1
|
Yoshioka H, Ueta M, Fukuoka H, Yokoi N, Mizushima K, Naito Y, Kinoshita S, Sotozono C. Alteration of Gene Expression in Pathological Keratinization of the Ocular Surface. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 38935029 PMCID: PMC11216254 DOI: 10.1167/iovs.65.6.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose To investigate the molecular mechanism of pathological keratinization in the chronic phase of ocular surface (OS) diseases. Methods In this study, a comprehensive gene expression analysis was performed using oligonucleotide microarrays on OS epithelial cells obtained from three patients with pathological keratinization (Stevens-Johnson syndrome [n = 1 patient], ocular cicatricial pemphigoid [n = 1 patient], and anterior staphyloma [n = 1 patient]). The controls were three patients with conjunctivochalasis. The expression in some transcripts was confirmed using quantitative real-time PCR. Results Compared to the controls, 3118 genes were significantly upregulated by a factor of 2 or more than one-half in the pathological keratinized epithelial cells (analysis of variance P < 0.05). Genes involved in keratinization, lipid metabolism, and oxidoreductase were upregulated, while genes involved in cellular response, as well as known transcription factors (TFs), were downregulated. Those genes were further analyzed with respect to TFs and retinoic acid (RA) through gene ontology analysis and known reports. The expression of TFs MYBL2, FOXM1, and SREBF2, was upregulated, and the TF ELF3 was significantly downregulated. The expression of AKR1B15, RDH12, and CRABP2 (i.e., genes related to RA, which is known to suppress keratinization) was increased more than twentyfold, whereas the expression of genes RARB and RARRES3 was decreased by 1/50. CRABP2, RARB, and RARRES3 expression changes were also confirmed by qRT-PCR. Conclusions In pathological keratinized ocular surfaces, common transcript changes, including abnormalities in vitamin A metabolism, are involved in the mechanism of pathological keratinization.
Collapse
Affiliation(s)
- Hokoru Yoshioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Camerino M, Chang W, Cvekl A. Analysis of long-range chromatin contacts, compartments and looping between mouse embryonic stem cells, lens epithelium and lens fibers. Epigenetics Chromatin 2024; 17:10. [PMID: 38643244 PMCID: PMC11031936 DOI: 10.1186/s13072-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.
Collapse
Affiliation(s)
- Michael Camerino
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - William Chang
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - Ales Cvekl
- The Departments Genetics, Albert Einstein College of Medicine, NY10461, Bronx, USA.
- Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY10461, Bronx, USA.
| |
Collapse
|
3
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application. Stem Cell Rev Rep 2022; 18:2817-2832. [PMID: 35913555 DOI: 10.1007/s12015-022-10435-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Deficiency and dysfunction of corneal cells leads to the blindness observed in corneal diseases such as limbal stem cell deficiency (LSCD) and bullous keratopathy. Regenerative cell therapies and engineered corneal tissue are promising treatments for these diseases [1]. However, these treatments are not yet clinically feasible due to inadequate cell sources. The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has provided a multitude of opportunities in research because iPSCs can be generated from somatic cells, thus providing an autologous and unlimited source for corneal cells. Compared to other stem cell sources such as mesenchymal and embryonic, iPSCs have advantages in differentiation potential and ethical concerns, respectively. Efforts have been made to use iPSCs to model corneal disorders and diseases, drug testing [2], and regenerative medicine [1]. Autologous treatments based on iPSCs can be exorbitantly expensive and time-consuming, but development of stem cell banks with human leukocyte antigen (HLA)- homozygous cell lines can provide cost- and time-efficient allogeneic alternatives. In this review, we discuss the early development of the cornea because protocols differentiating iPSCs toward corneal lineages rely heavily upon recapitulating this development. Differentiation of iPSCs toward corneal cell phenotypes have been analyzed with an emphasis on feeder-free, xeno-free, and well-defined protocols, which have clinical relevance. The application, challenges, and potential of iPSCs in corneal research are also discussed with a focus on hurdles that prevent clinical translation.
Collapse
|
5
|
Selzer EB, Blain D, Hufnagel RB, Lupo PJ, Mitchell LE, Brooks BP. Review of Evidence for Environmental Causes of Uveal Coloboma. Surv Ophthalmol 2021; 67:1031-1047. [PMID: 34979194 DOI: 10.1016/j.survophthal.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Uveal coloboma is a condition defined by missing ocular tissues and is a significant cause of childhood blindness. It occurs from a failure of the optic fissure to close during embryonic development,and may lead to missing parts of the iris, ciliary body, retina, choroid, and optic nerve. Because there is no treatment for coloboma, efforts have focused on prevention. While several genetic causes of coloboma have been identified, little definitive research exists regarding the environmental causes of this condition. We review the current literature on environmental factors associated with coloboma in an effort to guide future research and preventative counseling related to this condition.
Collapse
Affiliation(s)
- Evan B Selzer
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
6
|
Cho K, Lee SM, Heo J, Kwon YM, Chung D, Yu WJ, Bae SS, Choi G, Lee DS, Kim Y. Retinaldehyde Dehydrogenase Inhibition-Related Adverse Outcome Pathway: Potential Risk of Retinoic Acid Synthesis Inhibition during Embryogenesis. Toxins (Basel) 2021; 13:toxins13110739. [PMID: 34822523 PMCID: PMC8623920 DOI: 10.3390/toxins13110739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid (RA) is one of the factors crucial for cell growth, differentiation, and embryogenesis; it interacts with the retinoic acid receptor and retinoic acid X receptor to eventually regulate target gene expression in chordates. RA is transformed from retinaldehyde via oxidization by retinaldehyde dehydrogenase (RALDH), which belongs to the family of oxidoreductases. Several chemicals, including disulphiram, diethylaminobenzaldehyde, and SB-210661, can effectively inhibit RALDH activity, potentially causing reproductive and developmental toxicity. The modes of action can be sequentially explained based on the molecular initiating event toward key events, and finally the adverse outcomes. Adverse outcome pathway (AOP) is a conceptual and theoretical framework that describes the sequential chain of casually liked events at different biological levels from molecular events to adverse effects. In the present review, we discussed a recently registered AOP (AOP297; inhibition of retinaldehyde dehydrogenase leads to population decline) to explain and support the weight of evidence for RALDH inhibition-related developmental toxicity using the existing knowledge.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Sang-Moo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea;
| | - Jina Heo
- Department of Growth Engine Research, Chungbuk Research Institute (CRI), Chungju 28517, Korea;
| | - Yong Min Kwon
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dawoon Chung
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Woon-Jong Yu
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Seung Seob Bae
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Grace Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
- Correspondence: (D.-S.L.); (Y.K.)
