placental Development in Rat Pregnancy. Endocrinology 2021; 162:6396887. [PMID: 34647996 PMCID: PMC8559528 DOI: 10.1210/endocr/bqab215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Iron deficiency, which occurs when iron demands chronically exceed intake, is prevalent in pregnant women. Iron deficiency during pregnancy poses major risks for the baby, including fetal growth restriction and long-term health complications. The placenta serves as the interface between a pregnant mother and her baby, and it ensures adequate nutrient provisions for the fetus. Thus, maternal iron deficiency may impact fetal growth and development by altering placental function. We used a rat model of diet-induced iron deficiency to investigate changes in placental growth and development. Pregnant Sprague-Dawley rats were fed either a low-iron or iron-replete diet starting 2 weeks before mating. Compared with controls, both maternal and fetal hemoglobin were reduced in dams fed low-iron diets. Iron deficiency decreased fetal liver and body weight, but not brain, heart, or kidney weight. Placental weight was increased in iron deficiency, due primarily to expansion of the placental junctional zone. The stimulatory effect of iron deficiency on junctional zone development was recapitulated in vitro, as exposure of rat trophoblast stem cells to the iron chelator deferoxamine increased differentiation toward junctional zone trophoblast subtypes. Gene expression analysis revealed 464 transcripts changed at least 1.5-fold (P < 0.05) in placentas from iron-deficient dams, including altered expression of genes associated with oxygen transport and lipoprotein metabolism. Expression of genes associated with iron homeostasis was unchanged despite differences in levels of their encoded proteins. Our findings reveal robust changes in placentation during maternal iron deficiency, which could contribute to the increased risk of fetal distress in these pregnancies.
Collapse
Affiliation(s)
- Hannah Roberts
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Andrew G Woodman
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, T6G2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G2E1, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G2E1, Canada
| | - Kelly J Baines
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, T6G2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G2E1, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G2E1, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, N6C2V5, Canada
- Correspondence: Stephen J. Renaud, PhD, Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond St, London, Ontario, Canada N6A5C1.
| |
Collapse
|
21
|
Iqbal K, Pierce SH, Kozai K, Dhakal P, Scott RL, Roby KF, Vyhlidal CA, Soares MJ. Evaluation of Placentation and the Role of the Aryl Hydrocarbon Receptor Pathway in a Rat Model of Dioxin Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117001. [PMID: 34747641 PMCID: PMC8574979 DOI: 10.1289/ehp9256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR). OBJECTIVES The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action. METHODS Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological, biochemical, and molecular analyses. RESULTS TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine-placental interface were guided by the actions of TCDD on endothelial cells. DISCUSSION We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation of the hemochorial placenta. https://doi.org/10.1289/EHP9256.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Stephen H. Pierce
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Pramod Dhakal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Regan L. Scott
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Katherine F. Roby
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, KUMC, Kansas City, Kansas, USA
| | - Carrie A. Vyhlidal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, Missouri
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Michael J. Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Obstetrics and Gynecology, KUMC, Kansas City, Kansas, USA
| |
Collapse
|
22
|
The Impact of Hypoxia in Early Pregnancy on Placental Cells. Int J Mol Sci 2021; 22:ijms22189675. [PMID: 34575844 PMCID: PMC8466283 DOI: 10.3390/ijms22189675] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022] Open
Abstract
Oxygen levels in the placental microenvironment throughout gestation are not constant, with severe hypoxic conditions present during the first trimester. This hypoxic phase overlaps with the most critical stages of placental development, i.e., blastocyst implantation, cytotrophoblast invasion, and spiral artery remodeling initiation. Dysregulation of any of these steps in early gestation can result in pregnancy loss and/or adverse pregnancy outcomes. Hypoxia has been shown to regulate not only the self-renewal, proliferation, and differentiation of trophoblast stem cells and progenitor cells, but also the recruitment, phenotype, and function of maternal immune cells. In this review, we will summarize how oxygen levels in early placental development determine the survival, fate, and function of several important cell types, e.g., trophoblast stem cells, extravillous trophoblasts, syncytiotrophoblasts, uterine natural killer cells, Hofbauer cells, and decidual macrophages. We will also discuss the cellular mechanisms used to cope with low oxygen tensions, such as the induction of hypoxia-inducible factor (HIF) or mammalian target of rapamycin (mTOR) signals, regulation of the metabolic pathway, and adaptation to autophagy. Understanding the beneficial roles of hypoxia in early placental development will provide insights into the root cause(s) of some pregnancy disorders, such as spontaneous abortion, preeclampsia, and intrauterine growth restriction.
Collapse
|
23
|
Rosenkrantz JL, Gaffney JE, Roberts VHJ, Carbone L, Chavez SL. Transcriptomic analysis of primate placentas and novel rhesus trophoblast cell lines informs investigations of human placentation. BMC Biol 2021; 19:127. [PMID: 34154587 PMCID: PMC8218487 DOI: 10.1186/s12915-021-01056-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Proper placentation, including trophoblast differentiation and function, is essential for the health and well-being of both the mother and baby throughout pregnancy. Placental abnormalities that occur during the early stages of development are thought to contribute to preeclampsia and other placenta-related pregnancy complications. However, relatively little is known about these stages in humans due to obvious ethical and technical limitations. Rhesus macaques are considered an ideal surrogate for studying human placentation, but the unclear translatability of known human placental markers and lack of accessible rhesus trophoblast cell lines can impede the use of this animal model. RESULTS Here, we performed a cross-species transcriptomic comparison of human and rhesus placenta and determined that while the majority of human placental marker genes (HPGs) were similarly expressed, 952 differentially expressed genes (DEGs) were identified between the two species. Functional enrichment analysis of the 447 human-upregulated DEGs, including ADAM12, ERVW-1, KISS1, LGALS13, PAPPA2, PGF, and SIGLEC6, revealed over-representation of genes implicated in preeclampsia and other pregnancy disorders. Additionally, to enable in vitro functional studies of early placentation, we generated and thoroughly characterized two highly pure first trimester telomerase (TERT) immortalized rhesus trophoblast cell lines (iRP-D26 and iRP-D28A) that retained crucial features of isolated primary trophoblasts. CONCLUSIONS Overall, our findings help elucidate the molecular translatability between human and rhesus placenta and reveal notable expression differences in several HPGs and genes implicated in pregnancy complications that should be considered when using the rhesus animal model to study normal and pathological human placentation.
