1
|
Ranchin B, Meaux MN, Freppel M, Ruiz M, De Mul A. Kidney and vascular involvement in Alagille syndrome. Pediatr Nephrol 2024:10.1007/s00467-024-06562-8. [PMID: 39446153 DOI: 10.1007/s00467-024-06562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disease with a high interindividual variability. The two causative genes JAG1 and NOTCH2 are expressed during kidney development, can be reactivated during adulthood kidney disease, and Notch signalling is essential for vascular morphogenesis and remodelling in mice. Liver disease is the most frequent and severe involvement; neonatal cholestasis occurs in 85% of cases, pruritus in 74%, xanthomas in 24% of cases, and the cumulative incidences of portal hypertension and liver transplantation are 66% and 50% respectively at 18 years of age. Stenosis/hypoplasia of the branch pulmonary arteries is the most frequent vascular abnormality reported in ALGS. Kidney involvement is present in 38% of patients, and can reveal the disease. Congenital anomalies of the kidney and urinary tract is reported in 22% of patients, hyperchloremic acidosis in 9%, and glomerulopathy and/or proteinuria in 6%. A decreased glomerular filtration rate is reported in 10% of patients and is more frequent after liver transplantation for ALGS than for biliary atresia. Kidney failure has been frequently reported in childhood and adulthood. Renal artery stenosis and mid aortic syndrome have also frequently been reported, often associated with hypertension and stenosis and/or aneurysm of other large arteries. ALGS patients require kidney assessment at diagnosis, long-term monitoring of kidney function and early detection of vascular complications, notably if they have undergone liver transplantation, to prevent progression of chronic kidney disease and vascular complications, which account for 15% of deaths at a median age of 2.2 years in the most recent series.
Collapse
Affiliation(s)
- Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
| | - Marie-Noelle Meaux
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Malo Freppel
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Mathias Ruiz
- Service d'Hépato-gastroentérologie pédiatrique, Centre de Référence de l'atrésie des voies biliaires et des cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Aurelie De Mul
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| |
Collapse
|
2
|
Su L, Chen T, Hu H, Xu Z, Luan X, Fu K, Ren Y, Sun D, Sun Y, Guo D. Notch3 as a novel therapeutic target for the treatment of ADPKD by regulating cell proliferation and renal cyst development. Biochem Pharmacol 2024; 224:116200. [PMID: 38604258 DOI: 10.1016/j.bcp.2024.116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic kidney disease. Emerging research indicates that the Notch signaling pathway plays an indispensable role in the pathogenesis of numerous kidney diseases, including ADPKD. Herein, we identified that Notch3 but not other Notch receptors was overexpressed in renal tissues from mice with ADPKD and ADPKD patients. Inhibiting Notch3 with γ-secretase inhibitors, which block a proteolytic cleavage required for Notch3 activation, or shRNA knockdown of Notch3 significantly delayed renal cyst growth in vitro and in vivo. Subsequent mechanistic study elucidated that the cleaved intracellular domain of Notch3 (N3ICD) and Hes1 could bind to the PTEN promoter, leading to transcriptional inhibition of PTEN. This further activated the downstream PI3K-AKT-mTOR pathway and promoted renal epithelial cell proliferation. Overall, Notch3 was identified as a novel contributor to renal epithelial cell proliferation and cystogenesis in ADPKD. We envision that Notch3 represents a promising target for ADPKD treatment.
Collapse
Affiliation(s)
- Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hongtao Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zifan Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiande Luan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dong Sun
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
3
|
Vanslambrouck JM, Tan KS, Mah S, Little MH. Generation of proximal tubule-enhanced kidney organoids from human pluripotent stem cells. Nat Protoc 2023; 18:3229-3252. [PMID: 37770563 DOI: 10.1038/s41596-023-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/26/2023] [Indexed: 09/30/2023]
Abstract
Kidney organoids derived from human pluripotent stem cells (hPSCs) are now being used as models of renal disease and nephrotoxicity screening. However, the proximal tubules (PTs), which are responsible for most kidney reabsorption functions, remain immature in kidney organoids with limited expression of critical transporters essential for nephron functionality. Here, we describe a protocol for improved specification of nephron progenitors from hPSCs that results in kidney organoids with elongated proximalized nephrons displaying improved PT maturity compared with those generated using standard kidney organoid protocols. We also describe a methodology for assessing the functionality of the PTs within the organoids and visualizing maturation markers via immunofluorescence. Using these assays, PT-enhanced organoids display increased expression of a range of critical transporters, translating to improved functionality measured by substrate uptake and transport. This protocol consists of an extended (13 d) monolayer differentiation phase, during which time hPSCs are exposed to nephron progenitor maintenance media (CDBLY2), better emulating human metanephric progenitor specification in vivo. Following nephron progenitor specification, the cells are aggregated and cultured as a three-dimensional micromass on an air-liquid interface to facilitate further differentiation and segmentation into proximalized nephrons. Experience in culturing hPSCs is required to conduct this protocol and expertise in kidney organoid generation is advantageous.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sophia Mah
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Melissa H Little
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Halma J, Lin HC. Alagille syndrome: understanding the genotype-phenotype relationship and its potential therapeutic impact. Expert Rev Gastroenterol Hepatol 2023; 17:883-892. [PMID: 37668532 DOI: 10.1080/17474124.2023.2255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Alagille syndrome (ALGS) is an autosomal dominant, multisystem genetic disorder with wide phenotypic variability caused by mutations in the Notch signaling pathway, specifically from mutations in either the Jagged1 (JAG1) or NOTCH2 gene. The range of clinical features in ALGS can involve various organ systems including the liver, heart, eyes, skeleton, kidney, and vasculature. Despite the genetic mutations being well-defined, there is variable expressivity and individuals with the same mutation may have different clinical phenotypes. AREAS COVERED While no clear genotype-phenotype correlation has been identified in ALGS, this review will summarize what is currently known about the genotype-phenotype relationship and how this relationship influences the treatment of the multisystemic disorder. This review includes discussion of numerous studies which have focused on describing the genotype-phenotype relationship of different organ systems in ALGS as well as relevant basic science and population studies of ALGS. A thorough literature search was completed via the PubMed and National Library of Medicine GeneReviews databases including dates from 1969, when ALGS was first identified, to February 2023. EXPERT OPINION The genetics of ALGS are well defined; however, ongoing investigation to identify genotype-phenotype relationships as well as genetic modifiers as potential therapeutic targets is needed. Clinicians and patients alike would benefit from identification of a correlation to aid in diagnostic evaluation and management.
Collapse
Affiliation(s)
- Jennifer Halma
- Division of Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Henry C Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X, Slade D. SPOC domain proteins in health and disease. Genes Dev 2023; 37:140-170. [PMID: 36927757 PMCID: PMC10111866 DOI: 10.1101/gad.350314.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Since it was first described >20 yr ago, the SPOC domain (Spen paralog and ortholog C-terminal domain) has been identified in many proteins all across eukaryotic species. SPOC-containing proteins regulate gene expression on various levels ranging from transcription to RNA processing, modification, export, and stability, as well as X-chromosome inactivation. Their manifold roles in controlling transcriptional output implicate them in a plethora of developmental processes, and their misregulation is often associated with cancer. Here, we provide an overview of the biophysical properties of the SPOC domain and its interaction with phosphorylated binding partners, the phylogenetic origin of SPOC domain proteins, the diverse functions of mammalian SPOC proteins and their homologs, the mechanisms by which they regulate differentiation and development, and their roles in cancer.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sebastian Platzer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
6
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat Commun 2022; 13:5943. [PMID: 36209212 PMCID: PMC9547573 DOI: 10.1038/s41467-022-33623-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/27/2022] [Indexed: 01/08/2023] Open
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sophia Mah
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
8
|
Duvall K, Crist L, Perl AJ, Pode Shakked N, Chaturvedi P, Kopan R. Revisiting the role of Notch in nephron segmentation confirms a role for proximal fate selection during mouse and human nephrogenesis. Development 2022; 149:275412. [PMID: 35451473 PMCID: PMC9188758 DOI: 10.1242/dev.200446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022]
Abstract
Notch signaling promotes maturation of nephron epithelia, but its proposed contribution to nephron segmentation into proximal and distal domains has been called into doubt. We leveraged single cell and bulk RNA-seq, quantitative immunofluorescent lineage/fate tracing, and genetically modified human induced pluripotent stem cells (iPSCs) to revisit this question in developing mouse kidneys and human kidney organoids. We confirmed that Notch signaling is needed for maturation of all nephron lineages, and thus mature lineage markers fail to detect a fate bias. By contrast, early markers identified a distal fate bias in cells lacking Notch2, and a concomitant increase in early proximal and podocyte fates in cells expressing hyperactive Notch1 was observed. Orthogonal support for a conserved role for Notch signaling in the distal/proximal axis segmentation is provided by the demonstration that nicastrin (NCSTN)-deficient human iPSC-derived organoids differentiate into TFA2B+ distal tubule and CDH1+ connecting segment progenitors, but not into HNF4A+ or LTL+ proximal progenitors.