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
- Correspondence: (D.-S.L.); (Y.K.)
| |
Collapse
|
7
|
Choe H, Kim MJ, Jeon HJ, Kim K, Kim C, Park J, Shin J, Lee SR, Lee SE. Acute toxicity of the insecticide EPN upon zebrafish (Danio rerio) embryos and its related adverse effects: Verification of abnormal cardiac development and seizure-like events. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112544. [PMID: 34325195 DOI: 10.1016/j.ecoenv.2021.112544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Toxicological studies of O-ethyl-O-(4-nitrophenyl) phenylphosphonothioate (EPN) to aquatic vertebrates have been reported, but no reports on toxic mechanism was reported. As zebrafish (Danio rerio) embryos were exposed to EPN, no changes in their survival and hatching rates were observed until 96 h post fertilization (hpf), even at the highest treated concentration of 500 μg/L. In both 250 μg/L and 500 μg/L, edemas were observed in the heart and yolk sac, and a blood pool was also found. Acridine orange staining confirmed apoptotic phynotype, which was the strongest in embryos at 48 hpf. No noticeable difference in the formation and the shape of blood vessels of Tg(fli1a:EGFP) was observed. However, the total body length and number of somite were decreased. Heart formation in Tg(cmlc2:EGFP) were not properly proceeded, and the ventricle did not beat normally at 500 μg/L level. Cardiac development-related genes, myl7 and nppa, were significantly down- and up-regulated in a concentration-dependent manner. The slowed heartbeat was confirmed using Tg(gata1:EGFP), showing stagnant blood flow and seizure-like events were observed. Altogether, EPN can be the cause for the abnormal heart development accompanied by blood stagnation in embryos, interfering normal development with their inner circulatory system.
Collapse
Affiliation(s)
- Hyeseung Choe
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myoung-Jin Kim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hwang-Ju Jeon
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyeongnam Kim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Integrative Biology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jungeun Park
- Department of Integrative Biology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Junnyeong Shin
- Zefit, Inc., 16 Techno gongwon-ro, Hyeonpung-eup, Dalseong-gun, Daegu 43017, Republic of Korea
| | - Sang-Ryong Lee
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Amirmokhtari N, Foresi BD, Dewan SS, Bouhenni RA, Smith MA. Absence of Cytochrome P450-1b1 Increases Susceptibility of Pressure-Induced Axonopathy in the Murine Retinal Projection. Front Cell Dev Biol 2021; 9:636321. [PMID: 33748124 PMCID: PMC7973214 DOI: 10.3389/fcell.2021.636321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 01/14/2023] Open
Abstract
Mutations in the cytochrome P450-1B1 (Cyp1b1) gene is a common genetic predisposition associated with various human glaucomas, most prominently in primary congenital glaucoma (PCG). The role of Cyp1b1 in the eye is largely unknown, however, its absence appears to drive the maldevelopment of anterior eye structures responsible for aqueous fluid drainage in murine models. Nevertheless, vision loss in glaucoma ultimately results from the structural and functional loss of retinal ganglion cells (RGCs). Cyp1b1’s influence in the development and support of retinal ganglion cell structure and function under normal conditions or during stress, such as elevated ocular pressure; the most common risk factor in glaucoma, remains grossly unknown. Thus, to determine the role of Cyp1b1 in normal retinal projection development we first assessed the strucutrual integrity of RGCs in the retina, optic nerve, and superior colliculus in un-manipulated (naïve) Cyp1b1-knockout (Cyp1b1–/–) mice. In addition, in a separate cohort of Cyp1b1–/– and wildtype mice, we elevated and maintained intraocular pressure (IOP) at glaucomatous levels for 5-weeks, after which we compared RGC density, node of Ranvier morphology, and axonal transport between the genotypes. Our results demonstrate that naïve Cyp1b1–/– mice develop an anatomically intact retinal projection absent of overt glaucomatous pathology. Following pressure elevation, Cyp1b1–/– accelerated degradation of axonal transport from the retina to the superior colliculus and altered morphology of the nodes of Ranvier and adjacent paranodes in the optic nerves. Together this data suggests the absence Cyp1b1 expression alone is insufficient to drive murine glaucomatous pathology, however, may increase the vulnerability of retinal axons to disease relevant elevations in IOP.
Collapse
Affiliation(s)
- Naseem Amirmokhtari
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Integrated Pharmaceutical Medicine Graduate Program, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brian D Foresi
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Shiv S Dewan
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Rachida A Bouhenni
- Rebecca D. Considine Research Institute, Vision Center, Akron Children's Hospital, Akron, OH, United States
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Rebecca D. Considine Research Institute, Vision Center, Akron Children's Hospital, Akron, OH, United States
| |
Collapse
|
9
|
Han X, Feng J, Guo T, Loh YHE, Yuan Y, Ho TV, Cho CK, Li J, Jing J, Janeckova E, He J, Pei F, Bi J, Song B, Chai Y. Runx2-Twist1 interaction coordinates cranial neural crest guidance of soft palate myogenesis. eLife 2021; 10:e62387. [PMID: 33482080 PMCID: PMC7826157 DOI: 10.7554/elife.62387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cranial neural crest (CNC) cells give rise to bone, cartilage, tendons, and ligaments of the vertebrate craniofacial musculoskeletal complex, as well as regulate mesoderm-derived craniofacial muscle development through cell-cell interactions. Using the mouse soft palate as a model, we performed an unbiased single-cell RNA-seq analysis to investigate the heterogeneity and lineage commitment of CNC derivatives during craniofacial muscle development. We show that Runx2, a known osteogenic regulator, is expressed in the CNC-derived perimysial and progenitor populations. Loss of Runx2 in CNC-derivatives results in reduced expression of perimysial markers (Aldh1a2 and Hic1) as well as soft palate muscle defects in Osr2-Cre;Runx2fl/fl mice. We further reveal that Runx2 maintains perimysial marker expression through suppressing Twist1, and that myogenesis is restored in Osr2-Cre;Runx2fl/fl;Twist1fl/+ mice. Collectively, our findings highlight the roles of Runx2, Twist1, and their interaction in regulating the fate of CNC-derived cells as they guide craniofacial muscle development through cell-cell interactions.
Collapse
Affiliation(s)
- Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yong-Hwee Eddie Loh
- USC Libraries Bioinformatics Services, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Courtney Kyeong Cho
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jing Bi
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Brian Song
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| |
Collapse
|
10
|
Williams AL, Bohnsack BL. The Ocular Neural Crest: Specification, Migration, and Then What? Front Cell Dev Biol 2021; 8:595896. [PMID: 33425902 PMCID: PMC7785809 DOI: 10.3389/fcell.2020.595896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
During vertebrate embryonic development, a population of dorsal neural tube-derived stem cells, termed the neural crest (NC), undergo a series of morphogenetic changes and extensive migration to become a diverse array of cell types. Around the developing eye, this multipotent ocular NC cell population, called the periocular mesenchyme (POM), comprises migratory mesenchymal cells that eventually give rise to many of the elements in the anterior of the eye, such as the cornea, sclera, trabecular meshwork, and iris. Molecular cell biology and genetic analyses of congenital eye diseases have provided important information on the regulation of NC contributions to this area of the eye. Nevertheless, a complete understanding of the NC as a contributor to ocular development remains elusive. In addition, positional information during ocular NC migration and the molecular pathways that regulate end tissue differentiation have yet to be fully elucidated. Further, the clinical challenges of ocular diseases, such as Axenfeld-Rieger syndrome (ARS), Peters anomaly (PA) and primary congenital glaucoma (PCG), strongly suggest the need for better treatments. While several aspects of NC evolution have recently been reviewed, this discussion will consolidate the most recent current knowledge on the specification, migration, and contributions of the NC to ocular development, highlighting the anterior segment and the knowledge obtained from the clinical manifestations of its associated diseases. Ultimately, this knowledge can inform translational discoveries with potential for sorely needed regenerative therapies.