Collapse
Affiliation(s)
- Jimi L. Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Jessica E. Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Lucia Carbone
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, Portland, OR 97239 USA
- Department of Biomedical Engineering, Oregon Health and Science University School of Medicine, Portland, OR 97239 USA
| |
Collapse
|
24
|
Wang XH, Xu S, Zhou XY, Zhao R, Lin Y, Cao J, Zang WD, Tao H, Xu W, Li MQ, Zhao SM, Jin LP, Zhao JY. Low chorionic villous succinate accumulation associates with recurrent spontaneous abortion risk. Nat Commun 2021; 12:3428. [PMID: 34103526 PMCID: PMC8187647 DOI: 10.1038/s41467-021-23827-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/19/2021] [Indexed: 01/12/2023] Open
Abstract
Dysregulated extravillous trophoblast invasion and proliferation are known to increase the risk of recurrent spontaneous abortion (RSA); however, the underlying mechanism remains unclear. Herein, in our retrospective observational case-control study we show that villous samples from RSA patients, compared to healthy controls, display reduced succinate dehydrogenase complex iron sulfur subunit (SDHB) DNA methylation, elevated SDHB expression, and reduced succinate levels, indicating that low succinate levels correlate with RSA. Moreover, we find high succinate levels in early pregnant women are correlated with successful embryo implantation. SDHB promoter methylation recruited MBD1 and excluded c-Fos, inactivating SDHB expression and causing intracellular succinate accumulation which mimicked hypoxia in extravillous trophoblasts cell lines JEG3 and HTR8 via the PHD2-VHL-HIF-1α pathway; however, low succinate levels reversed this effect and increased the risk of abortion in mouse model. This study reveals that abnormal metabolite levels inhibit extravillous trophoblast function and highlights an approach for RSA intervention.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Sha Xu
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang-Yu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Zhao
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan Lin
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Cao
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei-Dong Zang
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Tao
- Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Wei Xu
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Shi-Min Zhao
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jian-Yuan Zhao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Metabolism and Integrative Biology, State Key Lab of Genetic Engineering, School of Life Sciences, Obstetrics & Gynecology Hospital of Fudan University, Key Laboratory of Reproduction Regulation of NPFPC, and Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China.
- Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Denkl B, Cordasic N, Huebner H, Menendez-Castro C, Schmidt M, Mocker A, Woelfle J, Hartner A, Fahlbusch FB. No evidence of the unfolded protein response in the placenta of two rodent models of preeclampsia and intrauterine growth restriction. Biol Reprod 2021; 105:449-463. [PMID: 33955453 DOI: 10.1093/biolre/ioab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/31/2021] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
In humans, intrauterine growth restriction (IUGR) and preeclampsia (PE) are associated with induction of the unfolded protein response (UPR) and increased placental endoplasmic reticulum (ER) stress. Especially in PE, oxidative stress occurs relative to the severity of maternal vascular underperfusion (MVU) of the placental bed. On the premise that understanding the mechanisms of placental dysfunction could lead to targeted therapeutic options for human IUGR and PE, we investigated the roles of the placental UPR and oxidative stress in two rodent models of these human gestational pathologies. We employed a rat IUGR model of gestational maternal protein restriction, as well as an endothelial nitric oxide synthase knockout mouse model (eNOS-/-) of PE/IUGR. Placental expression of UPR members was analyzed via qRT-PCR (Grp78, Calnexin, Perk, Chop, Atf6, and Ern1), immunohistochemistry, and Western blotting (Calnexin, ATF6, GRP78, CHOP, phospho-eIF2α, and phospho-IRE1). Oxidative stress was determined via Western blotting (3-nitrotyrosine and 4-hydroxy-2-nonenal). Both animal models showed a significant reduction of fetal and placental weight. These effects did not induce placental UPR. In contrast to human data, results from our rodent models suggest retention of placental plasticity in the setting of ER stress under an adverse gestational environment. Oxidative stress was significantly increased only in female IUGR rat placentas, suggesting a sexually dimorphic response to maternal malnutrition. Our study advances understanding of the involvement of the placental UPR in IUGR and PE. Moreover, it emphasizes the appropriate choice of animal models researching various aspects of these pregnancy complications.
Collapse
Affiliation(s)
- Barbara Denkl
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center EMN, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marius Schmidt
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Mocker
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center EMN, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Varberg KM, Soares MJ. Paradigms for investigating invasive trophoblast cell development and contributions to uterine spiral artery remodeling. Placenta 2021; 113:48-56. [PMID: 33985793 DOI: 10.1016/j.placenta.2021.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Uterine spiral arteries are extensively remodeled during placentation to ensure sufficient delivery of maternal blood to the developing fetus. Uterine spiral arterial remodeling is complex, as cells originating from both mother and developing conceptus interact at the maternal interface to regulate the extracellular matrix remodeling and vasculature restructuring necessary for successful placentation. Despite this complexity, one mechanism critical to spiral artery remodeling is trophoblast cell invasion into the maternal compartment. Invasive trophoblast cells include both interstitial and endovascular populations that exhibit spatiotemporal differences in uterine invasion, including proximity to uterine spiral arteries. Interstitial trophoblast cells invade the uterine parenchyma where they are interspersed among stromal cells. Endovascular trophoblast cells infiltrate uterine spiral arteries, replace endothelial cells, adopt a pseudo-endothelial cell phenotype, and engineer vessel remodeling. Impaired trophoblast cell invasion and, consequently, insufficient uterine spiral arterial remodeling can lead to the development of pregnancy disorders, such as preeclampsia, intrauterine growth restriction, and premature birth. This review provides insights into invasive trophoblast cells and their function during normal placentation as well as in settings of disease.
Collapse
Affiliation(s)
- Kaela M Varberg
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Missouri 64108, USA.
| |
Collapse
|
27
|
Siragher E, Sferruzzi-Perri AN. Placental hypoxia: What have we learnt from small animal models? Placenta 2021; 113:29-47. [PMID: 34074553 DOI: 10.1016/j.placenta.2021.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Intrauterine hypoxia is a feature of pregnancy complications, both at high altitude and sea level. To understand the placental response to reduced oxygen availability, small animal models of maternal inhalation hypoxia (MIH) or reduced uterine perfusion pressure (RUPP) may be utilised. The aim of this review was to compare the findings of those studies to identify the role of oxygen availability in adapting placental structural and functional phenotypes in relation to fetal outcome. It also sought to explore the evidence for the involvement of particular genes and protein signalling pathways in the placenta in mediating hypoxia driven alterations. The data available demonstrate that both MIH and RUPP can induce placental hypoxia, which affects placental structure and vascularity, as well as glucose, amino acid, calcium and possibly lipid transport capacity. In addition, changes have been observed in HIF, VEGF, insulin/IGF2, AMPK, mTOR, PI3K and PPARγ signalling, which may be key in linking together observed phenotypes under conditions of placental hypoxia. Many different manipulations have been examined, with varied outcomes depending on the intensity, timing and duration of the insult. Some manipulations have detrimental effects on placental phenotype, viability and fetal growth, whereas in others, the placenta appears to adapt to uphold fetal growth despite the challenge of low oxygen. Together these data suggest a complex response of the placenta to reduced oxygen availability, which links to changes in fetal outcomes. However, further work is required to explore the role of fetal sex, altered maternal physiology and placental molecular mechanisms to fully understand placental responses to hypoxia and their relevance for pregnancy outcome.