Collapse
Affiliation(s)
- Kathryn Duvall
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lauren Crist
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Naomi Pode Shakked
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Praneet Chaturvedi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Wang Y, Chang J, Wang ZQ, Li Y. Sirt3 promotes the autophagy of HK‑2 human proximal tubular epithelial cells via the inhibition of Notch‑1/Hes‑1 signaling. Mol Med Rep 2021; 24:634. [PMID: 34278469 PMCID: PMC8281085 DOI: 10.3892/mmr.2021.12273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a predominant cause of end-stage renal disease. The impairment of the autophagy of human renal tubular epithelial cells (HK-2 cells) is involved in the pathogenic mechanisms of DN. Sirtuin (Sirt)3 regulates the scavenging of damaged organelles and maintains energy balance. The present study aimed to examine the protective effects of Sirt3 on HK-2 cells stimulated by high glucose (HG). HK-2 cells were cultured in normal glucose (NG), HG or hyperosmotic medium. The viability of the HK-2 cells was detected using a Cell Counting Kit-8 assay. The expression and localization of Sirt3 were detected via immunofluorescence. Following transfection with an overexpression plasmid, the expression levels of key components in the Notch homolog 1 (Notch-1)/hairy and enhancer of split-1 (Hes-1) pathway and those of the autophagy-related proteins, Beclin-1, LC-3II and p62, were measured by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR). As the Notch-1/Hes-1 pathway was inhibited, the expression levels of Beclin-1, LC-3II and p62 were also examined at transcriptional and translational level. It was found that prolonged culture in HG medium markedly reduced cell viability compared with the cells cultured in NG or in NG + mannitol, an effect that was aggravated with the increasing duration of culture. HG was capable of inhibiting the expression levels of Beclin-1, LC-3II and Sirt3, and upregulating p62 and the Notch-1/Hes-1 pathway, as verified by western blot analysis and RT-qPCR. The results of immunofluorescence staining revealed that HG decreased Sirt3 expression. Sirt3 reversed the HG-induced inhibition of the expression of Beclin-1 and LC-3II and the upregulation of p62. Moreover, Sirt3 reversed the HG-induced inhibition of the Notch-1/Hes-1 signaling pathway. However, this autophagy-promoting effect of Sirt3 was counteracted by the Notch-1/Hes-1 pathway activator. On the whole, the present study demonstrated that Sirt3 promoted the autophagy of HK-2 cells, at least partly, via the downregulation of Notch-1/Hes-1.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, Bayan Nur Hospital, Bayan Nur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Jiang Chang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Zi-Qiang Wang
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Ying Li
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
11
|
Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020; 11:586892. [PMID: 33519447 PMCID: PMC7845653 DOI: 10.3389/fphar.2020.586892] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes mellitus and the leading cause of end-stage kidney disease. The standard treatments for diabetic patients are glucose and blood pressure control, lipid lowering, and renin-angiotensin system blockade; however, these therapeutic approaches can provide only partial renoprotection if started late in the course of the disease. One major limitation in developing efficient therapies for DN is the complex pathobiology of the diabetic kidney, which undergoes a set of profound structural, metabolic and functional changes. Despite these difficulties, experimental models of diabetes have revealed promising therapeutic targets by identifying pathways that modulate key functions of podocytes and glomerular endothelial cells. In this review we will describe recent advances in the field, analyze key molecular pathways that contribute to the pathogenesis of the disease, and discuss how they could be modulated to prevent or reverse DN.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Daniela Macconi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
12
|
Li B, Zhu C, Dong L, Qin J, Xiang W, Davidson AJ, Feng S, Wang Y, Shen X, Weng C, Wang C, Zhu T, Teng L, Wang J, Englert C, Chen J, Jiang H. ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. J Pathol 2020; 252:274-289. [PMID: 32715474 PMCID: PMC7702158 DOI: 10.1002/path.5517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Disturbed intrauterine development increases the risk of renal disease. Various studies have reported that Notch signalling plays a significant role in kidney development and kidney diseases. A disintegrin and metalloproteinase domain 10 (ADAM10), an upstream protease of the Notch pathway, is also reportedly involved in renal fibrosis. However, how ADAM10 interacts with the Notch pathway and causes renal fibrosis is not fully understood. In this study, using a prenatal chlorpyrifos (CPF) exposure mouse model, we investigated the role of the ADAM10/Notch axis in kidney development and fibrosis. We found that prenatal CPF‐exposure mice presented overexpression of Adam10, Notch1 and Notch2, and led to premature depletion of Six2+ nephron progenitors and ectopic formation of proximal tubules (PTs) in the embryonic kidney. These abnormal phenotypic changes persisted in mature kidneys due to the continuous activation of ADAM10/Notch and showed aggravated renal fibrosis in adults. Finally, both ADAM10 and NOTCH2 expression were positively correlated with the degree of renal interstitial fibrosis in IgA nephropathy patients, and increased ADAM10 expression was negatively correlated with decreased kidney function evaluated by serum creatinine, cystatin C, and estimated glomerular filtration rate. Regression analysis also indicated that ADAM10 expression was an independent risk factor for fibrosis in IgAN. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bingjue Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Chaohong Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lihua Dong
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jing Qin
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Wenyu Xiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Xiujin Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lisha Teng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA.,College of Health Solutions, Arizona State University, Scottsdale, AZ, USA
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University, Jena, Germany
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
13
|
Jing Z, Hu L, Su Y, Ying G, Ma C, Wei J. Potential signaling pathway through which Notch regulates oxidative damage and apoptosis in renal tubular epithelial cells induced by high glucose. J Recept Signal Transduct Res 2020; 41:357-362. [PMID: 32933345 DOI: 10.1080/10799893.2020.1810706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes mellitus, and glomerular sclerosis and renal tubular interstitial fibrosis are the main pathological features. Current evidence indicates that the Notch pathway can mediate the impairment of renal tubular function and induce angiogenesis and renal interstitial fibrosis. This study was conducted to explore the potential signaling pathway through which Notch regulates oxidative damage and apoptosis in renal tubular epithelial cells induced by high glucose. mRNA and protein expression levels were assessed using real-time PCR and Western blot, respectively. The protein expression levels of Jaggedl, Notchl, pro-caspase-3, Drpl, and PGC-1α were increased by high glucose, but N-[N-(3,5-difluorohenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT; an inhibitor of the Notch signaling pathway) reversed these effects. Furthermore, DAPT reduced the mRNA expression of Jaggedl, Notchl, MnSOD2, Drpl, and PGC-1α in renal tubular epithelial cells induced by high glucose. In conclusion, the Notch signaling pathway may regulate oxidative damage and apoptosis in renal tubular epithelial cells induced by high glucose by regulating mitochondrial dynein and biogenesis genes, which can accelerate renal interstitial fibrosis in DN. The Notch signaling pathway might be a potential therapeutic target for DN, and DAPT might become a potential drug for the treatment of DN.
