1
|
Wang J, Xue H, Yi X, Kim H, Hao Y, Jin LH. InR and Pi3K maintain intestinal homeostasis through STAT/EGFR and Notch signaling in enteroblasts. J Cell Biochem 2024; 125:e30545. [PMID: 38436545 DOI: 10.1002/jcb.30545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
To maintain the integrity of the adult gut, the proliferation and differentiation of stem cells must be strictly controlled. Several signaling pathways control the proliferation and differentiation of Drosophila intestinal epithelial cells. Although the modulatory effects of insulin pathway components on cell proliferation have been characterized, their specific role in which cell type and how these components interact with other regulatory signaling pathways remain largely unclear. In this study, we found that InR/Pi3K has major functions in enteroblasts (EBs) that were not previously described. The absence of InR/Pi3K in progenitors leads to a decrease in the number of EBs, while it has no significant effect on intestinal stem cells (ISCs). In addition, we found that InR/Pi3K regulates Notch activity in ISCs and EBs in an opposite way. This is also the reason for the decrease in EB. On the one hand, aberrantly low levels of Notch signaling in ISCs inhibit their proper differentiation into EBs; on the other hand, the higher Notch levels in EBs promote their excessive differentiation into enterocytes (ECs), leading to marked increases in abnormal ECs and decreased proliferation. Moreover, we found that Upd/JAK/STAT signaling acts as an effector or modifier of InR/Pi3K function in the midgut and cooperates with EGFR signaling to regulate cell proliferation. Altogether, our results demonstrate that InR and Pi3K are essential for coordinating stem cell differentiation and proliferation to maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Jiewei Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongmei Xue
- Department of Children's Emergency Medicine, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyu Yi
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim ll Sung University, Pyongyang, North Korea
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
3
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
4
|
Colombo M, Grauso L, Lanzotti V, Incerti G, Adamo A, Storlazzi A, Gigliotti S, Mazzoleni S. Self-DNA Inhibition in Drosophila melanogaster Development: Metabolomic Evidence of the Molecular Determinants. BIOLOGY 2023; 12:1378. [PMID: 37997977 PMCID: PMC10669329 DOI: 10.3390/biology12111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
We investigated the effects of dietary delivered self-DNA in the model insect Drosophila melanogaster. Self-DNA administration resulted in low but significant lethality in Drosophila larvae and considerably extended the fly developmental time. This was characterized by the abnormal persistence of the larvae in the L2 and L3 stages, which largely accounted for the average 72 h delay observed in pupariation, as compared to controls. In addition, self-DNA exposure affected adult reproduction by markedly reducing both female fecundity and fertility, further demonstrating its impact on Drosophila developmental processes. The effects on the metabolites of D. melanogaster larvae after exposure to self-DNA were studied by NMR, LC-MS, and molecular networking. The results showed that self-DNA feeding reduces the amounts of all metabolites, particularly amino acids and N-acyl amino acids, which are known to act as lipid signal mediators. An increasing amount of phloroglucinol was found after self-DNA exposure and correlated to developmental delay and egg-laying suppression. Pidolate, a known intermediate in the γ-glutamyl cycle, also increased after exposure to self-DNA and correlated to the block of insect oogenesis.
Collapse
Affiliation(s)
- Michele Colombo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Laura Grauso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| | - Virginia Lanzotti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences (DI4A), University of Udine, 33100 Udine, Italy;
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Aurora Storlazzi
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Silvia Gigliotti
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| |
Collapse
|
5
|
Nunes RD, Drummond-Barbosa D. A high-sugar diet, but not obesity, reduces female fertility in Drosophila melanogaster. Development 2023; 150:dev201769. [PMID: 37795747 PMCID: PMC10617608 DOI: 10.1242/dev.201769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Obesity is linked to reduced fertility in various species, from Drosophila to humans. Considering that obesity is often induced by changes in diet or eating behavior, it remains unclear whether obesity, diet, or both reduce fertility. Here, we show that Drosophila females on a high-sugar diet become rapidly obese and less fertile as a result of increased death of early germline cysts and vitellogenic egg chambers (or follicles). They also have high glycogen, glucose and trehalose levels and develop insulin resistance in their fat bodies (but not ovaries). By contrast, females with adipocyte-specific knockdown of the anti-obesity genes brummer or adipose are obese but have normal fertility. Remarkably, females on a high-sugar diet supplemented with a separate source of water have mostly normal fertility and glucose levels, despite persistent obesity, high glycogen and trehalose levels, and fat body insulin resistance. These findings demonstrate that a high-sugar diet affects specific processes in oogenesis independently of insulin resistance, that high glucose levels correlate with reduced fertility on a high-sugar diet, and that obesity alone does not impair fertility.