Collapse
Affiliation(s)
- Emma Siragher
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
28
|
Gragasin FS, Ospina MB, Serrano-Lomelin J, Kim SH, Kokotilo M, Woodman AG, Renaud SJ, Bourque SL. Maternal and Cord Blood Hemoglobin as Determinants of Placental Weight: A Cross-Sectional Study. J Clin Med 2021; 10:jcm10050997. [PMID: 33801215 PMCID: PMC7957881 DOI: 10.3390/jcm10050997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Both high and low placental weights are associated with adverse pregnancy outcomes. Maternal hemoglobin levels can influence placental weight, but the evidence is conflicting. Since maternal hemoglobin does not invariably correlate with fetal/neonatal blood hemoglobin levels, we sought to determine whether cord blood hemoglobin or maternal hemoglobin status more closely associates with placental weight in women undergoing elective cesarean section at term. Methods: This was a cross-sectional study conducted at the Royal Alexandra Hospital, Edmonton, Canada, involving 202 women with term singleton pregnancies undergoing elective cesarean section. Maternal blood and mixed cord blood hemoglobin levels were analyzed using a HemoCue Hb201+ system. Birth weight, placental weight, one- and five-minute APGAR scores, American Society of Anesthesiologists physical state classification, maternal age, and maternal height were also recorded. Relationships between maternal and cord blood hemoglobin levels with placental weight, birth weight, and birth weight to placental weight ratio were the main outcome measures. Results: A total of 182 subjects were included in the analysis. Regression analysis showed that cord blood hemoglobin, but not maternal hemoglobin, was inversely related with placental weight (β = −2.4, p = 0.001) and positively related with the birth weight to placental weight ratio (β = 0.015, p = 0.001 and p = 0.63, respectively). Conclusions: Our findings suggest that measuring cord blood hemoglobin levels, rather than maternal hemoglobin levels, may provide important diagnostic information about in utero fetal adaptation to suboptimal placental function and neonatal health.
Collapse
Affiliation(s)
- Ferrante S. Gragasin
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; (F.S.G.); (M.K.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; (M.B.O.); (J.S.-L.); (A.G.W.)
| | - Maria B. Ospina
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; (M.B.O.); (J.S.-L.); (A.G.W.)
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Jesus Serrano-Lomelin
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; (M.B.O.); (J.S.-L.); (A.G.W.)
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Su Hwan Kim
- Department of Mathematical & Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada;
| | - Matthew Kokotilo
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; (F.S.G.); (M.K.)
| | - Andrew G. Woodman
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; (M.B.O.); (J.S.-L.); (A.G.W.)
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Stephane L. Bourque
- Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; (F.S.G.); (M.K.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; (M.B.O.); (J.S.-L.); (A.G.W.)
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence: ; Tel.: +1-780-492-6000
| |
Collapse
|
29
|
Spiral Arteries in Second Trimester of Pregnancy: When Is It Possible to Define Expected Physiological Remodeling as Abnormal? Reprod Sci 2020; 28:1185-1193. [PMID: 33237514 DOI: 10.1007/s43032-020-00403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
After undergoing remodeling, uterine spiral arteries turn into wide, flexible tubes, with low resistance. If remodeling does not occur, spontaneous abortions, intrauterine growth restriction, and pregnancy-related hypertensive disorders can ensue. Arterial transformation begins at a very early gestational stage; however, second quarter pregnancy histopathological samples have yet to pinpoint the exact moment when abnormal remodeling transpires. We examined 100 samples, taken from consecutive abortions at 12-23 gestational weeks. Following Pijnenborg and Smith guidelines, blinded pathologists analyzed clinical data on remodeling stages. Lab results showed that arterial remodeling is not synchronic in all vessels; a single sample can include various remodeling stages; neither is remodeling homogenous in a single vessel: change may be occurring in one part of the vessel, but not in another. To our knowledge, no one has published this finding. In the examined age group, Smith stage IV predominates; around week 14, substantial muscle and endothelium loss takes place. After week 17, endovascular or fibrin trophoblast does not usually occur. Although scant consensus exists on what defines preeclampsia etiology, it is clear that it involves abnormal remodeling in decidua vessels. Improved understanding requires further knowledge on both the physiological and pathological aspects of the remodeling process. We observed that muscle and endothelial tissues disappear from weeks 14-17, after which time reendothelization predominates. We list the expected proportion of spiral artery changes for each gestational age which, to date, has not been available.
Collapse
|
30
|
Coats LE, Bamrick-Fernandez DR, Ariatti AM, Bakrania BA, Rawls AZ, Ojeda NB, Alexander BT. Stimulation of soluble guanylate cyclase diminishes intrauterine growth restriction in a rat model of placental ischemia. Am J Physiol Regul Integr Comp Physiol 2020; 320:R149-R161. [PMID: 33175587 DOI: 10.1152/ajpregu.00234.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Placental ischemia in preeclampsia (PE) results in hypertension and intrauterine growth restriction (IUGR). Stimulation of soluble guanylate cyclase (sGC) reduces blood pressure in the clinically relevant reduced uterine perfusion pressure (RUPP) rat model of PE, implicating involvement in RUPP-induced hypertension. However, the contribution of sGC in the development of IUGR in PE is not known. Thus, this study demonstrated the efficacy of Riociguat, an sGC stimulator, in IUGR reversion in the RUPP rat model of PE, and tested the hypothesis that improvement in fetal weight occurs in association with improvement in placental perfusion, placental morphology, and placental nutrient transport protein expression. Sham or RUPP surgery was performed at gestational day 14 (G14) with administration of vehicle (Sham or RUPP) or the sGC stimulator (Riociguat, 10 mg/kg/day sc; sGC-treated) until G20. Fetal weight was reduced (P = 0.004) at G20 in RUPP but not in sGC-treated RUPP compared with Sham, the control group. At G20, uterine artery resistance index (UARI) was increased (P = 0.010) in RUPP, indicating poor placental perfusion; proportional junctional zone surface area was elevated (P = 0.035), indicating impaired placental development. These effects were ameliorated in sGC-treated RUPP. Placental protein expression of nutrient transporter heart fatty acid-binding protein (hFABP) was increased (P = 0.008) in RUPP but not in sGC-treated RUPP, suggesting a compensatory mechanism to maintain normal neurodevelopment. Yet, UARI (P < 0.001), proportional junctional zone surface area (P = 0.013), and placental hFABP protein expression (P = 0.008) were increased in sGC-treated Sham, suggesting a potential adverse effect of Riociguat. Collectively, these results suggest sGC contributes to IUGR in PE.