Collapse
Affiliation(s)
- Ziyang Jing
- Department of Nephrology, Hainan Affiliated hospital of Hainan Medical University, Haikou, China
| | - Langtao Hu
- Department of Nephrology, Hainan Affiliated hospital of Hainan Medical University, Haikou, China
| | - Yan Su
- Department of Nephrology, Hainan Affiliated hospital of Hainan Medical University, Haikou, China
| | - Gangqiang Ying
- Department of Nephrology, Hainan Affiliated hospital of Hainan Medical University, Haikou, China
| | - Chunyang Ma
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Jiali Wei
- Department of Nephrology, Hainan Affiliated hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
14
|
Marable SS, Chung E, Park JS. Hnf4a Is Required for the Development of Cdh6-Expressing Progenitors into Proximal Tubules in the Mouse Kidney. J Am Soc Nephrol 2020; 31:2543-2558. [PMID: 32764140 DOI: 10.1681/asn.2020020184] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hepatocyte NF 4α (Hnf4a) is a major regulator of renal proximal tubule (PT) development. In humans, a mutation in HNF4A impairs PT functions and is associated with Fanconi renotubular syndrome (FRTS). In mice, mosaic deletion of Hnf4a in the developing kidney reduces the population of PT cells, leading to FRTS-like symptoms. The molecular mechanisms underlying the role of Hnf4a in PT development remain unclear. METHODS The gene deletion tool Osr2Cre removed Hnf4a in developing nephrons in mice, generating a novel model for FRTS. Immunofluorescence analysis characterized the mutant phenotype, and lineage analysis tested whether Cadherin-6 (Cdh6)-expressing cells are PT progenitors. Genome-wide mapping of Hnf4a binding sites and differential gene analysis of Hnf4a mutant kidneys identified direct target genes of Hnf4a. RESULTS Deletion of Hnf4a with Osr2Cre led to the complete loss of mature PT cells, lethal to the Hnf4a mutant mice. Cdh6high, lotus tetragonolobus lectin-low (LTLlow) cells serve as PT progenitors and demonstrate higher proliferation than Cdh6low, LTLhigh differentiated PT cells. Additionally, Hnf4a is required for PT progenitors to differentiate into mature PT cells. Genomic analyses revealed that Hnf4a directly regulates the expression of genes involved in transmembrane transport and metabolism. CONCLUSIONS Hnf4a promotes the differentiation of PT progenitors into mature PT cells by regulating the expression of genes associated with reabsorption, the major function of PT cells.
Collapse
Affiliation(s)
- Sierra S Marable
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eunah Chung
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
15
|
Genini A, Mohebbi N, Daryadel A, Bettoni C, Wagner CA. Adaptive response of the murine collecting duct to alkali loading. Pflugers Arch 2020; 472:1079-1092. [DOI: 10.1007/s00424-020-02423-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/31/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023]
|
16
|
Mukherjee M, Ratnayake I, Janga M, Fogarty E, Scheidt S, Grassmeyer J, deRiso J, Chandrasekar I, Ahrenkiel P, Kopan R, Surendran K. Notch signaling regulates Akap12 expression and primary cilia length during renal tubule morphogenesis. FASEB J 2020; 34:9512-9530. [PMID: 32474964 DOI: 10.1096/fj.201902358rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
Alagille syndrome patients present with loss of function mutations in either JAG1 or NOTCH2. About 40%-50% of patients have kidney abnormalities, and frequently display multicystic, dysplastic kidneys. Additionally, gain-of-function mutations in NOTCH2 are associated with cystic kidneys in Hajdu-Cheney syndrome patients. How perturbations in Notch signaling cause renal tubular cysts remains unclear. Here, we have determined that reduced Notch signaling mediated transcription by ectopic expression of dominant-negative mastermind-like (dnMaml) peptide in the nephrogenic epithelia from after the s-shaped body formation and in the developing collecting ducts results in proximal tubular and collecting duct cysts, respectively. An acute inhibition of Notch signaling for two days during kidney development is sufficient to disrupt tubule formation, and significantly increases Akap12 expression. Ectopic expression of Akap12 in renal epithelia results in abnormally long primary cilia similar to that observed in Notch-signaling-deficient epithelia. Both loss of Notch signaling and elevated Akap12 expression disrupt the ability of renal epithelial cells to form spherical structures with a single lumen when grown embedded in matrix. Interestingly, Akap12 can inhibit Notch signaling mediated transcription, which likely explains how both loss of Notch signaling and ectopic expression of Akap12 result in similar renal epithelial abnormalities. We conclude that Notch signaling regulates Akap12 expression while also ensuring normal primary cilia length and renal epithelial morphogenesis, and suggest that one aspect of diseases associated with defective Notch signaling, such as Alagille syndrome, maybe mechanistically related to ciliopathies.
Collapse
Affiliation(s)
- Malini Mukherjee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Ishara Ratnayake
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Madhusudhana Janga
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Eric Fogarty
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Shania Scheidt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jennifer deRiso
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Indra Chandrasekar
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.,Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | - Phil Ahrenkiel
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
17
|
Yuan Z, VanderWielen BD, Giaimo BD, Pan L, Collins CE, Turkiewicz A, Hein K, Oswald F, Borggrefe T, Kovall RA. Structural and Functional Studies of the RBPJ-SHARP Complex Reveal a Conserved Corepressor Binding Site. Cell Rep 2020; 26:845-854.e6. [PMID: 30673607 PMCID: PMC6352735 DOI: 10.1016/j.celrep.2018.12.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022] Open
Abstract
Notch is a conserved signaling pathway that is essential for metazoan development and homeostasis; dysregulated signaling underlies the pathophysiology of numerous human diseases. Receptor-ligand interactions result in gene expression changes, which are regulated by the transcription factor RBPJ. RBPJ forms a complex with the intracellular domain of the Notch receptor and the coactivator Mastermind to activate transcription, but it can also function as a repressor by interacting with corepressor proteins. Here, we determine the structure of RBPJ bound to the corepressor SHARP and DNA, revealing its mode of binding to RBPJ. We tested structure-based mutants in biophysical and biochemical-cellular as-says to characterize the role of RBPJ as a repressor, clearly demonstrating that RBPJ mutants deficient for SHARP binding are incapable of repressing transcription of genes responsive to Notch signaling in cells. Altogether, our structure-function studies provide significant insights into the repressor function of RBPJ. Yuan et al. determine the X-ray structure of the corepressor SHARP bound to RBPJ, the nuclear effector of the Notch pathway. The structure-function analysis provides insights into corepressor binding to RBPJ and how RBPJ functions as a repressor of transcription of Notch target genes.
Collapse
Affiliation(s)
- Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bradley D VanderWielen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Leiling Pan
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, 89081 Ulm, Germany
| | - Courtney E Collins
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Kerstin Hein
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, 89081 Ulm, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Hozumi K. Distinctive properties of the interactions between Notch and Notch ligands. Dev Growth Differ 2019; 62:49-58. [PMID: 31886898 DOI: 10.1111/dgd.12641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Although Notch signaling is known to be critical for the specification of cell fate in various developing organs, the particular roles of each Notch and Notch ligand (NotchL) have not yet been elucidated. The phenotypes found in loss-of-function experiments have varied, depending on the expression profiles of the receptors and ligands. However, in some cases, their significances differ from others, even with comparable levels of expression, suggesting a distinctive functional receptor-ligand interaction during the activation process of Notch signaling. In this review, the phenotypes observed in Notch/NotchL-deficient situations are introduced, and their distinct roles are accentuated. The distinctive features of the specific combinations of Notch/NotchL are also discussed. This review aims to highlight the unanswered questions in this field to help improve our understanding of the preferential functional interaction between Notch and NotchL.