Collapse
Affiliation(s)
- Antionette L Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Brenda L Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States.,Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Lee JY, Park S, Lim W, Song G. Picolinafen exerts developmental toxicity via the suppression of oxidative stress and angiogenesis in zebrafish embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104734. [PMID: 33357556 DOI: 10.1016/j.pestbp.2020.104734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Picolinafen, a phytoene desaturase-inhibiting herbicide, has been used since 2001 to control the growth of broadleaf weeds. Picolinafen has lower solubility and volatility, and shows lower toxicity to non-target insect species than other types of herbicide. Although picolinafen has been detected in lakes near urban environments and induces chronic toxicity in the mammals, birds, and some aquatic organisms, no study has investigated the toxicity or mode of action of picolinafen in zebrafish. In this study, we demonstrated the lethality and acute LC50 value of picolinafen towards zebrafish embryos. Picolinafen hampered the development of embryos by the induction of morphological abnormalities via apoptosis. Additionally, picolinafen suppressed the generation of reactive oxygen species and angiogenesis. Also, the angiogenesis related genes, flt1 and flt4 mRNA expression was decreased in zebrafish embryos. This study provides a mechanistic understanding of the developmental toxicity of picolinafen in vertebrates.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Comai GE, Tesařová M, Dupé V, Rhinn M, Vallecillo-García P, da Silva F, Feret B, Exelby K, Dollé P, Carlsson L, Pryce B, Spitz F, Stricker S, Zikmund T, Kaiser J, Briscoe J, Schedl A, Ghyselinck NB, Schweitzer R, Tajbakhsh S. Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biol 2020; 18:e3000902. [PMID: 33201874 PMCID: PMC7707851 DOI: 10.1371/journal.pbio.3000902] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 12/01/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.
Collapse
Affiliation(s)
- Glenda Evangelina Comai
- Stem Cells & Development Unit, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
- * E-mail: (GEC); (ST)
| | - Markéta Tesařová
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Valérie Dupé
- Université de Rennes, CNRS, IGDR, Rennes, France
| | - Muriel Rhinn
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | | | - Fabio da Silva
- Université Côte d'Azur, INSERM, CNRS, iBV, Nice, France
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Betty Feret
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | | | - Pascal Dollé
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Brian Pryce
- Research Division, Shriners Hospital for Children, Portland, United States of America
| | - François Spitz
- Genomics of Animal Development Unit, Institut Pasteur, Paris, France
| | - Sigmar Stricker
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | | | | | - Norbert B. Ghyselinck
- IGBMC-Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, United States of America
| | - Shahragim Tajbakhsh
- Stem Cells & Development Unit, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
- * E-mail: (GEC); (ST)
| |
Collapse
|
13
|
Weigele J, Bohnsack BL. Genetics Underlying the Interactions between Neural Crest Cells and Eye Development. J Dev Biol 2020; 8:jdb8040026. [PMID: 33182738 PMCID: PMC7712190 DOI: 10.3390/jdb8040026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases.
Collapse
Affiliation(s)
- Jochen Weigele
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-227-6180; Fax: +1-312-227-9411
| |
Collapse
|
14
|
Yoon KH, Fox SC, Dicipulo R, Lehmann OJ, Waskiewicz AJ. Ocular coloboma: Genetic variants reveal a dynamic model of eye development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:590-610. [PMID: 32852110 DOI: 10.1002/ajmg.c.31831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.
Collapse
Affiliation(s)
- Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
15
|
Van Der Meulen KL, Vöcking O, Weaver ML, Meshram NN, Famulski JK. Spatiotemporal Characterization of Anterior Segment Mesenchyme Heterogeneity During Zebrafish Ocular Anterior Segment Development. Front Cell Dev Biol 2020; 8:379. [PMID: 32528955 PMCID: PMC7266958 DOI: 10.3389/fcell.2020.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Assembly of the ocular anterior segment (AS) is a critical event during development of the vertebrate visual system. Failure in this process leads to anterior segment dysgenesis (ASD), which is characterized by congenital blindness and predisposition to glaucoma. The anterior segment is largely formed via a neural crest-derived population, the Periocular Mesenchyme (POM). In this study, we aimed to characterize POM behaviors and transcriptional identities during early establishment of the zebrafish AS. Two-color fluorescent in situ hybridization suggested that early AS associated POM comprise of a heterogenous population. In vivo and time-course imaging analysis of POM distribution and migratory dynamics analyzed using transgenic zebrafish embryos (Tg[foxc1b:GFP], Tg[foxd3:GFP], Tg[pitx2:GFP], Tg[lmx1b.1:GFP], and Tg[sox10:GFP]) revealed unique AS distribution and migratory behavior among the reporter lines. Based on fixed timepoint and real-time analysis of POM cell behavior a comprehensive model for colonization of the zebrafish AS was assembled. Furthermore, we generated single cell transcriptomic profiles (scRNA) from our POM reporter lines and characterized unique subpopulation expression patterns. Based on scRNA clustering analysis we observed cluster overlap between neural crest associated (sox10/foxd3), POM (pitx2) and finally AS specified cells (lmx1b, and foxc1b). scRNA clustering also revealed several novel markers potentially associated with AS development and/or function including lum, fmoda, adcyap1b, tgfbi, and hmng2. Taken together, our data indicates that AS-associated POM, or Anterior Segment Mesenchyme (ASM), is not homogeneous but rather comprised of several subpopulations with differing colonization patterns, migration behavior, and transcriptomic profiles.
Collapse
Affiliation(s)
| | - Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Megan L Weaver
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Nishita N Meshram
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jakub K Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Eckert P, Knickmeyer MD, Heermann S. In Vivo Analysis of Optic Fissure Fusion in Zebrafish: Pioneer Cells, Basal Lamina, Hyaloid Vessels, and How Fissure Fusion is Affected by BMP. Int J Mol Sci 2020; 21:ijms21082760. [PMID: 32316164 PMCID: PMC7215994 DOI: 10.3390/ijms21082760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Colobomata, persistent optic fissures, frequently cause congenital blindness. Here, we focused on optic fissure fusion using in vivo time-lapse imaging in zebrafish. We identified the fusion initiating cells, which we termed “pioneer cells.” Based on morphology, localization, and downregulation of the neuroretinal (NR) precursor marker rx2, these cells could be considered as retinal pigment epithelial (RPE) progenitors. Notably, pioneer cells regain rx2 expression and integrate into the NR after fusion, indicating that they do not belong to the pool of RPE progenitors, supported by the lack of RPE marker expression in pioneer cells. They establish the first cellular contact between the margins in the proximal fissure region and separate the hyaloid artery and vein. After initiation, the fusion site is progressing distally, increasing the distance between the hyaloid artery and vein. A timed BMP (Bone Morphogenetic Protein) induction, resulting in coloboma, did not alter the morphology of the fissure margins, but it did affect the expression of NR and RPE markers within the margins. In addition, it resulted in a persisting basal lamina and persisting remnants of periocular mesenchyme and hyaloid vasculature within the fissure, supporting the necessity of BMP antagonism within the fissure margins. The hampered fissure fusion had severe effects on the vasculature of the eye.