Collapse
Affiliation(s)
- Laura E Coats
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Allison M Ariatti
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bhavisha A Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Z Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
31
|
Bian X, Liu J, Yang Q, Liu Y, Jia W, Zhang X, Li YX, Shao X, Wang YL. MicroRNA-210 regulates placental adaptation to maternal hypoxic stress during pregnancy†. Biol Reprod 2020; 104:418-429. [PMID: 33074310 DOI: 10.1093/biolre/ioaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miR)-210 is a well-known hypoxia-inducible small RNA. Increasing in vitro evidence demonstrates its involvement in regulating multiple behaviors of placental trophoblasts. However, direct in vivo evidence remains lacking. In the present study, we generated a miR-210-deficient mouse strain using CRISPR/Cas9 technology, in which miR-210 expression was markedly deficient in various tissues. Little influence on fertility rate and litter size was observed after the deletion of miR-210 in mice. Continuous exposure of pregnant mice to hypoxia (10.5% O2) from E6.5 to E10.5 or to E18.5 led to reduction in fetal weight, and such fetal weight loss was markedly worsened in miR-210-knockout dams. Analysis of the placental structure demonstrated the reduced expansion of placental spongiotrophoblast layer and hampered development of labyrinth fetal blood vessels in knockout mice compared to the wild-type controls upon hypoxia stimulation. The findings indicate that miR-210 participates in regulating placental adaptation to hypoxic stress during pregnancy.
Collapse
Affiliation(s)
- Xiaotao Bian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Yanlei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wentong Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Bhattacharya B, Home P, Ganguly A, Ray S, Ghosh A, Islam MR, French V, Marsh C, Gunewardena S, Okae H, Arima T, Paul S. Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal-fetal exchange interface. Proc Natl Acad Sci U S A 2020; 117:14280-14291. [PMID: 32513715 PMCID: PMC7322033 DOI: 10.1073/pnas.1920201117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.
Collapse
Affiliation(s)
- Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Pratik Home
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Avishek Ganguly
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Md Rashedul Islam
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Valerie French
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
33
|
A hypoxia-induced Rab pathway regulates embryo implantation by controlled trafficking of secretory granules. Proc Natl Acad Sci U S A 2020; 117:14532-14542. [PMID: 32513733 DOI: 10.1073/pnas.2000810117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Implantation is initiated when an embryo attaches to the uterine luminal epithelium and subsequently penetrates into the underlying stroma to firmly embed in the endometrium. These events are followed by the formation of an extensive vascular network in the stroma that supports embryonic growth and ensures successful implantation. Interestingly, in many mammalian species, these processes of early pregnancy occur in a hypoxic environment. However, the mechanisms underlying maternal adaptation to hypoxia during early pregnancy remain unclear. In this study, using a knockout mouse model, we show that the transcription factor hypoxia-inducible factor 2 alpha (Hif2α), which is induced in subluminal stromal cells at the time of implantation, plays a crucial role during early pregnancy. Indeed, when preimplantation endometrial stromal cells are exposed to hypoxic conditions in vitro, we observed a striking enhancement in HIF2α expression. Further studies revealed that HIF2α regulates the expression of several metabolic and protein trafficking factors, including RAB27B, at the onset of implantation. RAB27B is a member of the Rab family of GTPases that allows controlled release of secretory granules. These granules are involved in trafficking MMP-9 from the stroma to the epithelium to promote luminal epithelial remodeling during embryo invasion. As pregnancy progresses, the HIF2α-RAB27B pathway additionally mediates crosstalk between stromal and endothelial cells via VEGF granules, developing the vascular network critical for establishing pregnancy. Collectively, our study provides insights into the intercellular communication mechanisms that operate during adaptation to hypoxia, which is essential for embryo implantation and establishment of pregnancy.
Collapse
|
34
|
Nteeba J, Varberg KM, Scott RL, Simon ME, Iqbal K, Soares MJ. Poorly controlled diabetes mellitus alters placental structure, efficiency, and plasticity. BMJ Open Diabetes Res Care 2020; 8:8/1/e001243. [PMID: 32595139 PMCID: PMC7322553 DOI: 10.1136/bmjdrc-2020-001243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The hemochorial placenta provides a critical barrier at the maternal-fetal interface to modulate maternal immune tolerance and enable gas and nutrient exchange between mother and conceptus. Pregnancy outcomes are adversely affected by diabetes mellitus; however, the effects of poorly controlled diabetes on placental formation, and subsequently fetal development, are not fully understood. RESEARCH DESIGN AND METHODS Streptozotocin was used to induce hyperglycemia in pregnant rats for the purpose of investigating the impact of poorly controlled diabetes on placental formation and fetal development. The experimental paradigm of hypoxia exposure in the pregnant rat was also used to assess properties of placental plasticity. Euglycemic and hyperglycemic rats were exposed to ambient conditions (~21% oxygen) or hypoxia (10.5% oxygen) beginning on gestation day (gd) 6.5 and sacrificed on gd 13.5. To determine whether the interaction of hyperglycemia and hypoxia was directly altering trophoblast lineage development, rat trophoblast stem (TS) cells were cultured in high glucose (25 mM) and/or exposed to low oxygen (0.5% to 1.5%). RESULTS Diabetes caused placentomegaly and placental malformation, decreasing placental efficiency and fetal size. Elevated glucose disrupted rat TS cell differentiation in vitro. Evidence of altered trophoblast differentiation was also observed in vivo, as hyperglycemia affected the junctional zone transcriptome and interfered with intrauterine trophoblast invasion and uterine spiral artery remodeling. When exposed to hypoxia, hyperglycemic rats showed decreased proliferation and ectoplacental cone development on gd 9.5 and complete pregnancy loss by gd 13.5. Furthermore, elevated glucose concentrations inhibited TS cell responses to hypoxia in vitro. CONCLUSIONS Overall, these results indicate that alterations in placental development, efficiency, and plasticity could contribute to the suboptimal fetal outcomes in offspring from pregnancies complicated by poorly controlled diabetes.