Collapse
Affiliation(s)
- Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
19
|
Mukherjee M, Fogarty E, Janga M, Surendran K. Notch Signaling in Kidney Development, Maintenance, and Disease. Biomolecules 2019; 9:E692. [PMID: 31690016 PMCID: PMC6920979 DOI: 10.3390/biom9110692] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
Kidney development involves formation of nephrons intricately aligned with the vasculature and connected to a branched network of collecting ducts. Notch signaling plays multiple roles during kidney development involving the formation of nephrons composed of diverse epithelial cell types arranged into tubular segments, all the while maintaining a nephron progenitor niche. Here, we review the roles of Notch signaling identified from rodent kidney development and injury studies, while discussing human kidney diseases associated with aberrant Notch signaling. We also review Notch signaling requirement in maintenance of mature kidney epithelial cell states and speculate that Notch activity regulation mediates certain renal physiologic adaptations.
Collapse
Affiliation(s)
- Malini Mukherjee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Eric Fogarty
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | - Madhusudhana Janga
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
20
|
Deacon P, Concodora CW, Chung E, Park JS. β-catenin regulates the formation of multiple nephron segments in the mouse kidney. Sci Rep 2019; 9:15915. [PMID: 31685872 PMCID: PMC6828815 DOI: 10.1038/s41598-019-52255-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023] Open
Abstract
The nephron is composed of distinct segments that perform unique physiological functions. Little is known about how multipotent nephron progenitor cells differentiate into different nephron segments. It is well known that β-catenin signaling regulates the maintenance and commitment of mesenchymal nephron progenitors during kidney development. However, it is not fully understood how it regulates nephron segmentation after nephron progenitors undergo mesenchymal-to-epithelial transition. To address this, we performed β-catenin loss-of-function and gain-of-function studies in epithelial nephron progenitors in the mouse kidney. Consistent with a previous report, the formation of the renal corpuscle was defective in the absence of β-catenin. Interestingly, we found that epithelial nephron progenitors lacking β-catenin were able to form presumptive proximal tubules but that they failed to further develop into differentiated proximal tubules, suggesting that β-catenin signaling plays a critical role in proximal tubule development. We also found that epithelial nephron progenitors lacking β-catenin failed to form the distal tubules. Expression of a stable form of β-catenin in epithelial nephron progenitors blocked the proper formation of all nephron segments, suggesting tight regulation of β-catenin signaling during nephron segmentation. This work shows that β-catenin regulates the formation of multiple nephron segments along the proximo-distal axis of the mammalian nephron.
Collapse
Affiliation(s)
- Patrick Deacon
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles W Concodora
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Urology for Children, 200 Bowman Drive, Voorhees, NJ, 08043, USA
| | - Eunah Chung
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
21
|
Abstract
There are now many reports of human kidney organoids generated via the directed differentiation of human pluripotent stem cells (PSCs) based on an existing understanding of mammalian kidney organogenesis. Such kidney organoids potentially represent tractable tools for the study of normal human development and disease with improvements in scale, structure, and functional maturation potentially providing future options for renal regeneration. The utility of such organotypic models, however, will ultimately be determined by their developmental accuracy. While initially inferred from mouse models, recent transcriptional analyses of human fetal kidney have provided greater insight into nephrogenesis. In this review, we discuss how well human kidney organoids model the human fetal kidney and how the remaining differences challenge their utility.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Victoria 3052, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|
22
|
van Groningen T, Akogul N, Westerhout EM, Chan A, Hasselt NE, Zwijnenburg DA, Broekmans M, Stroeken P, Haneveld F, Hooijer GKJ, Savci-Heijink CD, Lakeman A, Volckmann R, van Sluis P, Valentijn LJ, Koster J, Versteeg R, van Nes J. A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma. Nat Commun 2019; 10:1530. [PMID: 30948783 PMCID: PMC6449373 DOI: 10.1038/s41467-019-09470-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/14/2019] [Indexed: 11/09/2022] Open
Abstract
Transition between differentiation states in development occurs swift but the mechanisms leading to epigenetic and transcriptional reprogramming are poorly understood. The pediatric cancer neuroblastoma includes adrenergic (ADRN) and mesenchymal (MES) tumor cell types, which differ in phenotype, super-enhancers (SEs) and core regulatory circuitries. These cell types can spontaneously interconvert, but the mechanism remains largely unknown. Here, we unravel how a NOTCH3 intracellular domain reprogrammed the ADRN transcriptional landscape towards a MES state. A transcriptional feed-forward circuitry of NOTCH-family transcription factors amplifies the NOTCH signaling levels, explaining the swift transition between two semi-stable cellular states. This transition induces genome-wide remodeling of the H3K27ac landscape and a switch from ADRN SEs to MES SEs. Once established, the NOTCH feed-forward loop maintains the induced MES state. In vivo reprogramming of ADRN cells shows that MES and ADRN cells are equally oncogenic. Our results elucidate a swift transdifferentiation between two semi-stable epigenetic cellular states.
Collapse
Affiliation(s)
- Tim van Groningen
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nurdan Akogul
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ellen M Westerhout
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Alvin Chan
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nancy E Hasselt
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marloes Broekmans
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter Stroeken
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Franciska Haneveld
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gerrit K J Hooijer
- Department of Pathology, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - C Dilara Savci-Heijink
- Department of Pathology, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arjan Lakeman
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Peter van Sluis
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Linda J Valentijn
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johan van Nes
- Department of Oncogenomics, Amsterdam UMC University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, Chen YC, Troyanskaya O, Spence JR, Kretzler M, Cebrián C. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 2018; 145:145/16/dev164038. [PMID: 30166318 PMCID: PMC6124540 DOI: 10.1242/dev.164038] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level. Summary: New markers for specific cell types in the developing human kidney are identified and computational approaches infer developmental trajectories and interrogate the complex network of signaling pathways and cellular transitions.
Collapse
Affiliation(s)
- Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edgar A Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Kokoruda
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olga Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Flatiron Institute, Simons Foundation, New York, NY 10010, USA.,Department of Computer Science, Princeton University, Princeton, NJ
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristina Cebrián
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Development of the renal vasculature. Semin Cell Dev Biol 2018; 91:132-146. [PMID: 29879472 DOI: 10.1016/j.semcdb.2018.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The kidney vasculature has a unique and complex architecture that is central for the kidney to exert its multiple and essential physiological functions with the ultimate goal of maintaining homeostasis. An appropriate development and coordinated assembly of the different vascular cell types and their association with the corresponding nephrons is crucial for the generation of a functioning kidney. In this review we provide an overview of the renal vascular anatomy, histology, and current knowledge of the embryological origin and molecular pathways involved in its development. Understanding the cellular and molecular mechanisms involved in renal vascular development is the first step to advance the field of regenerative medicine.
Collapse
|
25
|
CSL-Associated Corepressor and Coactivator Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:279-295. [PMID: 30030832 DOI: 10.1007/978-3-319-89512-3_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The highly conserved Notch signal transduction pathway orchestrates fundamental cellular processes including, differentiation, proliferation, and apoptosis during embryonic development and in the adult organism. Dysregulated Notch signaling underlies the etiology of a variety of human diseases, such as certain types of cancers, developmental disorders and cardiovascular disease. Ligand binding induces proteolytic cleavage of the Notch receptor and nuclear translocation of the Notch intracellular domain (NICD), which forms a ternary complex with the transcription factor CSL and the coactivator MAML to upregulate transcription of Notch target genes. The DNA-binding protein CSL is the centrepiece of transcriptional regulation in the Notch pathway, acting as a molecular hub for interactions with either corepressors or coactivators to repress or activate, respectively, transcription. Here we review previous structure-function studies of CSL-associated coregulator complexes and discuss the molecular insights gleaned from this research. We discuss the functional consequences of both activating and repressing binding partners using the same interaction platforms on CSL. We also emphasize that although there has been a significant uptick in structural information over the past decade, it is still under debate how the molecular switch from repression to activation mediated by CSL occurs at Notch target genes and whether it will be possible to manipulate these transcription complexes therapeutically in the future.