Collapse
Affiliation(s)
- Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Max D. Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Correspondence:
| |
Collapse
|
17
|
Eckert P, Knickmeyer MD, Schütz L, Wittbrodt J, Heermann S. Morphogenesis and axis specification occur in parallel during optic cup and optic fissure formation, differentially modulated by BMP and Wnt. Open Biol 2020; 9:180179. [PMID: 30958096 PMCID: PMC6395882 DOI: 10.1098/rsob.180179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Optic cup morphogenesis is an intricate process. Especially, the formation of the optic fissure is not well understood. Persisting optic fissures, termed coloboma, are frequent causes for congenital blindness. Even though the defective fusion of the fissure margins is the most acknowledged reason for coloboma, highly variable morphologies of coloboma phenotypes argue for a diverse set of underlying pathomechanisms. Here, we investigate optic fissure morphogenesis in zebrafish to identify potential morphogenetic defects resulting in coloboma. We show that the formation of the optic fissure depends on tissue flow movements, integrated into the bilateral distal epithelial flow forming the optic cup. On the temporal side, the distal flow translates into a ventral perpendicular flow, shaping the temporal fissure margin. On the nasal side, however, the distal flow is complemented by tissue derived from the optic stalk, shaping the nasal fissure margin. Notably, a distinct population of TGFβ-signalling positive cells is translocated from the optic stalk into both fissure margins. Furthermore, we show that induced BMP signalling as well as Wnt-signalling inhibition result in morphogenetic defects of the optic fissure. Our data also indicate that morphogenesis is crucial for a proper positioning of pre-specified dorsal–ventral optic cup domains.
Collapse
Affiliation(s)
- Priska Eckert
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany.,2 Faculty of Biology, University of Freiburg , Schaenzlestrasse 1, 79104 Freiburg , Germany
| | - Max D Knickmeyer
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany.,2 Faculty of Biology, University of Freiburg , Schaenzlestrasse 1, 79104 Freiburg , Germany
| | - Lucas Schütz
- 3 Centre for Organismal Studies, Heidelberg University , 69120 Heidelberg , Germany
| | - Joachim Wittbrodt
- 3 Centre for Organismal Studies, Heidelberg University , 69120 Heidelberg , Germany
| | - Stephan Heermann
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany
| |
Collapse
|
18
|
Kalaskar VK, Alur RP, Li LK, Thomas JW, Sergeev YV, Blain D, Hufnagel RB, Cogliati T, Brooks BP. High-throughput custom capture sequencing identifies novel mutations in coloboma-associated genes: Mutation in DNA-binding domain of retinoic acid receptor beta affects nuclear localization causing ocular coloboma. Hum Mutat 2019; 41:678-695. [PMID: 31816153 PMCID: PMC7027867 DOI: 10.1002/humu.23954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 10/04/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022]
Abstract
Uveal coloboma is a potentially blinding congenital ocular malformation caused by the failure of optic fissure closure during the fifth week of human gestation. We performed custom capture high‐throughput screening of 38 known coloboma‐associated genes in 66 families. Suspected causative novel variants were identified in TFAP2A and CHD7, as well as two previously reported variants of uncertain significance in RARB and BMP7. The variant in RARB, unlike previously reported disease mutations in the ligand‐binding domain, was a missense change in the highly conserved DNA‐binding domain predicted to affect the protein's DNA‐binding ability. In vitro studies revealed lower steady‐state protein levels, reduced transcriptional activity, and incomplete nuclear localization of the mutant RARB protein compared with wild‐type. Zebrafish studies showed that human RARB messenger RNA partially reduced the ocular phenotype caused by morpholino knockdown of rarga gene, a zebrafish homolog of human RARB. Our study indicates that sequence alterations in known coloboma genes account for a small percentage of coloboma cases and that mutations in the RARB DNA‐binding domain could result in human disease.
Collapse
Affiliation(s)
- Vijay K Kalaskar
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Ramakrishna P Alur
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - LeeAnn K Li
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - James W Thomas
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Yuri V Sergeev
- Protein Biochemistry and Molecular Modeling Group, OGVFB, NEI, NIH, Bethesda, Maryland
| | - Delphine Blain
- Ophthalmic Clinical Genetics Section, OGVFB, NEI, NIH, Bethesda, Maryland
| | - Robert B Hufnagel
- Medical Genetics and Ophthalmic Genomics Unit, OGVFB, NEI, NIH, Bethesda, Maryland
| | - Tiziana Cogliati
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Brian P Brooks
- Pediatric, Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch (OGVFB), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, Maryland.,Ophthalmic Clinical Genetics Section, OGVFB, NEI, NIH, Bethesda, Maryland
| |
Collapse
|
19
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
20
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
21
|
Pilarski JQ, Leiter JC, Fregosi RF. Muscles of Breathing: Development, Function, and Patterns of Activation. Compr Physiol 2019; 9:1025-1080. [PMID: 31187893 DOI: 10.1002/cphy.c180008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Biological and Dental Sciences, Idaho State University Pocatello, Idaho, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Ralph F Fregosi
- Departments of Physiology and Neuroscience, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
22
|
Williams AL, Bohnsack BL. What's retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development. Genesis 2019; 57:e23308. [PMID: 31157952 DOI: 10.1002/dvg.23308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A (retinol), is an essential morphogen signaling molecule and major regulator of embryonic development. The dysregulation of RA levels during embryogenesis has been associated with numerous congenital anomalies, including craniofacial, auditory, and ocular defects. These anomalies result from disruptions in the cranial neural crest, a vertebrate-specific transient population of stem cells that contribute to the formation of diverse cell lineages and embryonic structures during development. In this review, we summarize our current knowledge of the RA-mediated regulation of cranial neural crest induction at the edge of the neural tube and the migration of these cells into the craniofacial region. Further, we discuss the role of RA in the regulation of cranial neural crest cells found within the frontonasal process, periocular mesenchyme, and pharyngeal arches, which eventually form the bones and connective tissues of the head and neck and contribute to structures in the anterior segment of the eye. We then review our understanding of the mechanisms underlying congenital craniofacial and ocular diseases caused by either the genetic or toxic disruption of RA signaling. Finally, we discuss the role of RA in maintaining neural crest-derived structures in postembryonic tissues and the implications of these studies in creating new treatments for degenerative craniofacial and ocular diseases.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Knickmeyer MD, Mateo JL, Eckert P, Roussa E, Rahhal B, Zuniga A, Krieglstein K, Wittbrodt J, Heermann S. TGFβ-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biol 2019; 8:rsob.170134. [PMID: 29593116 PMCID: PMC5881030 DOI: 10.1098/rsob.170134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/02/2018] [Indexed: 12/25/2022] Open
Abstract
The optic fissure is a transient gap in the developing vertebrate eye, which must be closed as development proceeds. A persisting optic fissure, coloboma, is a major cause for blindness in children. Although many genes have been linked to coloboma, the process of optic fissure fusion is still little appreciated, especially on a molecular level. We identified a coloboma in mice with a targeted inactivation of transforming growth factor β2 (TGFβ2). Notably, here the optic fissure margins must have touched, however failed to fuse. Transcriptomic analyses indicated an effect on remodelling of the extracellular matrix (ECM) as an underlying mechanism. TGFβ signalling is well known for its effect on ECM remodelling, but it is at the same time often inhibited by bone morphogenetic protein (BMP) signalling. Notably, we also identified two BMP antagonists among the downregulated genes. For further functional analyses we made use of zebrafish, in which we found TGFβ ligands expressed in the developing eye, and the ligand binding receptor in the optic fissure margins where we also found active TGFβ signalling and, notably, also gremlin 2b (grem2b) and follistatin a (fsta), homologues of the regulated BMP antagonists. We hypothesized that TGFβ is locally inducing expression of BMP antagonists within the margins to relieve the inhibition from its regulatory capacity regarding ECM remodelling. We tested our hypothesis and found that induced BMP expression is sufficient to inhibit optic fissure fusion, resulting in coloboma. Our findings can likely be applied also to other fusion processes, especially when TGFβ signalling or BMP antagonism is involved, as in fusion processes during orofacial development.