Collapse
Affiliation(s)
- Jackson Nteeba
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kaela M Varberg
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Regan L Scott
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mikaela E Simon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael J Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
35
|
Zhong H, Geng Y, Chen J, Gao R, Yu C, Yang Z, Chen X, Mu X, Liu X, He J. Maternal exposure to CeO 2NPs during early pregnancy impairs pregnancy by inducing placental abnormalities. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121830. [PMID: 31836366 DOI: 10.1016/j.jhazmat.2019.121830] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 05/05/2023]
Abstract
Cerium dioxide nanoparticles (CeO2NPs) has been widely used in many fields, and also recommended as a promising carrier for cancer targeted drugs in human medicine for its excellent properties. However, its biological safety to human health remains controversial. In this study, we propose a mouse model exposed to CeO2NPs during early pregnancy, to clarify the effect of maternal CeO2NPs exposure and related molecular mechanism. Pregnant mice are injected intravenously with CeO2NPs by once a day on D5, D6, and D7. The effects of CeO2NPs exposure on pregnancy outcomes are observed on D8, D9, D10 and D12. The results show that CeO2NPs exposure during early pregnancy would lead to poor pregnancy outcomes. Further study find that low-quality decidualization, including the imbalance of trophoblast invasion regulators secreted by decidual cells and abnormal recruitment and differentiation of uNK cells, leads to subsequent biological negative "ripple effects", including placental dysfunction, fetal loss or growth restriction. This study broadens the understanding of the biological safety of CeO2NPs, and provide clues for the prevention of its negative biological effects. Improving the function of uNK cells can be used as one of the therapeutic targets to prevent negative effects of CeO2NPs on pregnancy.
Collapse
Affiliation(s)
- Hangtian Zhong
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Yanqing Geng
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Zhangyou Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Xinyi Mu
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Xueqing Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
36
|
Sato Y. Endovascular trophoblast and spiral artery remodeling. Mol Cell Endocrinol 2020; 503:110699. [PMID: 31899258 DOI: 10.1016/j.mce.2019.110699] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
Spiral artery remodeling, which is indispensable for successful pregnancy, is accomplished by endovascular trophoblasts that move upstream along the arterial wall, replace the endothelium, and disrupt the muscular lining. This review outlines the possible factors that could regulate endovascular trophoblast differentiation and invasion. First, high oxygen tension in the spiral artery could initiate endovascular trophoblast invasion. Second, activation of maternal decidual natural killer (dNK) cells could support perivascular invasion of interstitial trophoblasts and consequently could facilitate the endovascular trophoblast invasion. Third, maternal platelets trapped by the endovascular trophoblasts could enhance endovascular trophoblast invasion, which is in part mediated by chemokine CCL5 (C-C motif ligand 5) released from the activated platelets and chemokine receptor CCR1 (C-C chemokine receptor type 1) expressed specifically on the endovascular trophoblasts. The rat, in which trophoblast cells exhibit extensive interstitial and endovascular invasion, could be a suitable model animal for the study of human spiral artery remodeling. Apparently paradoxical results came from the rat study, i.e., exposure to hypoxia or depletion of dNK cells resulted in acceleration of the endovascular trophoblast invasion. This implies the presence of as-yet-undetermined regulator(s) whose effects on endovascular trophoblast invasion surpass the effects of surrounding oxygen tension or maternal dNK cells. In the future, clarification of the molecular differences between human interstitial and endovascular trophoblasts as well as establishment of the pregnant rat model exhibiting shallow endovascular trophoblast invasion and preeclamptic symptoms will contribute to elucidating the mechanism of spiral artery remodeling.
Collapse
Affiliation(s)
- Yukiyasu Sato
- Department of Obstetrics and Gynecology, Takamatsu Red Cross Hospital, 4-1-3 Banchou, Takamatsu, 760-0017, Japan.
| |
Collapse
|
37
|
Tao YT, Ding XB, Jin J, Zhang HB, Guo WP, Ruan L, Yang QL, Chen PC, Yao H, Chen X. Predicted rat interactome database and gene set linkage analysis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996022. [PMID: 33216897 PMCID: PMC7678787 DOI: 10.1093/database/baaa086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022]
Abstract
Rattus norvegicus, or the rat, has been widely used as animal models for a diversity of human diseases in the last 150 years. The rat, as a disease model, has the advantage of relatively large body size and highly similar physiology to humans. In drug discovery, rat models are routinely used in drug efficacy and toxicity assessments. To facilitate molecular pharmacology studies in rats, we present the predicted rat interactome database (PRID), which is a database of high-quality predicted functional gene interactions with balanced sensitivity and specificity. PRID integrates functional gene association data from 10 public databases and infers 305 939 putative functional associations, which are expected to include 13.02% of all rat protein interactions, and 52.59% of these function associations may represent protein interactions. This set of functional interactions may not only facilitate hypothesis formulation in molecular mechanism studies, but also serve as a reference interactome for users to perform gene set linkage analysis (GSLA), which is a web-based tool to infer the potential functional impacts of a set of changed genes observed in transcriptomics analyses. In a case study, we show that GSLA based on PRID may provide more precise and informative annotations for investigators to understand the physiological mechanisms underlying a phenotype and lead investigators to testable hypotheses for further studies. Widely used functional annotation tools such as Gene Ontology (GO) analysis, and Database for Annotation, Visualization and Integrated Discovery (DAVID) did not provide similar insights. Database URL: http://rat.biomedtzc.cn.
Collapse
Affiliation(s)
- Yu-Tian Tao
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Xiao-Bao Ding
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Jie Jin
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Hai-Bo Zhang
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Wen-Ping Guo
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Li Ruan
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Qiao-Lei Yang
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Peng-Cheng Chen
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Heng Yao
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xin Chen
- Institute of Big data and Artificial Intelligence in Medicine, School of Electronics & Information Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
38
|
Shanmugam S, Patel D, Wolpert JM, Keshvani C, Liu X, Bergeson SE, Kidambi S, Mahimainathan L, Henderson GI, Narasimhan M. Ethanol Impairs NRF2/Antioxidant and Growth Signaling in the Intact Placenta In Vivo and in Human Trophoblasts. Biomolecules 2019; 9:E669. [PMID: 31671572 PMCID: PMC6921053 DOI: 10.3390/biom9110669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
NRF2 is a redox-sensitive transcription factor that depending on the duration or magnitude of the stress, either translocates to the nucleus (beneficial) or is degraded in the cytosol (harmful). However, the role of NRF2-based mechanism(s) under ethanol (E)-induced developmental toxicity in the placental context remains unknown. Here, we used a rat prenatal model of maternal alcohol stress consisting of intermittent ethanol vapor (IEV) daily from GD11 to GD20 with a 6 h ON/18 h OFF in a vapor chamber and in vitro placental model consisting of HTR-8 trophoblasts exposed to 86 mM of E for either 24 h or 48 h. The role of NRF2 was evaluated through the NRF2-transactivation reporter assay, qRT-PCR, and Western blotting for NRF2 and cell growth-promoting protein, and cell proliferation assay. In utero and in vitro E decreased the nuclear NRF2 content and diminished its transactivation ability along with dysregulation of the proliferation indices, PCNA, CYCLIN-D1, and p21. This was associated with a ~50% reduction in cell proliferation in vitro in trophoblasts. Interestingly, this was found to be partially rescued by ectopic Nrf2 overexpression. These results indicate that ethanol-induced dysregulation of NRF2 coordinately regulates PCNA/CYCLIN-D1/p21 involving growth network, at least partially to set a stage for placental perturbations.