Collapse
|
26
|
Chung E, Deacon P, Park JS. Notch is required for the formation of all nephron segments and primes nephron progenitors for differentiation. Development 2017; 144:4530-4539. [PMID: 29113990 DOI: 10.1242/dev.156661] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Notch signaling plays important roles during mammalian nephrogenesis. To investigate whether Notch regulates nephron segmentation, we performed Notch loss-of-function and gain-of-function studies in developing nephrons in mice. Contrary to the previous notion that Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules in the mammalian nephron, we show that inhibition of Notch blocks the formation of all nephron segments and that constitutive activation of Notch in developing nephrons does not promote or repress the formation of a specific segment. Cells lacking Notch fail to form the S-shaped body and show reduced expression of Lhx1 and Hnf1b Consistent with this, we find that constitutive activation of Notch in mesenchymal nephron progenitors causes ectopic expression of Lhx1 and Hnf1b and that these cells eventually form a heterogeneous population that includes proximal tubules and other types of cells. Our data suggest that Notch signaling is required for the formation of all nephron segments and that it primes nephron progenitors for differentiation rather than directing their cell fates into a specific nephron segment.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Patrick Deacon
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
Zhang C, Li W, Wen J, Yang Z. Autophagy is involved in mouse kidney development and podocyte differentiation regulated by Notch signalling. J Cell Mol Med 2017; 21:1315-1328. [PMID: 28158917 PMCID: PMC5487928 DOI: 10.1111/jcmm.13061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/18/2016] [Indexed: 01/19/2023] Open
Abstract
Podocyte dysfunction results in glomerular diseases accounted for 90% of end-stage kidney disease. The evolutionarily conserved Notch signalling makes a crucial contribution in podocyte development and function. However, the underlying mechanism of Notch pathway modulating podocyte differentiation remains less obvious. Autophagy, reported to be related with Notch signalling pathways in different animal models, is regarded as a possible participant during podocyte differentiation. Here, we found the dynamic changes of Notch1 were coincided with autophagy: they both increased during kidney development and podocyte differentiation. Intriguingly, when Notch signalling was down-regulated by DAPT, autophagy was greatly diminished, and differentiation was also impaired. Further, to better understand the relationship between Notch signalling and autophagy in podocyte differentiation, rapamycin was added to enhance autophagy levels in DAPT-treated cells, and as a result, nephrin was recovered and DAPT-induced injury was ameliorated. Therefore, we put forward that autophagy is involved in kidney development and podocyte differentiation regulated by Notch signalling.
Collapse
Affiliation(s)
- Chuyue Zhang
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Wen Li
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Junkai Wen
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Zhuo Yang
- School of MedicineState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| |
Collapse
|
28
|
Grassmeyer J, Mukherjee M, deRiso J, Hettinger C, Bailey M, Sinha S, Visvader JE, Zhao H, Fogarty E, Surendran K. Elf5 is a principal cell lineage specific transcription factor in the kidney that contributes to Aqp2 and Avpr2 gene expression. Dev Biol 2017; 424:77-89. [PMID: 28215940 DOI: 10.1016/j.ydbio.2017.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/25/2022]
Abstract
The mammalian kidney collecting ducts are critical for water, electrolyte and acid-base homeostasis and develop as a branched network of tubular structures composed of principal cells intermingled with intercalated cells. The intermingled nature of the different collecting duct cell types has made it challenging to identify unique and critical factors that mark and/or regulate the development of the different collecting duct cell lineages. Here we report that the canonical Notch signaling pathway components, RBPJ and Presinilin1 and 2, are involved in patterning the mouse collecting duct cell fates by maintaining a balance between principal cell and intercalated cell fates. The relatively reduced number of principal cells in Notch-signaling-deficient kidneys offered a unique genetic leverage to identify critical principal cell-enriched factors by transcriptional profiling. Elf5, which codes for an ETS transcription factor, is one such gene that is down-regulated in kidneys with Notch-signaling-deficient collecting ducts. Additionally, Elf5 is among the earliest genes up regulated by ectopic expression of activated Notch1 in the developing collecting ducts. In the kidney, Elf5 is first expressed early within developing collecting ducts and remains on in mature principal cells. Lineage tracing of Elf5-expressing cells revealed that they are committed to the principal cell lineage by as early as E16.5. Over-expression of ETS Class IIa transcription factors, including Elf5, Elf3 and Ehf, increase the transcriptional activity of the proximal promoters of Aqp2 and Avpr2 in cultured ureteric duct cell lines. Conditional inactivation of Elf5 in the developing collecting ducts results in a small but significant reduction in the expression levels of Aqp2 and Avpr2 genes. We have identified Elf5 as an early maker of the principal cell lineage that contributes to the expression of principal cell specific genes.
Collapse
Affiliation(s)
- Justin Grassmeyer
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA
| | - Malini Mukherjee
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA
| | - Jennifer deRiso
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA
| | - Casey Hettinger
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA
| | | | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Haotian Zhao
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, Sioux Falls, SD 57104, USA
| | - Eric Fogarty
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA; Basic Biomedical Sciences graduate program, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069 USA
| | - Kameswaran Surendran
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, Sioux Falls, SD 57104, USA.
| |
Collapse
|
29
|
Chung E, Deacon P, Marable S, Shin J, Park JS. Notch signaling promotes nephrogenesis by downregulating Six2. Development 2016; 143:3907-3913. [PMID: 27633993 PMCID: PMC5117151 DOI: 10.1242/dev.143503] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
During nephrogenesis, multipotent mesenchymal nephron progenitors develop into distinct epithelial segments. Each nephron segment has distinct cell types and physiological function. In the current model of kidney development, Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules. Here, we present a novel role of Notch in nephrogenesis. We show in mice that differentiation of nephron progenitors requires downregulation of Six2, a transcription factor required for progenitor maintenance, and that Notch signaling is necessary and sufficient for Six2 downregulation. Furthermore, we find that nephron progenitors lacking Notch signaling fail to differentiate into any nephron segments, not just proximal tubules. Our results demonstrate how cell fates of progenitors are regulated by a transcription factor governing progenitor status and by a differentiation signal in nephrogenesis. Summary: Notch is necessary and sufficient for downregulation of Six2 during nephrogenesis, while nephron progenitors that lack Notch signaling fail to form all segments of the nephron, not just proximal tubules.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Patrick Deacon
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sierra Marable
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Juhyun Shin
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
30
|
Structure and Function of the Su(H)-Hairless Repressor Complex, the Major Antagonist of Notch Signaling in Drosophila melanogaster. PLoS Biol 2016; 14:e1002509. [PMID: 27404588 PMCID: PMC4942083 DOI: 10.1371/journal.pbio.1002509] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/10/2016] [Indexed: 11/25/2022] Open
Abstract
Notch is a conserved signaling pathway that specifies cell fates in metazoans. Receptor-ligand interactions induce changes in gene expression, which is regulated by the transcription factor CBF1/Su(H)/Lag-1 (CSL). CSL interacts with coregulators to repress and activate transcription from Notch target genes. While the molecular details of the activator complex are relatively well understood, the structure-function of CSL-mediated repressor complexes is poorly defined. In Drosophila, the antagonist Hairless directly binds Su(H) (the fly CSL ortholog) to repress transcription from Notch targets. Here, we determine the X-ray structure of the Su(H)-Hairless complex bound to DNA. Hairless binding produces a large conformational change in Su(H) by interacting with residues in the hydrophobic core of Su(H), illustrating the structural plasticity of CSL molecules to interact with different binding partners. Based on the structure, we designed mutants in Hairless and Su(H) that affect binding, but do not affect formation of the activator complex. These mutants were validated in vitro by isothermal titration calorimetry and yeast two- and three-hybrid assays. Moreover, these mutants allowed us to solely characterize the repressor function of Su(H) in vivo. The transcription factor CSL regulates gene expression in response to Notch pathway signaling. The X-ray structure of the complex between the fruit fly version of CSL, Su(H), and its antagonist, Hairless, reveals a novel binding mode and unanticipated structural plasticity. Notch signaling is a form of cell-to-cell communication, in which extracellular receptor-ligand interactions ultimately result in changes in gene expression. The Notch pathway is highly conserved from the model organism Drosophila melanogaster to humans. When mutations occur within Notch pathway components, this often leads to human disease, such as certain types of cancers and birth defects. Transcription of Notch target genes is regulated by the transcription factor CSL (for CBF1/RBP-J in mammals, Su(H) in Drosophila, and Lag-1 in Caenorhabditis elegans). CSL functions as both a transcriptional activator and repressor by forming complexes with coactivator and corepressor proteins, respectively. Here we determine the high-resolution X-ray structure of Su(H) (the fly CSL ortholog) in complex with the corepressor Hairless, which is the major antagonist of Notch signaling in Drosophila. The structure unexpectedly reveals that Hairless binding results in a dramatic conformational change in Su(H). In parallel, we designed mutations in Su(H) and Hairless based on our structure and showed that these mutants are defective in complex formation in vitro and display functional deficiencies in in vivo assays. Taken together, our work provides significant molecular insights into how CSL functions as a transcriptional repressor in the Notch pathway.