Collapse
Affiliation(s)
- Max D Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Juan L Mateo
- Departamento de Informática, Universidad de Oviedo, Jesús Arias de Velasco, Oviedo 33005, Spain
| | - Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Belal Rahhal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Aimee Zuniga
- Developmental Genetics, University of Basel Medical School, Basel CH-4058, Switzerland
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | | | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
24
|
Chawla B, Swain W, Williams AL, Bohnsack BL. Retinoic Acid Maintains Function of Neural Crest-Derived Ocular and Craniofacial Structures in Adult Zebrafish. Invest Ophthalmol Vis Sci 2019; 59:1924-1935. [PMID: 29677354 PMCID: PMC5894920 DOI: 10.1167/iovs.17-22845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinoic acid (RA) is required for embryonic formation of the anterior segment of the eye and craniofacial structures. The present study further investigated the role of RA in maintaining the function of these neural crest–derived structures in adult zebrafish. Methods Morphology and histology were analyzed by using live imaging, methylacrylate sections, and TUNEL assay. Functional analysis of vision and aqueous humor outflow were assayed with real-time imaging. Results Both decreased and increased RA signaling altered craniofacial and ocular structures in adult zebrafish. Exogenous treatment with all-trans RA for 5 days resulted in a prognathic jaw, while inhibition of endogenous RA synthesis through treatment with 4-diethylaminobenzaldehyde (DEAB) decreased head height. In adult eyes, RA activity was localized to the retinal pigment epithelium, photoreceptors, outer plexiform layer, inner plexiform layer, iris stroma, and ventral canalicular network. Exogenous RA increased apoptosis in the iris stroma and canalicular network in the ventral iridocorneal angle, resulting in the loss of these structures and decreased aqueous outflow. DEAB, which decreased RA activity throughout the eye, induced widespread apoptosis, resulting in corneal edema, cataracts, retinal atrophy, and loss of iridocorneal angle structures. DEAB-treated fish were blind with no optokinetic response and no aqueous outflow from the anterior chamber. Conclusions Tight control of RA levels is required for normal structure and function of the adult anterior segment. These studies demonstrated that RA plays an important role in maintaining ocular and craniofacial structures in adult zebrafish.
Collapse
Affiliation(s)
- Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - William Swain
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
25
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
26
|
Luo Z, Zhong X, Li K, Xie B, Liu Y, Ye M, Li K, Xu C, Ge J. An Optimized System for Effective Derivation of Three-Dimensional Retinal Tissue via Wnt Signaling Regulation. Stem Cells 2018; 36:1709-1722. [DOI: 10.1002/stem.2890] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ziming Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Yuchun Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Chaochao Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou Guangdong People's Republic of China
| |
Collapse
|
27
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
28
|
Zieger E, Garbarino G, Robert NSM, Yu JK, Croce JC, Candiani S, Schubert M. Retinoic acid signaling and neurogenic niche regulation in the developing peripheral nervous system of the cephalochordate amphioxus. Cell Mol Life Sci 2018; 75:2407-2429. [PMID: 29387904 PMCID: PMC11105557 DOI: 10.1007/s00018-017-2734-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
The retinoic acid (RA) signaling pathway regulates axial patterning and neurogenesis in the developing central nervous system (CNS) of chordates, but little is known about its roles during peripheral nervous system (PNS) formation and about how these roles might have evolved. This study assesses the requirement of RA signaling for establishing a functional PNS in the cephalochordate amphioxus, the best available stand-in for the ancestral chordate condition. Pharmacological manipulation of RA signaling levels during embryogenesis reduces the ability of amphioxus larvae to respond to sensory stimulation and alters the number and distribution of ectodermal sensory neurons (ESNs) in a stage- and context-dependent manner. Using gene expression assays combined with immunohistochemistry, we show that this is because RA signaling specifically acts on a small population of soxb1c-expressing ESN progenitors, which form a neurogenic niche in the trunk ectoderm, to modulate ESN production during elongation of the larval body. Our findings reveal an important role for RA signaling in regulating neurogenic niche activity in the larval amphioxus PNS. Although only few studies have addressed this issue so far, comparable RA signaling functions have been reported for neurogenic niches in the CNS and in certain neurogenic placode derivatives of vertebrates. Accordingly, the here-described mechanism is likely a conserved feature of chordate embryonic and adult neural development.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Greta Garbarino
- Department of Earth, Environment and Life Sciences (Dipartimento di Scienze della Terra dell'Ambiente e della Vita, DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Nicolas S M Robert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences (Dipartimento di Scienze della Terra dell'Ambiente e della Vita, DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France.
| |
Collapse
|
29
|
Gestri G, Bazin-Lopez N, Scholes C, Wilson SW. Cell Behaviors during Closure of the Choroid Fissure in the Developing Eye. Front Cell Neurosci 2018. [PMID: 29515375 PMCID: PMC5826230 DOI: 10.3389/fncel.2018.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coloboma is a defect in the morphogenesis of the eye that is a consequence of failure of choroid fissure fusion. It is among the most common congenital defects in humans and can significantly impact vision. However, very little is known about the cellular mechanisms that regulate choroid fissure closure. Using high-resolution confocal imaging of the zebrafish optic cup, we find that apico-basal polarity is re-modeled in cells lining the fissure in proximal to distal and inner to outer gradients during fusion. This process is accompanied by cell proliferation, displacement of vasculature, and contact between cells lining the choroid fissure and periocular mesenchyme (POM). To investigate the role of POM cells in closure of the fissure, we transplanted optic vesicles onto the yolk, allowing them to develop in a situation where they are depleted of POM. The choroid fissure forms normally in ectopic eyes but fusion fails in this condition, despite timely apposition of the nasal and temporal lips of the retina. This study resolves some of the cell behaviors underlying choroid fissure fusion and supports a role for POM in choroid fissure fusion.