Collapse
Affiliation(s)
- Sambantham Shanmugam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Dhyanesh Patel
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - John M Wolpert
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Caezaan Keshvani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Xiaobo Liu
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Srivatsan Kidambi
- Department of Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA.
| | - Lenin Mahimainathan
- Department Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - George I Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79430, USA.
| |
Collapse
|
39
|
Dominguez JE, Krystal AD, Habib AS. Obstructive Sleep Apnea in Pregnant Women: A Review of Pregnancy Outcomes and an Approach to Management. Anesth Analg 2019; 127:1167-1177. [PMID: 29649034 DOI: 10.1213/ane.0000000000003335] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Among obese pregnant women, 15%-20% have obstructive sleep apnea (OSA) and this prevalence increases along with body mass index and in the presence of other comorbidities. Prepregnancy obesity and pregnancy-related weight gain are certainly risk factors for sleep-disordered breathing in pregnancy, but certain physiologic changes of pregnancy may also increase a woman's risk of developing or worsening OSA. While it has been shown that untreated OSA in postmenopausal women is associated with a range of cardiovascular, pulmonary, and metabolic comorbidities, a body of literature is emerging that suggests OSA may also have serious implications for the health of mothers and fetuses during and after pregnancy. In this review, we discuss the following: pregnancy as a vulnerable period for the development or worsening of OSA; the associations between OSA and maternal and fetal outcomes; the current screening modalities for OSA in pregnancy; and current recommendations regarding peripartum management of OSA.
Collapse
Affiliation(s)
| | - Andrew D Krystal
- Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.,Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
40
|
Soares MJ, Varberg KM, Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol Reprod 2019; 99:196-211. [PMID: 29481584 DOI: 10.1093/biolre/ioy049] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Abstract
Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA and the Center for Perinatal Research, Children΄s Research Institute, Children΄s Mercy, Kansas City, Missouri, USA
| | - Kaela M Varberg
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
41
|
Llurba Olive E, Xiao E, Natale DR, Fisher SA. Oxygen and lack of oxygen in fetal and placental development, feto-placental coupling, and congenital heart defects. Birth Defects Res 2019; 110:1517-1530. [PMID: 30576091 DOI: 10.1002/bdr2.1430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Low oxygen concentration (hypoxia) is part of normal embryonic development, yet the situation is complex. Oxygen (O2 ) is a janus gas with low levels signaling through hypoxia-inducible transcription factor (HIF) that are required for development of fetal and placental vasculature and fetal red blood cells. This results in coupling of fetus and mother around midgestation as a functional feto-placental unit (FPU) for O2 transport, which is required for continued growth and development of the fetus. Defects in these processes may leave the developing fetus vulnerable to O2 deprivation or other stressors during this critical midgestational transition when common septal and conotruncal heart defects (CHDs) are likely to arise. Recent human epidemiological and case-control studies support an association between placental dysfunction, manifest as early onset pre-eclampsia (PE) and increased serum bio-markers, and CHD. Animal studies support this association, in particular those using gene inactivation in the mouse. Sophisticated methods for gene inactivation, cell fate mapping, and a quantitative bio-reporter of O2 concentration support the premise that hypoxic stress at critical stages of development leads to CHD. The secondary heart field contributing to the cardiac outlet is a key target, with activation of the un-folded protein response and abrogation of FGF signaling or precocious activation of a cardiomyocyte transcriptional program for differentiation, suggested as mechanisms. These studies provide a strong foundation for further study of feto-placental coupling and hypoxic stress in the genesis of human CHD.
Collapse
Affiliation(s)
- Elisa Llurba Olive
- Director of the Obstetrics and Gynecology Department, Sant Pau University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,Maternal and Child Health and Development Network II (SAMID II) RD16/0022, Institute of Health Carlos III, Madrid, Spain
| | - Emily Xiao
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - David R Natale
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Diego, San Diego, California
| | - Steven A Fisher
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology and Biophysics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Abstract
Complications of pregnancy remain key drivers of morbidity and mortality, affecting the health of both the mother and her offspring in the short and long term. There is lack of detailed understanding of the pathways involved in the pathology and pathogenesis of compromised pregnancy, as well as a shortfall of effective prognostic, diagnostic and treatment options. In many complications of pregnancy, such as in preeclampsia, there is an increase in uteroplacental vascular resistance. However, the cause and effect relationship between placental dysfunction and adverse outcomes in the mother and her offspring remains uncertain. In this review, we aim to highlight the value of gestational hypoxia-induced complications of pregnancy in elucidating underlying molecular pathways and in assessing candidate therapeutic options for these complex disorders. Chronic maternal hypoxia not only mimics the placental pathology associated with obstetric syndromes like gestational hypertension at morphological, molecular and functional levels, but also recapitulates key symptoms that occur as maternal and fetal clinical manifestations of these pregnancy disorders. We propose that gestational hypoxia provides a useful model to study the inter-relationship between placental dysfunction and adverse outcomes in the mother and her offspring in a wide array of examples of complicated pregnancy, such as in preeclampsia.
Collapse
|
43
|
Nuzzo AM, Camm EJ, Sferruzzi-Perri AN, Ashmore TJ, Yung HW, Cindrova-Davies T, Spiroski AM, Sutherland MR, Logan A, Austin-Williams S, Burton GJ, Rolfo A, Todros T, Murphy MP, Giussani DA. Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant Therapy in a Rodent Model. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2704-2716. [PMID: 30248337 PMCID: PMC6284551 DOI: 10.1016/j.ajpath.2018.07.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/29/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
The placenta responds to adverse environmental conditions by adapting its capacity for substrate transfer to maintain fetal growth and development. Early-onset hypoxia effects on placental morphology and activation of the unfolded protein response (UPR) were determined using an established rat model in which fetal growth restriction is minimized. We further established whether maternal treatment with a mitochondria-targeted antioxidant (MitoQ) confers protection during hypoxic pregnancy. Wistar dams were exposed to normoxia (21% O2) or hypoxia (13% to 14% O2) from days 6 to 20 of pregnancy with and without MitoQ treatment (500 μmol/L in drinking water). On day 20, animals were euthanized and weighed, and the placentas from male fetuses were processed for stereology to assess morphology. UPR activation in additional cohorts of frozen placentas was determined with Western blot analysis. Neither hypoxic pregnancy nor MitoQ treatment affected fetal growth. Hypoxia increased placental volume and the fetal capillary surface area and induced mitochondrial stress as well as the UPR, as evidenced by glucose-regulated protein 78 and activating transcription factor (ATF) 4 protein up-regulation. MitoQ treatment in hypoxic pregnancy increased placental maternal blood space surface area and volume and prevented the activation of mitochondrial stress and the ATF4 pathway. The data suggest that mitochondria-targeted antioxidants may be beneficial in complicated pregnancy via mechanisms protecting against placental stress and enhancing placental perfusion.