Collapse
|
31
|
Organ In Vitro Culture: What Have We Learned about Early Kidney Development? Stem Cells Int 2015; 2015:959807. [PMID: 26078765 PMCID: PMC4452498 DOI: 10.1155/2015/959807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
When Clifford Grobstein set out to study the inductive interaction between tissues in the developing embryo, he developed a method that remained important for the study of renal development until now. From the late 1950s on, in vitro cultivation of the metanephric kidney became a standard method. It provided an artificial environment that served as an open platform to study organogenesis. This review provides an introduction to the technique of organ culture, describes how the Grobstein assay and its variants have been used to study aspects of mesenchymal induction, and describes the search for natural and chemical inducers of the metanephric mesenchyme. The review also focuses on renal development, starting with ectopic budding of the ureteric bud, ureteric bud branching, and the generation of the nephron and presents the search for stem cells and renal progenitor cells that contribute to specific structures and tissues during renal development. It also presents the current use of Grobstein assay and its modifications in regenerative medicine and tissue engineering today. Together, this review highlights the importance of ex vivo kidney studies as a way to acquire new knowledge, which in the future can and will be implemented for developmental biology and regenerative medicine applications.
Collapse
|
32
|
Liu Z, Brunskill E, Boyle S, Chen S, Turkoz M, Guo Y, Grant R, Kopan R. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development 2015; 142:1193-202. [PMID: 25725069 DOI: 10.1242/dev.119529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::Cre(LO), that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::Cre(HI)) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::Cre(ERT2) form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time.
Collapse
Affiliation(s)
- Zhenyi Liu
- SAGE Labs, St Louis, MO 63146, USA Department of Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Eric Brunskill
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott Boyle
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Shuang Chen
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mustafa Turkoz
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yuxuan Guo
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Rachel Grant
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Raphael Kopan
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
33
|
Kopan R, Chen S, Little M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr Top Dev Biol 2014; 107:293-331. [PMID: 24439811 DOI: 10.1016/b978-0-12-416022-4.00011-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Within the developing mammalian kidney, several populations of progenitors form the discrete cellular components of the final organ. Fate mapping experiments revealed the cap mesenchyme (CM) to be the progenitor population for all nephron epithelial cells, whereas the neighboring stromal mesenchyme gives rise to mesangial, pericytic, renin-producing and interstitial cells. The collecting ducts are derived from a population of progenitors at the ureteric bud (UB) tip and a proportion of the endothelium is also derived from a dedicated mesenchymal progenitor. The stroma, CM, and UB interact to create spatially defined niches at the periphery of the developing organ. While the UB tip population persist, the CM represents a transient progenitor population that is exhausted to set the final organ size. The timing of CM exhaustion, and hence the final organ structure, is sensitive to disruptions such as premature birth. Here we will discuss our current understanding of the molecular processes allowing these populations to balance cell survival, self-renewal, support of branching, and maintain capacity to commit to differentiation.
Collapse
Affiliation(s)
- Raphael Kopan
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.
| | - Shuang Chen
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA
| | - Melissa Little
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
34
|
From ureteric bud to the first glomeruli: genes, mediators, kidney alterations. Int Urol Nephrol 2014; 47:109-16. [PMID: 25201458 DOI: 10.1007/s11255-014-0784-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/04/2014] [Indexed: 12/23/2022]
Abstract
The development of the mammalian kidney is a complex and in part unknown process which requires interactions between pluripotential/stem cells, undifferentiated mesenchymal cells, epithelial and mesenchymal components, eventually leading to the coordinate development of multiple different specialized epithelial, endothelial and stromal cell types within the kidney architectural complexity. We will describe the embryology and molecular nephrogenetic mechanisms, a fascinating traffic of cells and tissues which takes place in five stages: (1) ureteric bud (UB) development; (2) cap mesenchyme formation; (3) mesenchymal-epithelial transition (MET); (4) glomerulogenesis and tubulogenesis; (5) interstitial cell development. In particular, we will analyze the multiple cell types involved in these dramatic events as characters moving between different worlds, from the mesenchymal to the epithelial world and back, and will start to define the multiple factors that propel these cells during their travels throughout the developing kidney. Moreover, according with the hypothesis of renal perinatal programing, we will present the results reached in the fields of immunohistochemistry and molecular biology, by means of which we can explain how a loss or excess of molecular factors governing nephrogenesis may cause the onset of pathologies of different gravity, in some cases leading to a chronic kidney disease at different times from birth.
Collapse
|
35
|
Kopan R, Chen S, Liu Z. Alagille, Notch, and robustness: why duplicating systems does not ensure redundancy. Pediatr Nephrol 2014; 29:651-7. [PMID: 24271660 PMCID: PMC3951435 DOI: 10.1007/s00467-013-2661-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
The mammalian kidney forms from several populations of progenitors that only persist during embryogenesis. The epithelial nephron progenitors reside in the cap mesenchyme (CM), whereas mesangial and endothelial cell progenitors reside in the neighboring stromal mesenchyme (SM). After a ureteric bud (UB) signal induces mesenchymal to epithelial transition of some CM cells, they form a nascent epithelial ball (a renal vesicle, or RV) that requires signals mediated by Notch receptors to separate proximal from distal fates. Two Notch receptors (Notch1 and Notch2) and two ligands (Jagged1 and Delta1) are expressed in the RV. Notably, instead of providing sufficient redundancy to ensure that losing any one allele will be inconsequential to human health, a reduction in the dose of one ligand (Jagged1) or one receptor (Notch2) is causally associated with a rare developmental syndrome (Alagille syndrome, or ALGS) affecting eye, kidney, liver, and craniofacial development. Here we discuss our current understanding of the molecular basis for the nonredundant role of Notch2 in this process, and the avenue for new therapeutic strategies that these insights provide.
Collapse
Affiliation(s)
- Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH, 45229-3039, USA,
| | | | | |
Collapse
|
36
|
Boyle SC, Liu Z, Kopan R. Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development 2013; 141:346-54. [PMID: 24353058 DOI: 10.1242/dev.100271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mesangial cells are specialized pericyte/smooth muscle cells that surround and constrain the vascular network within the glomerulus of the kidney. They are derived from the stromal mesenchyme, a progenitor population distinct from nephron stem cells. Whether mesangial cells have a distinct origin from vascular smooth muscle cells (VSMCs) and the pathways that govern their specification are unknown. Here we show that Notch signaling in stromal progenitors is essential for mesangial cell formation but is dispensable for the smooth muscle and interstitial cell lineages. Deletion of RBPjk, the common DNA-binding partner of all active Notch receptors, with Foxd1(tgCre) results in glomerular aneurysm and perinatal death from kidney failure. This defect occurs early in glomerular development as stromal-derived, desmin-positive cells fail to coalesce near forming nephrons and thus do not invade the vascular cleft of the S-shaped body. This is in contrast to other mutants in which the loss of the mesangium was due to migration defects, and suggests that loss of Notch signaling results in a failure to specify this population from the stroma. Interestingly, Pdgfrb-positive VSMCs do not enter the vascular cleft and cannot rescue the mesangial deficiency. Notch1 and Notch2 act redundantly through γ-secretase and RBPjk in this process, as individual mutants have mesangial cells at birth. Together, these data demonstrate a unique origin of mesangial cells and demonstrate a novel, redundant function for Notch receptors in mesangial cell specification, proliferation or survival during kidney development.