Collapse
Affiliation(s)
- Gaia Gestri
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Naiara Bazin-Lopez
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Clarissa Scholes
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W Wilson
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
30
|
Dubey A, Rose RE, Jones DR, Saint-Jeannet JP. Generating retinoic acid gradients by local degradation during craniofacial development: One cell's cue is another cell's poison. Genesis 2018; 56:10.1002/dvg.23091. [PMID: 29330906 PMCID: PMC5818312 DOI: 10.1002/dvg.23091] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/02/2023]
Abstract
Retinoic acid (RA) is a vital morphogen for early patterning and organogenesis in the developing embryo. RA is a diffusible, lipophilic molecule that signals via nuclear RA receptor heterodimeric units that regulate gene expression by interacting with RA response elements in promoters of a significant number of genes. For precise RA signaling, a robust gradient of the morphogen is required. The developing embryo contains regions that produce RA, and specific intracellular concentrations of RA are created through local degradation mediated by Cyp26 enzymes. In order to elucidate the mechanisms by which RA executes precise developmental programs, the kinetics of RA metabolism must be clearly understood. Recent advances in techniques for endogenous RA detection and quantification have paved the way for mechanistic studies to shed light on downstream gene expression regulation coordinated by RA. It is increasingly coming to light that RA signaling operates not only at precise concentrations but also employs mechanisms of degradation and feedback inhibition to self-regulate its levels. A global gradient of RA throughout the embryo is often found concurrently with several local gradients, created by juxtaposed domains of RA synthesis and degradation. The existence of such local gradients has been found especially critical for the proper development of craniofacial structures that arise from the neural crest and the cranial placode populations. In this review, we summarize the current understanding of how local gradients of RA are established in the embryo and their impact on craniofacial development.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry
| | - Rebecca E. Rose
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | - Drew R. Jones
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | | |
Collapse
|
31
|
Hebert SL, Fitzpatrick KR, McConnell SA, Cucak A, Yuan C, McLoon LK. Effects of retinoic acid signaling on extraocular muscle myogenic precursor cells in vitro. Exp Cell Res 2017; 361:101-111. [PMID: 29017757 PMCID: PMC6546114 DOI: 10.1016/j.yexcr.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 02/04/2023]
Abstract
One major difference between limb and extraocular muscles (EOM) is the presence of an enriched population of Pitx2-positive myogenic precursor cells in EOM compared to limb muscle. We hypothesize that retinoic acid regulates Pitx2 expression in EOM myogenic precursor cells and that its effects would differ in leg muscle. The two muscle groups expressed differential retinoic acid receptor (RAR) and retinoid X receptor (RXR) levels. RXR co-localized with the Pitx2-positive cells but not with those expressing Pax7. EOM-derived and LEG-derived EECD34 cells were treated with vehicle, retinoic acid, the RXR agonist bexarotene, the RAR inverse agonist BMS493, or the RXR antagonist UVI 3003. In vitro, fewer EOM-derived EECD34 cells expressed desmin and fused, while more LEG-derived cells expressed desmin and fused when treated with retinoic acid compared to vehicle. Both EOM and LEG-derived EECD34 cells exposed to retinoic acid showed a higher percentage of cells expressing Pitx2 compared to vehicle, supporting the hypothesis that retinoic acid plays a role in maintaining Pitx2 expression. We hypothesize that retinoic acid signaling aids in the maintenance of large numbers of undifferentiated myogenic precursor cells in the EOM, which would be required to maintain EOM normalcy throughout a lifetime of myonuclear turnover.
Collapse
Affiliation(s)
- Sadie L Hebert
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Krysta R Fitzpatrick
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Samantha A McConnell
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Anja Cucak
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Ching Yuan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States; Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the unique regenerative milieu within mature mammalian extraocular muscles (EOMs). This will aid in understanding disease propensity for and sparing of EOMs in skeletal muscle diseases as well as the recalcitrance of the EOM to injury. RECENT FINDINGS The EOMs continually remodel throughout life and contain an extremely enriched number of myogenic precursor cells that differ in number and functional characteristics from those in limb skeletal muscle. The EOMs also contain a large population of Pitx2-positive myogenic precursor cells that provide the EOMs with many of their unusual biological characteristics, such as myofiber remodeling and skeletal muscle disease sparing. This environment provides for rapid and efficient remodeling and regeneration after various types of injury. In addition, the EOMs show a remarkable ability to respond to perturbations of single muscles with coordinated changes in the other EOMs that move in the same plane. SUMMARY These data will inform Ophthalmologists as they work toward developing new treatments for eye movement disorders, new approaches for repair after nerve or direct EOMs injury, as well as suggest potential explanations for the unusual disease propensity and disease sparing characteristics of human EOM.
Collapse
Affiliation(s)
- Mayank Verma
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Krysta Fitzpatrick
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Linda K McLoon
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
33
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
34
|
Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 2017; 429:92-104. [PMID: 28689736 DOI: 10.1016/j.ydbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; Genetics Ph. D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
35
|
Eason J, Williams AL, Chawla B, Apsey C, Bohnsack BL. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome. Birth Defects Res 2017; 109:1212-1227. [PMID: 28681995 DOI: 10.1002/bdr2.1069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ethanol (ETOH) exposure during pregnancy is associated with craniofacial and neurologic abnormalities, but infrequently disrupts the anterior segment of the eye. In these studies, we used zebrafish to investigate differences in the teratogenic effect of ETOH on craniofacial, periocular, and ocular neural crest. METHODS Zebrafish eye and neural crest development was analyzed by means of live imaging, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, immunostaining, detection of reactive oxygen species, and in situ hybridization. RESULTS Our studies demonstrated that foxd3-positive neural crest cells in the periocular mesenchyme and developing eye were less sensitive to ETOH than sox10-positive craniofacial neural crest cells that form the pharyngeal arches and jaw. ETOH increased apoptosis in the retina, but did not affect survival of periocular and ocular neural crest cells. ETOH also did not increase reactive oxygen species within the eye. In contrast, ETOH increased ventral neural crest apoptosis and reactive oxygen species production in the facial mesenchyme. In the eye and craniofacial region, sod2 showed high levels of expression in the anterior segment and in the setting of Sod2 knockdown, low levels of ETOH decreased migration of foxd3-positive neural crest cells into the developing eye. However, ETOH had minimal effect on the periocular and ocular expression of transcription factors (pitx2 and foxc1) that regulate anterior segment development. CONCLUSION Neural crest cells contributing to the anterior segment of the eye exhibit increased ability to withstand ETOH-induced oxidative stress and apoptosis. These studies explain the rarity of anterior segment dysgenesis despite the frequent craniofacial abnormalities in fetal alcohol syndrome. Birth Defects Research 109:1212-1227, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Eason
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Christian Apsey
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
36
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
37
|
Kumar S, Dollé P, Ghyselinck NB, Duester G. Endogenous retinoic acid signaling is required for maintenance and regeneration of cornea. Exp Eye Res 2016; 154:190-195. [PMID: 27840061 DOI: 10.1016/j.exer.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/13/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Retinoic acid (RA) is a biologically active metabolite of vitamin A (retinol) that serves as an important signaling molecule in orchestrating diverse developmental processes including multiple roles during ocular development. Loss-of-function studies using gene knockouts of RA-synthesizing enzymes encoded by Aldh1a1, Aldh1a2, and Aldh1a3 (also known as Raldh1, Raldh2, and Raldh3) have provided valuable insight into how RA controls eye morphogenesis including corneal development. However, it is unclear whether endogenous RA is required for maintenance and regeneration of adult cornea. Here, we investigated the role of Aldh1a genes in the adult cornea using a novel conditional Aldh1a1,2,3-flox/flox;Rosa26-CreERT2 loss-of-function mouse model to determine the biological function of RA. Our findings indicate that loss of RA synthesis results in corneal thinning characterized by reduced thickness of the stromal layer, impaired corneal epithelial cell proliferation, and increased apoptosis. Corneal thinning in Aldh1a-deficient mice was significantly rescued by RA administration, indicating an important role of endogenous RA signaling in adult corneal homeostasis and regeneration. Thus, Aldh1a1,2,3-flox/flox;Rosa26-CreERT2 mice provide a useful model for investigating the mechanistic role of RA signaling in adult corneal maintenance and could provide new insights into therapeutic approaches for controlling corneal repair to prevent vision loss.