Collapse
Affiliation(s)
- Rodrigo Dutra Nunes
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| |
Collapse
|
6
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
9
|
González-Marín B, Calderón-Segura ME, Sekelsky J. ATM/Chk2 and ATR/Chk1 Pathways Respond to DNA Damage Induced by Movento ® 240SC and Envidor ® 240SC Keto-Enol Insecticides in the Germarium of Drosophila melanogaster. TOXICS 2023; 11:754. [PMID: 37755764 PMCID: PMC10535977 DOI: 10.3390/toxics11090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
DNA damage response (DDR) pathways in keto-enol genotoxicity have not been characterized, and few studies have reported genotoxic effects in non-target organisms. The present study shows that concentrations of 11.2, 22.4, 37.3 mg/L of Movento® 240SC and 12.3, 24.6, 41.1 mg/L of Envidor® 240SC for 72 h oral exposure induced DSBs by significantly increasing the percentage of γH2AV expression in regions 2b and 3 from the germarium of wild type females of Drosophila melanogaster Oregon R, compared to the control group (0.0 mg/L of insecticides), via confocal immunofluorescence microscopy. The comparison between both insecticides' reveals that only the Envidor® 240SC induces concentration-dependent DNA damage, as well as structural changes in the germarium. We determined that the DDR induced by Movento® 240SC depends on the activation of the ATMtefu, Chk1grp and Chk2lok kinases by significantly increasing the percentage of expression of γH2AV in regions 2b and 3 of the germarium, and that ATRmei-29D and p53dp53 kinases only respond at the highest concentration of 37.3 mg/L of Movento® 240SC. With the Envidor® 240SC insecticide, we determined that the DDR depends on the activation of the ATRmei-29D/Chk1grp and ATMtefu/Chk2lok kinases, and p53dp53 by significantly increasing the percentage of expression of γH2AV in the germarium.
Collapse
Affiliation(s)
- Berenyce González-Marín
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
- Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, Mexico
| | - María Elena Calderón-Segura
- Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, Mexico
| | - Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
10
|
Hocaoglu H, Sieber M. Mitochondrial respiratory quiescence: A new model for examining the role of mitochondrial metabolism in development. Semin Cell Dev Biol 2023; 138:94-103. [PMID: 35450766 PMCID: PMC9576824 DOI: 10.1016/j.semcdb.2022.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
Abstract
Mitochondria are vital organelles with a central role in all aspects of cellular metabolism. As a means to support the ever-changing demands of the cell, mitochondria produce energy, drive biosynthetic processes, maintain redox homeostasis, and function as a hub for cell signaling. While mitochondria have been widely studied for their role in disease and metabolic dysfunction, this organelle has a continually evolving role in the regulation of development, wound repair, and regeneration. Mitochondrial metabolism dynamically changes as tissues transition through distinct phases of development. These organelles support the energetic and biosynthetic demands of developing cells and function as key structures that coordinate the nutrient status of the organism with developmental progression. This review will examine the mechanisms that link mitochondria to developmental processes. We will also examine the process of mitochondrial respiratory quiescence (MRQ), a novel mechanism for regulating cellular metabolism through the biochemical and physiological remodeling of mitochondria. Lastly, we will examine MRQ as a system to discover the mechanisms that drive mitochondrial remodeling during development.