Collapse
Affiliation(s)
- Scott C Boyle
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
37
|
Liu Z, Chen S, Boyle S, Zhu Y, Zhang A, Piwnica-Worms DR, Ilagan MXG, Kopan R. The extracellular domain of Notch2 increases its cell-surface abundance and ligand responsiveness during kidney development. Dev Cell 2013; 25:585-98. [PMID: 23806616 DOI: 10.1016/j.devcel.2013.05.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 04/24/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022]
Abstract
Notch2, but not Notch1, plays indispensable roles in kidney organogenesis, and Notch2 haploinsufficiency is associated with Alagille syndrome. We proposed that proximal nephron fates are regulated by a threshold that requires nearly all available free Notch intracellular domains (NICDs) but could not identify the mechanism that explains why Notch2 (N2) is more important than Notch1 (N1). By generating mice that swap their ICDs, we establish that the overall protein concentration, expression domain, or ICD amino acid composition does not account for the differential requirement of these receptors. Instead, we find that the N2 extracellular domain (NECD) increases Notch protein localization to the cell surface during kidney development and is cleaved more efficiently upon ligand binding. This context-specific asymmetry in NICD release efficiency is further enhanced by Fringe. Our results indicate that an elevated N1 surface level could compensate for the loss of N2 signal in specific cell contexts.
Collapse
Affiliation(s)
- Zhenyi Liu
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gao F, Yao M, Shi Y, Hao J, Ren Y, Liu Q, Wang X, Duan H. Notch pathway is involved in high glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways. J Cell Biochem 2013; 114:1029-38. [PMID: 23129176 DOI: 10.1002/jcb.24442] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/24/2012] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that Notch pathway plays a key role in the pathogenesis of diabetic nephropathy (DN), however, the exact mechanisms remain elusive. Here we demonstrated that high glucose (HG) upregulated Notch pathway in podocytes accompanied with the alteration of Bcl-2 and p53 pathways, subsequently leading to podocytes apoptosis. Inhibition of Notch pathway by chemical inhibitor or specific short hairpin RNA (shRNA) vector in podocytes prevented Bcl-2- and p53-dependent cell apoptosis. These findings suggest that Notch pathway mediates HG-induced podocytes apoptosis via Bcl-2 and p53 pathways.
Collapse
Affiliation(s)
- Feng Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
PKH(high) cells within clonal human nephrospheres provide a purified adult renal stem cell population. Stem Cell Res 2013; 11:1163-77. [PMID: 24012544 DOI: 10.1016/j.scr.2013.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 01/09/2023] Open
Abstract
The existence and identification of adult renal stem cells is a controversial issue. In this study, renal stem cells were identified from cultures of clonal human nephrospheres. The cultured nephrospheres exhibited the activation of stem cell pathways and contained cells at different levels of maturation. In each nephrosphere the presence of 1.12-1.25 cells mirroring stem cell properties was calculated. The nephrosphere cells were able to generate three-dimensional tubular structures in 3D cultures and in vivo. In clonal human nephrospheres a PKH(high) phenotype was isolated using PKH26 epifluorescence, which can identify quiescent cells within the nephrospheres. The PKH(high) cells, capable of self-renewal and of generating a differentiated epithelial, endothelial and podocytic progeny, can also survive in vivo maintaining the undifferentiated status. The PKH(high) status, together with a CD133(+)/CD24(-) phenotype, identified a homogeneous cell population displaying in vitro self-renewal and multipotency capacity. The resident adult renal stem cell population isolated from nephrospheres can be used for the study of mechanisms that regulate self-renewal and differentiation in adult renal tissue as well as in renal pathological conditions.
Collapse
|
40
|
Swiatecka-Urban A. Membrane trafficking in podocyte health and disease. Pediatr Nephrol 2013; 28:1723-37. [PMID: 22932996 PMCID: PMC3578983 DOI: 10.1007/s00467-012-2281-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Podocytes are highly specialized epithelial cells localized in the kidney glomerulus. The distinct cell signaling events and unique cytoskeletal architecture tailor podocytes to withstand changes in hydrostatic pressure during glomerular filtration. Alteration of glomerular filtration leads to kidney disease and frequently manifests with proteinuria. It has been increasingly recognized that cell signaling and cytoskeletal dynamics are coupled more tightly to membrane trafficking than previously thought. Membrane trafficking coordinates the cross-talk between protein networks and signaling cascades in a spatially and temporally organized fashion and may be viewed as a communication highway between the cell exterior and interior. Membrane trafficking involves transport of cargo from the plasma membrane to the cell interior (i.e., endocytosis) followed by cargo trafficking to lysosomes for degradation or to the plasma membrane for recycling. Yet, recent studies indicate that the conventional classification does not fully reflect the complex and versatile nature of membrane trafficking. While the increasing complexity of elaborate protein scaffolds and signaling cascades is being recognized in podocytes, the role of membrane trafficking is less well understood. This review will focus on the role of membrane trafficking in podocyte health and disease.
Collapse
|
41
|
Kao RM, Vasilyev A, Miyawaki A, Drummond IA, McMahon AP. Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis. J Am Soc Nephrol 2012; 23:1682-90. [PMID: 22904347 DOI: 10.1681/asn.2012030283] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Formation of a functional renal network requires the interconnection of two epithelial tubes: the nephron, which arises from kidney mesenchyme, and the collecting system, which originates from the branching ureteric epithelium. How this connection occurs, however, is incompletely understood. Here, we used high-resolution image analysis in conjunction with genetic labeling of epithelia to visualize and characterize this process. Although the focal absence of basal lamina from renal vesicle stages ensures that both epithelial networks are closely apposed, we found that a patent luminal interconnection is not established until S-shaped body stages. Precursor cells of the distal nephron in the interconnection zone exhibit a characteristic morphology consisting of ill-defined epithelial junctional complexes but without expression of mesenchymal markers such as vimentin and Snai2. Live-cell imaging revealed that before luminal interconnection, distal cells break into the lumen of the collecting duct epithelium, suggesting that an invasive behavior is a key step in the interconnection process. Furthermore, loss of distal cell identity, which we induced by activating the Notch pathway, prevented luminal interconnection. Taken together, these data support a model in which establishing the distal identity of nephron precursor cells closest to the nascent collecting duct epithelium leads to an active cell invasion, which in turn contributes to a patent tubular interconnection between the nephron and collecting duct epithelia.
Collapse
Affiliation(s)
- Robert M Kao
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
42
|
Kreidberg JA. WT1 and kidney progenitor cells. Organogenesis 2012; 6:61-70. [PMID: 20885852 DOI: 10.4161/org.6.2.11928] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 03/29/2010] [Indexed: 12/31/2022] Open
Abstract
Kidney development has been studied over the past sixty years as a model of embryonic induction during organogenesis. Wilms' tumor-1 (WT1), that encodes a transcription factor and RNA-binding protein, was one of the first tumor suppressor genes identified, and was soon thereafter shown to be associated with syndromic forms of childhood kidney disease and gonadal dysgenesis. Kidney agenesis, resulting from a null mutation in the WT1 gene, was one of the first examples of organ agenesis resulting from a gene targeting experiment. Thus, the study of the WT1 gene and its encoded proteins has been at the forefront of developmental biology, tumor biology and the molecular basis for disease. WT1 is now known to have an important role in kidney progenitor cells during development. This review will discuss recent advances in our understanding of kidney progenitor cells, and the recent identification of WT1 target genes in these cells.