Collapse
Affiliation(s)
- Sandeep Kumar
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
James A, Lee C, Williams AM, Angileri K, Lathrop KL, Gross JM. The hyaloid vasculature facilitates basement membrane breakdown during choroid fissure closure in the zebrafish eye. Dev Biol 2016; 419:262-272. [PMID: 27634568 DOI: 10.1016/j.ydbio.2016.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
A critical aspect of vertebrate eye development is closure of the choroid fissure (CF). Defects in CF closure result in colobomas, which are a significant cause of childhood blindness worldwide. Despite the growing number of mutated loci associated with colobomas, we have a limited understanding of the cell biological underpinnings of CF closure. Here, we utilize the zebrafish embryo to identify key phases of CF closure and regulators of the process. Utilizing Laminin-111 as a marker for the basement membrane (BM) lining the CF, we determine the spatial and temporal patterns of BM breakdown in the CF, a prerequisite for CF closure. Similarly, utilizing a combination of in vivo time-lapse imaging, β-catenin immunohistochemistry and F-actin staining, we determine that tissue fusion, which serves to close the fissure, follows BM breakdown closely. Periocular mesenchyme (POM)-derived endothelial cells, which migrate through the CF to give rise to the hyaloid vasculature, possess distinct actin foci that correlate with regions of BM breakdown. Disruption of talin1, which encodes a regulator of the actin cytoskeleton, results in colobomas and these correlate with structural defects in the hyaloid vasculature and defects in BM breakdown. cloche mutants, which entirely lack a hyaloid vasculature, also possess defects in BM breakdown in the CF. Taken together, these data support a model in which the hyaloid vasculature and/or the POM-derived endothelial cells that give rise to the hyaloid vasculature contribute to BM breakdown during CF closure.
Collapse
Affiliation(s)
- Andrea James
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Chanjae Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
| | - Andre M Williams
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
| | - Krista Angileri
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kira L Lathrop
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin TX, 78712
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Developmental Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
39
|
Chawla B, Schley E, Williams AL, Bohnsack BL. Retinoic Acid and Pitx2 Regulate Early Neural Crest Survival and Migration in Craniofacial and Ocular Development. ACTA ACUST UNITED AC 2016; 107:126-35. [PMID: 27175943 DOI: 10.1002/bdrb.21177] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Elisa Schley
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Chen L, Martino V, Dombkowski A, Williams T, West-Mays J, Gage PJ. AP-2β Is a Downstream Effector of PITX2 Required to Specify Endothelium and Establish Angiogenic Privilege During Corneal Development. Invest Ophthalmol Vis Sci 2016; 57:1072-81. [PMID: 26968737 PMCID: PMC4790471 DOI: 10.1167/iovs.15-18103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/03/2016] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The homeodomain transcription factor, PITX2, is at the apex of a genetic pathway required for corneal development, but the critical effector genes regulated by the PITX2 remain unknown. The purpose of this study was to discover and validate PITX2-dependent mechanisms required for specifying cell lineages and establishing angiogenic privilege within the developing cornea. METHODS Microarrays were used to compare gene expression in corneas isolated from temporal Pitx2 knockout embryos and control littermates. Quantitative RT-PCR and immunohistochemistry was used to further validate Tfap2b expression differences in Pitx2 knockout versus control corneas. In situ hybridization and protein immunohistochemistry were used to assay eyes of a Tfap2b allelic series of embryos to identify differentiated cellular lineages in the cornea, blood vessel endothelium, or lymphatic vessel endothelium. RESULTS We show that PITX2 is required for the expression of Tfap2b, encoding the AP-2β transcription factor, in the neural crest during corneal development. Markers of differentiated corneal epithelium and stroma are expressed in the absence of AP-2β. In contrast, markers of differentiated corneal endothelium are not expressed in the absence of AP-2β. Endomucin+ blood vessels are present throughout the developing corneal stroma in the absence of AP-2β, whereas LYVE1+ lymphatic vessels are not found. CONCLUSIONS The AP-2β transcription factor is an important effector of PITX2 function during corneal development, required for differentiation of corneal endothelium and establishment of angiogenic privilege. Unlike PITX2, AP-2β is not required for the early expression of available lineage specific markers for the corneal epithelium and stroma during embryogenesis, nor establishment of lymphangiogenic privilege. Therefore, additional PITX2-dependent factors likely regulate these latter processes during embryonic development. These results extend our understanding of the genetic mechanisms regulating cornea development.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Vanessa Martino
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alan Dombkowski
- Department of Pediatrics, Wayne State University, Detroit, Michigan, United States
| | - Trevor Williams
- Department of Craniofacial Biology and Department of Cell and Developmental Biology, University of Colorado–Denver, Denver, Colorado, United States
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip J. Gage
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
41
|
Adameyko I, Fried K. The Nervous System Orchestrates and Integrates Craniofacial Development: A Review. Front Physiol 2016; 7:49. [PMID: 26924989 PMCID: PMC4759458 DOI: 10.3389/fphys.2016.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Molecular Neurosciences, Center of Brain Research, Medical University of ViennaVienna, Austria
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
42
|
Abstract
Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.
Collapse
|
43
|
Williams AL, Bohnsack BL. Neural crest derivatives in ocular development: discerning the eye of the storm. ACTA ACUST UNITED AC 2015; 105:87-95. [PMID: 26043871 DOI: 10.1002/bdrc.21095] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/22/2023]
Abstract
Neural crest cells (NCCs) are vertebrate-specific transient, multipotent, migratory stem cells that play a crucial role in many aspects of embryonic development. These cells emerge from the dorsal neural tube and subsequently migrate to different regions of the body, contributing to the formation of diverse cell lineages and structures, including much of the peripheral nervous system, craniofacial skeleton, smooth muscle, skin pigmentation, and multiple ocular and periocular structures. Indeed, abnormalities in neural crest development cause craniofacial defects and ocular anomalies, such as Axenfeld-Rieger syndrome and primary congenital glaucoma. Thus, understanding the molecular regulation of neural crest development is important to enhance our knowledge of the basis for congenital eye diseases, reflecting the contributions of these progenitors to multiple cell lineages. Particularly, understanding the underpinnings of neural crest formation will help to discern the complexities of eye development, as these NCCs are involved in every aspect of this process. In this review, we summarize the role of ocular NCCs in eye development, particularly focusing on congenital eye diseases associated with anterior segment defects and the interplay between three prominent molecules, PITX2, CYP1B1, and retinoic acid, which act in concert to specify a population of neural crest-derived mesenchymal progenitors for migration and differentiation, to give rise to distinct anterior segment tissues. We also describe recent findings implicating this stem cell population in ocular coloboma formation, and introduce recent evidence suggesting the involvement of NCCs in optic fissure closure and vascular development.
Collapse
Affiliation(s)
- Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan
| |
Collapse
|
44
|
Carpenter AC, Smith AN, Wagner H, Cohen-Tayar Y, Rao S, Wallace V, Ashery-Padan R, Lang RA. Wnt ligands from the embryonic surface ectoderm regulate 'bimetallic strip' optic cup morphogenesis in mouse. Development 2015; 142:972-82. [PMID: 25715397 PMCID: PMC4352985 DOI: 10.1242/dev.120022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Wnt/β-catenin response pathway is central to many developmental processes. Here, we assessed the role of Wnt signaling in early eye development using the mouse as a model system. We showed that the surface ectoderm region that includes the lens placode expressed 12 out of 19 possible Wnt ligands. When these activities were suppressed by conditional deletion of wntless (Le-cre; Wlsfl/fl) there were dramatic consequences that included a saucer-shaped optic cup, ventral coloboma, and a deficiency of periocular mesenchyme. This phenotype shared features with that produced when the Wnt/β-catenin pathway co-receptor Lrp6 is mutated or when retinoic acid (RA) signaling in the eye is compromised. Consistent with this, microarray and cell fate marker analysis identified a series of expression changes in genes known to be regulated by RA or by the Wnt/β-catenin pathway. Using pathway reporters, we showed that Wnt ligands from the surface ectoderm directly or indirectly elicit a Wnt/β-catenin response in retinal pigment epithelium (RPE) progenitors near the optic cup rim. In Le-cre; Wlsfl/fl mice, the numbers of RPE cells are reduced and this can explain, using the principle of the bimetallic strip, the curvature of the optic cup. These data thus establish a novel hypothesis to explain how differential cell numbers in a bilayered epithelium can lead to shape change. Summary: During optic cup morphogenesis, Wnt ligands expressed in the surface ectoderm control cell proliferation in the retinal pigmented epithelium, and thus influence bending of the neural retina.