Collapse
Affiliation(s)
- Helin Hocaoglu
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Zhang J, Zhang S, Sun Z, Cai Y, Zhong G, Yi X. Camptothecin Effectively Regulates Germline Differentiation through Bam-Cyclin A Axis in Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24021617. [PMID: 36675143 PMCID: PMC9864452 DOI: 10.3390/ijms24021617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Camptothecin (CPT), first isolated from Chinese tree Camptotheca acuminate, produces rapid and prolonged inhibition of DNA synthesis and induction of DNA damage by targeting topoisomerase I (top1), which is highly activated in cancer cells. CPT thus exhibits remarkable anticancer activities in various cancer types, and is a promising therapeutic agent for the treatment of cancers. However, it remains to be uncovered underlying its cytotoxicity toward germ cells. In this study we found that CPT, a cell cycle-specific anticancer agent, reduced fecundity and exhibited significant cytotoxicity toward GSCs and two-cell cysts. We showed that CPT induced GSC loss and retarded two-cell cysts differentiation in a niche- or apoptosis-independent manner. Instead, CPT induced ectopic expression of a differentiation factor, bag of marbles (Bam), and regulated the expression of cyclin A, which contributed to GSC loss. In addition, CPT compromised two-cell cysts differentiation by decreasing the expression of Bam and inducing cell arrest at G1/S phase via cyclin A, eventually resulting in two-cell accumulation. Collectively, this study demonstrates, for the first time in vivo, that the Bam-cyclin A axis is involved in CPT-mediated germline stem cell loss and two-cell cysts differentiation defects via inducing cell cycle arrest, which could provide information underlying toxicological effects of CPT in the productive system, and feature its potential to develop as a pharmacology-based germline stem cell regulation agent.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Shijie Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 119077, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (X.Y.)
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (X.Y.)
| |
Collapse
|
12
|
Yoon S, Shin M, Shim J. Inter-organ regulation by the brain in Drosophila development and physiology. J Neurogenet 2022:1-13. [DOI: 10.1080/01677063.2022.2137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Sunggyu Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Hoshino R, Niwa R. Regulation of Mating-Induced Increase in Female Germline Stem Cells in the Fruit Fly Drosophila melanogaster. Front Physiol 2021; 12:785435. [PMID: 34950056 PMCID: PMC8689587 DOI: 10.3389/fphys.2021.785435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 01/19/2023] Open
Abstract
In many insect species, mating stimuli can lead to changes in various behavioral and physiological responses, including feeding, mating refusal, egg-laying behavior, energy demand, and organ remodeling, which are collectively known as the post-mating response. Recently, an increase in germline stem cells (GSCs) has been identified as a new post-mating response in both males and females of the fruit fly, Drosophila melanogaster. We have extensively studied mating-induced increase in female GSCs of D. melanogaster at the molecular, cellular, and systemic levels. After mating, the male seminal fluid peptide [e.g. sex peptide (SP)] is transferred to the female uterus. This is followed by binding to the sex peptide receptor (SPR), which evokes post-mating responses, including increase in number of female GSCs. Downstream of SP-SPR signaling, the following three hormones and neurotransmitters have been found to act on female GSC niche cells to regulate mating-induced increase in female GSCs: (1) neuropeptide F, a peptide hormone produced in enteroendocrine cells; (2) octopamine, a monoaminergic neurotransmitter synthesized in ovary-projecting neurons; and (3) ecdysone, a steroid hormone produced in ovarian follicular cells. These humoral factors are secreted from each organ and are received by ovarian somatic cells and regulate the strength of niche signaling in female GSCs. This review provides an overview of the latest findings on the inter-organ relationship to regulate mating-induced female GSC increase in D. melanogaster as a model. We also discuss the remaining issues that should be addressed in the future.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Hocaoglu H, Wang L, Yang M, Yue S, Sieber M. Heritable shifts in redox metabolites during mitochondrial quiescence reprogramme progeny metabolism. Nat Metab 2021; 3:1259-1274. [PMID: 34545253 PMCID: PMC8462065 DOI: 10.1038/s42255-021-00450-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Changes in maternal diet and metabolic defects in mothers can profoundly affect health and disease in their progeny. However, the biochemical mechanisms that induce the initial reprogramming events at the cellular level have remained largely unknown owing to limitations in obtaining pure populations of quiescent oocytes. Here, we show that the precocious onset of mitochondrial respiratory quiescence causes a reprogramming of progeny metabolic state. The premature onset of mitochondrial respiratory quiescence drives the lowering of Drosophila oocyte NAD+ levels. NAD+ depletion in the oocyte leads to reduced methionine cycle production of the methyl donor S-adenosylmethionine in embryos and lower levels of histone H3 lysine 27 trimethylation, resulting in enhanced intestinal lipid metabolism in progeny. In addition, we show that triggering cellular quiescence in mammalian cells and chemotherapy-resistant human cancer cell models induces cellular reprogramming events identical to those seen in Drosophila, suggesting a conserved metabolic mechanism in systems reliant on quiescent cells.