Collapse
Affiliation(s)
- Jordan A Kreidberg
- Department of Medicine, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Gallegos TF, Martovetsky G, Kouznetsova V, Bush KT, Nigam SK. Organic anion and cation SLC22 "drug" transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS One 2012; 7:e40796. [PMID: 22808265 PMCID: PMC3396597 DOI: 10.1371/journal.pone.0040796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022] Open
Abstract
Proper physiological function in the pre- and post-natal proximal tubule of the kidney depends upon the acquisition of selective permeability, apical-basolateral epithelial polarity and the expression of key transporters, including those involved in metabolite, toxin and drug handling. Particularly important are the SLC22 family of transporters, including the organic anion transporters Oat1 (originally identified as NKT) and Oat3 as well as the organic cation transporter Oct1. In ex vivo cultures of metanephric mesenchyme (MM; the embryonic progenitor tissue of the nephron) Oat function was evident before completion of nephron segmentation and corresponded with the maturation of tight junctions as measured biochemically by detergent extractability of the tight junction protein, ZO-1. Examination of available time series microarray data sets in the context of development and differentiation of the proximal tubule (derived from both in vivo and in vitro/ex vivo developing nephrons) allowed for correlation of gene expression data to biochemically and functionally defined states of development. This bioinformatic analysis yielded a network of genes with connectivity biased toward Hnf4α (but including Hnf1α, hyaluronic acid-CD44, and notch pathways). Intriguingly, the Oat1 and Oat3 genes were found to have strong temporal co-expression with Hnf4α in the cultured MM supporting the notion of some connection between the transporters and this transcription factor. Taken together with the ChIP-qPCR finding that Hnf4α occupies Oat1, Oat3, and Oct1 proximal promoters in the in vivo differentiating rat kidney, the data suggest a network of genes with Hnf4α at its center plays a role in regulating the terminal differentiation and capacity for drug and toxin handling by the nascent proximal tubule of the kidney.
Collapse
Affiliation(s)
- Thomas F. Gallegos
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Gleb Martovetsky
- Department of Biomedical Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Valentina Kouznetsova
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin T. Bush
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Tu X, Chen J, Lim J, Karner CM, Lee SY, Heisig J, Wiese C, Surendran K, Kopan R, Gessler M, Long F. Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1. PLoS Genet 2012; 8:e1002577. [PMID: 22457635 PMCID: PMC3310726 DOI: 10.1371/journal.pgen.1002577] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/18/2012] [Indexed: 01/22/2023] Open
Abstract
Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo. Osteoporosis is a disease caused by disruption of the balance between bone formation and resorption resulting in a net loss of bone mass. Although anti-resorptive agents are the current mainstay of osteoporosis therapy, novel strategies to promote bone formation are critically needed for more effective prevention and treatment of the disease. Notch signaling, an evolutionally conserved mechanism among multi-cellular organisms, was recently shown to control bone formation and therefore represents a potential target pathway for novel bone-promoting therapeutics. In this study we elucidate the intracellular signaling mechanism through which Notch controls bone formation, providing a molecular framework that may guide future drug development.
Collapse
Affiliation(s)
- Xiaolin Tu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Barak H, Surendran K, Boyle SC. The Role of Notch Signaling in Kidney Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:99-113. [DOI: 10.1007/978-1-4614-0899-4_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, Fanos V. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol 2011; 227:1257-68. [DOI: 10.1002/jcp.22985] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Kamath BM, Podkameni G, Hutchinson AL, Leonard LD, Gerfen J, Krantz ID, Piccoli DA, Spinner NB, Loomes KM, Meyers K. Renal anomalies in Alagille syndrome: a disease-defining feature. Am J Med Genet A 2011; 158A:85-9. [PMID: 22105858 DOI: 10.1002/ajmg.a.34369] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/14/2011] [Indexed: 01/11/2023]
Abstract
Alagille syndrome (ALGS) is an autosomal dominant condition, primarily caused by mutations in JAGGED1. ALGS is defined by cholestatic liver disease, cardiac disease and involvement of the face, skeleton, and eyes with variable expression of these features. Renal involvement has been reported though not formally described. The objective of this study was to systematically characterize the renal involvement in ALGS. We performed a retrospective review of 466 JAGGED1 mutation-positive ALGS patients. Charts were reviewed for serum biochemistries, renal ultrasounds or other imaging, urinalysis, and clinical reports from pediatric nephrologists. The clinical data were reviewed by two pediatric hepatologists and a pediatric nephrologist. Of 466 charts reviewed we found 187 yielded evaluable renal information. Of these, 73/187 were shown to have renal involvement, representing 39% of the study cohort. Renal dysplasia was the most common anomaly seen. Genotype analysis of the JAGGED1 mutations in the patients with and without renal involvement did not reveal an association with mutation type. From the study we concluded that renal involvement has a prevalence of 39% in ALGS in our evaluable patients. Renal dysplasia is the most common renal anomaly. This finding correlates with the known role of the Notch pathway in glomerular development. Since renal disease of the type seen in ALGS can impair growth and impact liver transplantation, there is a clear need for a prospective study of renal involvement in ALGS and the development of guidelines for evaluation and management. These data also suggest that renal involvement be considered the sixth defining criterion for ALGS.
Collapse
Affiliation(s)
- Binita M Kamath
- Division of Gastroenterology, Hepatology and Nutrition at The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol 2011; 226:394-403. [PMID: 21952830 DOI: 10.1002/path.2967] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 01/04/2023]
Abstract
Notch signalling is a highly conserved cell-cell communication mechanism that regulates development, tissue homeostasis, and repair. Within the kidney, Notch has an important function in orchestrating kidney development. Recent studies indicate that Notch plays a key role in establishing proximal epithelial fate during nephron segmentation as well as the differentiation of principal cells in the renal collecting system. Notch signalling is markedly reduced in the adult kidney; however, increased Notch signalling has been noted in both acute and chronic kidney injury. Increased glomerular epithelial Notch signalling has been associated with albuminuria and glomerulosclerosis, while tubular epithelial Notch activation caused fibrosis development most likely inducing an improper epithelial repair pathway. Recent studies thereby indicate that Notch is a key regulator of kidney development, repair, and injury.
Collapse
Affiliation(s)
- Yasemin Sirin
- Department of Nephrology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
49
|
Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, Houghton D, Lloyd-MacGilp S, Pi X, Roochun Y, Sharghi M, Tindal C, McMahon AP, Gottesman B, Little MH, Georgas K, Aronow BJ, Potter SS, Brunskill EW, Southard-Smith EM, Mendelsohn C, Baldock RA, Davies JA, Davidson D. The GUDMAP database--an online resource for genitourinary research. Development 2011; 138:2845-53. [PMID: 21652655 PMCID: PMC3188593 DOI: 10.1242/dev.063594] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at www.gudmap.org via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.
Collapse
Affiliation(s)
- Simon D Harding
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Boyle SC, Kim M, Valerius MT, McMahon AP, Kopan R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development 2011; 138:4245-54. [PMID: 21852398 DOI: 10.1242/dev.070433] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary excretory organ in vertebrates is the kidney, which is responsible for blood filtration, solute homeostasis and pH balance. These functions are carried out by specialized epithelial cells organized into tubules called nephrons. Each of these cell types arise during embryonic development from a mesenchymal stem cell pool through a process of mesenchymal-to-epithelial transition (MET) that requires sequential action of specific Wnt signals. Induction by Wnt9b directs cells to exit the stem cell niche and express Wnt4, which is both necessary and sufficient for the formation of epithelia. Without either factor, MET fails, nephrons do not form and newborn mice die owing to kidney failure. Ectopic Notch activation in stem cells induces mass differentiation and exhaustion of the stem cell pool. To investigate whether this reflected an interaction between Notch and Wnt, we employed a novel gene manipulation strategy in cultured embryonic kidneys. We show that Notch activation is capable of inducing MET in the absence of both Wnt4 and Wnt9b. Following MET, the presence of Notch directs cells primarily to the proximal tubule fate. Only nephron stem cells have the ability to undergo MET in response to Wnt or Notch, as activation in the closely related stromal mesenchyme has no inductive effect. These data demonstrate that stem cells for renal epithelia are uniquely poised to undergo MET, and that Notch activation can replace key inductive Wnt signals in this process. After MET, Notch provides an instructive signal directing cells towards the proximal tubule lineage at the expense of other renal epithelial fates.
Collapse
Affiliation(s)
- Scott C Boyle
- Departments of Developmental Biology and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|