Collapse
Affiliation(s)
- April C Carpenter
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - April N Smith
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heidi Wagner
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Sujata Rao
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Valerie Wallace
- Vision Science Research Program, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Richard A Lang
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
45
|
Jin W, Xu YP, Yang AH, Xing YQ. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by all-trans retinoic acid. Int J Ophthalmol 2015; 8:250-6. [PMID: 25938036 DOI: 10.3980/j.issn.2222-3959.2015.02.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/06/2014] [Indexed: 12/29/2022] Open
Abstract
AIM To determine the optimal concentration for inducing the differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) into neuron-like cells, although it is understood that all-trans retinoic acid (ATRA) regulates cell proliferation in the nervous system by modulating the balance between mitosis and apoptosis. METHODS The abilities of ATRA to promote apoptosis as well as neural differentiation were assessed in cultured hUC-MSCs by morphological observation, MTT assay, annexin V-FITC/PI flow cytometry and immunocytochemistry. RESULTS The data showed that low concentrations of ATRA (0.5 µmol, 0.25 µmol) had no effect on the number of cells. However, treatment with 1.0 µmol or 2.0 µmol ATRA induced a 24.16% and 52.67% reduction in cell number, respectively, compared with vehicle-treated cultures. Further, 4.0 µmol ATRA had a potent effect on cell number, with almost no adherent cells recovered after 24h. We further showed that 0.5 µmol ATRA caused these cells to express characteristic markers of neuronal progenitor cells. CONCLUSION Taken together, we conclude that ATRA has a dose-dependent influence on the neural differentiation and apoptosis of hUC-MSCs. These findings have implications on the use of ATRA-differentiated hUC-MSCs for the study of neural degeneration diseases.
Collapse
Affiliation(s)
- Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yao-Peng Xu
- Department of Urology, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430072, Hubei Province, China
| | - An-Huai Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
46
|
Bazin-Lopez N, Valdivia LE, Wilson SW, Gestri G. Watching eyes take shape. Curr Opin Genet Dev 2015; 32:73-9. [PMID: 25748250 PMCID: PMC4931046 DOI: 10.1016/j.gde.2015.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/01/2015] [Indexed: 01/12/2023]
Abstract
Vertebrate eye formation is a multistep process requiring coordinated inductive interactions between neural and non-neural ectoderm and underlying mesendoderm. The induction and shaping of the eyes involves an elaborate cellular choreography characterized by precise changes in cell shape coupled with complex cellular and epithelial movements. Consequently, the forming eye is an excellent model to study the cellular mechanisms underlying complex tissue morphogenesis. Using examples largely drawn from recent studies of optic vesicle formation in zebrafish and in cultured embryonic stem cells, in this short review, we highlight some recent advances in our understanding of the events that shape the vertebrate eye.
Collapse
Affiliation(s)
- Naiara Bazin-Lopez
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom
| | - Leonardo E Valdivia
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom.
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
47
|
Tao C, Zhang X. Development of astrocytes in the vertebrate eye. Dev Dyn 2014; 243:1501-10. [PMID: 25236977 DOI: 10.1002/dvdy.24190] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/22/2014] [Accepted: 09/12/2014] [Indexed: 02/04/2023] Open
Abstract
Astrocytes represent the earliest glial population in the embryonic optic nerve, contributing critically to retinal angiogenesis and formation of brain-retinal-barrier. Despite of many developmental and clinical implications of astrocytes, answers to some of the most fundamental questions of this unique type of glial cells remain elusive. This review provides an overview of the current knowledge about the origination, proliferation, and differentiation of astrocytes, their journey from the optic nerve toward the neuroretina, and their involvement in physiological and pathological development of the visual system.
Collapse
Affiliation(s)
- Chenqi Tao
- Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, Indiana; Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, New York
| | | |
Collapse
|
48
|
Cai Z, Grobe K, Zhang X. Role of heparan sulfate proteoglycans in optic disc and stalk morphogenesis. Dev Dyn 2014; 243:1310-6. [PMID: 24753163 DOI: 10.1002/dvdy.24142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPG) are important for embryonic development by means of the regulation of gradient formation and signaling of multiple growth factors and morphogens. Previous studies have shown that Bmp/Shh/Fgf signaling are required for the regionalization of the optic vesicle (OV) and for the closure of the optic fissure (OF), the disturbance of which underlie ocular anomalies such as microphthalmia, coloboma, and optic nerve hypoplasia. RESULTS To study HSPG-dependent coordination of these signaling pathways during mammalian visual system development, we have generated a series of OV-specific mutations in the heparan sulfate (HS) N-sulfotransferase genes (Ndst1 and Ndst2) and HS O-sulfotransferase genes (Hs2st, Hs6st1, and Hs6st2) in mice. Of interest, the resulting HS undersulfation still allowed for normal retinal neurogenesis and optic fissure closure, but led to defective optic disc and stalk development. The adult mutant animals further developed optic nerve aplasia/hypoplasia and displayed retinal degeneration. We observed that MAPK/ERK signaling was down-regulated in Ndst mutants, and consistent with this, HS-related optic nerve morphogenesis defects in mutant mice could partially be rescued by constitutive Kras activation. CONCLUSIONS These results suggest that HSPGs, depending on their HS sulfation pattern, regulate multiple signaling pathways in optic disc and stalk morphogenesis.
Collapse
Affiliation(s)
- Zhigang Cai
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | |
Collapse
|
49
|
Atkinson-Leadbeater K, Hehr CL, Mcfarlane S. Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. Dev Dyn 2014; 243:663-75. [PMID: 24478172 DOI: 10.1002/dvdy.24113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND A major step in eye morphogenesis is the transition from optic vesicle to optic cup, which occurs as a ventral groove forms along the base of the optic vesicle. A ventral gap in the eye, or coloboma, results when this groove fails to close. Extrinsic signals, such as fibroblast growth factors (Fgfs), play a critical role in the development and morphogenesis of the vertebrate eye. Whether these extrinsic signals are required throughout eye development, or within a defined critical period remains an unanswered question. RESULTS Here we show that an early Fgf signal, required as the eye field is first emerging, drives eye morphogenesis. In addition to triggering coloboma, inhibition of this early Fgf signal results in defects in dorsal-ventral patterning of the neural retina, particularly in the nasal retina, and development of the periocular mesenchyme (POM). These processes are unaffected by inhibition of Fgfr signaling at later time points. CONCLUSIONS We propose that Fgfs act within an early critical period as the eye field forms to promote development of the neural retina and POM, which subsequently drive eye morphogenesis.
Collapse
|
50
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|