Collapse
Affiliation(s)
- Anna M Nuzzo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Thomas J Ashmore
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Hong-Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Megan R Sutherland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Shani Austin-Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Tullia Todros
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Centre for Trophoblast Research, Cambridge, United Kingdom.
| |
Collapse
|
44
|
Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, Nishimura TE, Zhang SY, Agbor LN, Wu J, Keen HL, Naber MC, Pearson NA, Zimmerman KA, Weiss RM, Bowdler NC, Usachev YM, Santillan DA, Potthoff MJ, Pierce GL, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight 2018; 3:99403. [PMID: 30282823 DOI: 10.1172/jci.insight.99403] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Copeptin, a marker of arginine vasopressin (AVP) secretion, is elevated throughout human pregnancies complicated by preeclampsia (PE), and AVP infusion throughout gestation is sufficient to induce the major phenotypes of PE in mice. Thus, we hypothesized a role for AVP in the pathogenesis of PE. AVP infusion into pregnant C57BL/6J mice resulted in hypertension, renal glomerular endotheliosis, intrauterine growth restriction, decreased placental growth factor (PGF), altered placental morphology, placental oxidative stress, and placental gene expression consistent with human PE. Interestingly, these changes occurred despite a lack of placental hypoxia or elevations in placental fms-like tyrosine kinase-1 (FLT1). Coinfusion of AVP receptor antagonists and time-restricted infusion of AVP uncovered a mid-gestational role for the AVPR1A receptor in the observed renal pathologies, versus mid- and late-gestational roles for the AVPR2 receptor in the blood pressure and fetal phenotypes. These findings demonstrate that AVP is sufficient to initiate phenotypes of PE in the absence of placental hypoxia, and indicate that AVP may mechanistically (independently, and possibly synergistically with hypoxia) contribute to the development of clinical signs of PE in specific subtypes of human PE. Additionally, they identify divergent and gestational time-specific signaling mechanisms that mediate the development of PE phenotypes in response to AVP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Donna A Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Matthew J Potthoff
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Gary L Pierce
- Department of Health & Human Physiology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center
| | - Katherine N Gibson-Corley
- Department of Pathology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,Fraternal Order of Eagles' Diabetes Research Center, and
| | - Curt D Sigmund
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Mark K Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Justin L Grobe
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
45
|
Wie JH, Ko HS, Choi SK, Park IY, Kim A, Kim HS, Shin JC. Effects of Oncostatin M on Invasion of Primary Trophoblasts under Normoxia and Hypoxia Conditions. Yonsei Med J 2018; 59:879-886. [PMID: 30091322 PMCID: PMC6082983 DOI: 10.3349/ymj.2018.59.7.879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To investigate the effect of oncostatin M (OSM) on protein expression levels and enzymatic activities of matrix metalloprotainase (MMP)-2 and MMP-9 in primary trophoblasts and the invasiveness thereof under normoxia and hypoxia conditions. MATERIALS AND METHODS Protein expression levels and enzymatic activities of MMP-2 and MMP-9 in primary trophoblasts under normoxia and hypoxia conditions were examined by Western blot and zymography, respectively. Effects of exogenous OSM on the in vitro invasion activity of trophoblasts according to oxygen concentration were also determined. Signal transducer and activator of transcription 3 (STAT3) siRNA was used to determine whether STAT3 activation in primary trophoblasts was involved in the effect of OSM. RESULTS OSM enhanced protein expression levels and enzymatic activities of MMP-2 and MMP-9 in term trophoblasts under hypoxia condition, compared to normoxia control (p<0.05). OSM-induced MMP-2 and MMP-9 enzymatic activities were significantly suppressed by STAT3 siRNA silencing under normoxia and hypoxia conditions (p<0.05). Hypoxia alone or OSM alone did not significantly increase the invasiveness of term trophoblasts. However, the invasion activity of term trophoblasts was significantly increased by OSM under hypoxia, compared to that without OSM treatment under normoxia. CONCLUSION OSM might be involved in the invasiveness of extravillous trophoblasts under hypoxia conditions via increasing MMP-2 and MMP-9 enzymatic activities through STAT3 signaling. Increased MMP-9 activity by OSM seems to be more important in primary trophoblasts.
Collapse
Affiliation(s)
- Jeong Ha Wie
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Yang Park
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahyoung Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Chul Shin
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
46
|
Banadakoppa M, Balakrishnan M, Yallampalli C. Upregulation and release of soluble fms-like tyrosine kinase receptor 1 mediated by complement activation in human syncytiotrophoblast cells. Am J Reprod Immunol 2018; 80:e13033. [PMID: 30099798 DOI: 10.1111/aji.13033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023] Open
Abstract
PROBLEM Antiangiogenic molecule soluble fms-like tyrosine kinase receptor 1 (sFLT1) released from trophoblast cells is associated with pregnancy-specific hypertensive disorder pre-eclampsia. Cause of elevated sFLT1 in pre-eclampsia patients is not well understood. Despite evidence of excess systemic and placental complement activation in pre-eclampsia patients, its role in pathophysiology is not clear. If the complement activation plays a role in upregulation and secretion of sFLT1 is not known. METHOD OF STUDY Human trophoblast cells were isolated from term placentas and allowed to syncytialize. Complement was activated in vitro at sublethal levels on syncytiotrophoblast cells. Effect of complement activation on expression and release of sFLT1 was assessed by comparing its levels in these cells with and without complement activation. RESULTS Sublethal level of complement activation on syncytialized human trophoblast cells induced upregulation of sFLT1 mRNA and protein. Complement also induced secretion of sFLT1 in a manner depending on degree of activation. Anaphylatoxins C3a induced upregulation but not the release of sFLT1. Release of terminal membrane attack complex (MAC) was associated with sFLT1 secretion. CONCLUSION Complement activation plays a major role in both the expression and secretion of sFLT1 from syncytial trophoblast cells. The terminal MAC complex is involved in its secretion. Increased levels of sFLT1 in pre-eclampsia patients may be due to complement-induced upregulation and secretion.
Collapse
Affiliation(s)
- Manu Banadakoppa
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Meena Balakrishnan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
47
|
Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt RJ, Gelencser Z, Palhalmi J, Chung TH, Gyorffy BA, Orosz L, Demeter A, Szecsi A, Hunyadi-Gulyas E, Darula Z, Simor A, Eder K, Szabo S, Topping V, El-Azzamy H, LaJeunesse C, Balogh A, Szalai G, Land S, Torok O, Dong Z, Kovalszky I, Falus A, Meiri H, Draghici S, Hassan SS, Chaiworapongsa T, Krispin M, Knöfler M, Erez O, Burton GJ, Kim CJ, Juhasz G, Papp Z. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol 2018; 9:1661. [PMID: 30135684 PMCID: PMC6092567 DOI: 10.3389/fimmu.2018.01661] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, United States
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | | | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Balazs Andras Gyorffy
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Laszlo Orosz
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anett Szecsi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Hunyadi-Gulyas
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Katalin Eder
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Vanessa Topping
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Haidy El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Christopher LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Susan Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Olga Torok
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Sorin Draghici
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Department of Clinical and Translational Science, Wayne State University, Detroit, MI, United States
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Gabor Juhasz
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| |
Collapse
|
48
|
Silva JF, Ocarino NM, Serakides R. Spatiotemporal expression profile of proteases and immunological, angiogenic, hormonal and apoptotic mediators in rat placenta before and during intrauterine trophoblast migration. Reprod Fertil Dev 2018; 29:1774-1786. [PMID: 27737730 DOI: 10.1071/rd16280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022] Open
Abstract
The gene and/or protein expression of proteases and immunological, angiogenic, hormonal and apoptotic mediators was evaluated in rat placenta before and during intrauterine trophoblast migration. The depth of interstitial and endovascular intrauterine trophoblast invasion and the immunohistochemical expression of vascular endothelial growth factor (VEGF), fetal liver kinase 1 (Flk1), interferon (IFN)-γ, migration inhibitory factor (MIF), and inducible nitric oxide synthase (iNOS; also known as nitric oxide synthase (NOS) 2) were evaluated. In addition, the expression of the Vegf, Flk1, placental growth factor (Pigf), soluble fms-like tyrosine kinase 1 (sFlt1), placental lactogen 1 (Pl1), proliferin-related protein (rPlf), placental leptin (Lep), Toll-like receptor 2 (Tlr2), Toll-like receptor 4 (Tlr4), Infg, Mif, tumour necrosis factor-α (Tnf), interleukin-10 (Il10), Nos2, caspase 3 (Casp3), Bax, Bcl2, matrix metalloproteinase 2 (Mmp2) and matrix metalloproteinase 9 (Mmp9) genes was determined by real-time reverse transcription-polymerase chain reaction. At 10 days gestation, gene expression of Tlr2, Tlr4, Tnf, Infg, Il10, Casp3, Pigf, sFlt1 and Lep (P<0.05) were higher than at 14 and/or 19 days of gestation. The beginning of intrauterine trophoblast invasion, i.e., at 14 days of gestation, coincided with higher gene and/or protein expression of MMP9, VEGF, Flk1, NOS2, MIF, BAX and rPlf compared to days 10 and 19 (P<0.05). In contrast, gene expression of Mmp2 and Pl1 was higher at the end of trophoblast invasion compared to 10 and 14 days of gestation (P<0.05). In conclusion, before intrauterine trophoblast migration, expression of TLRs and immunological and pro-apoptotic mediators is higher, whereas the beginning of trophoblast migration is characterised by higher expression of the pro-angiogenic factors NOS2 and MMP9. In contrast, MMP2 and PL1 expression is higher at the end of intrauterine trophoblast migration.
Collapse
Affiliation(s)
- Juneo F Silva
- Laboratório de Histologia Animal, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, 45662-900, Ilhéus, Bahia, Brazil
| | - Natália M Ocarino
- Laboratório de Patologia, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha, Avenida Antônio Carlos, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Laboratório de Patologia, Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Campus Pampulha, Avenida Antônio Carlos, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
49
|
Yang Y, Abdulhasan M, Awonuga A, Bolnick A, Puscheck EE, Rappolee DA. Hypoxic Stress Forces Adaptive and Maladaptive Placental Stress Responses in Early Pregnancy. Birth Defects Res 2018; 109:1330-1344. [PMID: 29105384 DOI: 10.1002/bdr2.1149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
Abstract
This review focuses on hypoxic stress and its effects on the placental lineage and the earliest differentiation events in mouse and human placental trophoblast stem cells (TSCs). Although the placenta is a decidual organ at the end of pregnancy, its earliest rapid growth and function at the start of pregnancy precedes and supports growth and function of the embryo. Earliest function requires that TSCs differentiate, however, "hypoxia" supports rapid growth, but not differentiation of TSCs. Most of the literature on earliest placental "hypoxia" studies used 2% oxygen which is normoxic for TSCs. Hypoxic stress happens when oxygen level drops below 2%. It decreases anabolism, proliferation, potency/stemness and increases differentiation, despite culture conditions that would sustain proliferation and potency. Thus, to study the pathogenesis due to TSC dysfunction, it is important to study hypoxic stress below 2%. Many studies have been performed using 0.5 to 1% oxygen in cultured mouse TSCs. From all these studies, a small number has examined human trophoblast lines and primary first trimester placental hypoxic stress responses in culture. Some other stress stimuli, aside from hypoxic stress, are used to elucidate common and unique aspects of hypoxic stress. The key outcomes produced by hypoxic stress are mitochondrial, anabolic, and proliferation arrest, and this is coupled with stemness loss and differentiation. Hypoxic stress can lead to depletion of stem cells and miscarriage, or can lead to later dysfunctions in placentation and fetal development. Birth Defects Research 109:1330-1344, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Yang
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Awoniyi Awonuga
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Institutes for Environmental Health Science, Wayne state University School of Medicine, Detroit, Michigan.,Department of Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
50
|
Soares MJ, Iqbal K, Kozai K. Hypoxia and Placental Development. Birth Defects Res 2018; 109:1309-1329. [PMID: 29105383 DOI: 10.1002/bdr2.1135] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
Abstract
Hemochorial placentation is orchestrated through highly regulated temporal and spatial decisions governing the fate of trophoblast stem/progenitor cells. Trophoblast cell acquisition of specializations facilitating invasion and uterine spiral artery remodeling is a labile process, sensitive to the environment, and represents a process that is vulnerable to dysmorphogenesis in pathologic states. Hypoxia is a signal guiding placental development, and molecular mechanisms directing cellular adaptations to low oxygen tension are integral to trophoblast cell differentiation and placentation. Hypoxia can also be used as an experimental tool to investigate regulatory processes controlling hemochorial placentation. These developmental processes are conserved in mouse, rat, and human placentation. Consequently, elements of these developmental events can be modeled and hypotheses tested in trophoblast stem cells and in genetically manipulated rodents. Hypoxia is also a consequence of a failed placenta, yielding pathologies that can adversely affect maternal adjustments to pregnancy, fetal health, and susceptibility to adult disease. The capacity of the placenta for adaptation to environmental challenges highlights the importance of its plasticity in safeguarding a healthy pregnancy. Birth Defects Research 109:1309-1329, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas.,Fetal Health Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|