Collapse
Affiliation(s)
- Helin Hocaoglu
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mengye Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sibiao Yue
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Delivery of Bioactive Compounds to Improve Skin Cell Responses on Microfabricated Electrospun Microenvironments. Bioengineering (Basel) 2021; 8:105. [PMID: 34436108 PMCID: PMC8389211 DOI: 10.3390/bioengineering8080105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022] Open
Abstract
The introduction of microtopographies within biomaterial devices is a promising approach that allows one to replicate to a degree the complex native environment in which human cells reside. Previously, our group showed that by combining electrospun fibers and additive manufacturing it is possible to replicate to an extent the stem cell microenvironment (rete ridges) located between the epidermal and dermal layers. Our group has also explored the use of novel proangiogenic compounds to improve the vascularization of skin constructs. Here, we combine our previous approaches to fabricate innovative polycaprolactone fibrous microtopographical scaffolds loaded with bioactive compounds (2-deoxy-D-ribose, 17β-estradiol, and aloe vera). Metabolic activity assay showed that microstructured scaffolds can be used to deliver bioactive agents and that the chemical relation between the working compound and the electrospinning solution is critical to replicate as much as possible the targeted morphologies. We also reported that human skin cell lines have a dose-dependent response to the bioactive compounds and that their inclusion has the potential to improve cell activity, induce blood vessel formation and alter the expression of relevant epithelial markers (collagen IV and integrin β1). In summary, we have developed fibrous matrixes containing synthetic rete-ridge-like structures that can deliver key bioactive compounds that can enhance skin regeneration and ultimately aid in the development of a complex wound healing device.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
16
|
Almeida-Oliveira F, Tuthill BF, Gondim KC, Majerowicz D, Musselman LP. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103569. [PMID: 33753225 DOI: 10.1016/j.ibmb.2021.103569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.
Collapse
Affiliation(s)
- Fernanda Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Department of Biological Sciences, Binghamton University, USA
| | - Bryon F Tuthill
- Department of Biological Sciences, Binghamton University, USA
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| | | |
Collapse
|
17
|
Guo S, Quan S, Zou S. Roles of the Notch Signaling Pathway in Ovarian Functioning. Reprod Sci 2021; 28:2770-2778. [PMID: 34008156 DOI: 10.1007/s43032-021-00610-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
The Notch signaling pathway regulates cell invasion, adhesion, proliferation, apoptosis, and differentiation via cell-to-cell interactions and plays important physiological roles in the ovary. This review summarizes current knowledge about the Notch signaling pathway in relation to ovarian functions and reveals the potential underlying mechanisms. We conducted an in-depth review of relevant literature to determine the current status of research into the Notch signaling pathway in relation to ovarian functioning and reveal potential underlying mechanisms. The activation of different Notch receptors promotes the formation of primordial follicles and proliferation of granulosa cells and inhibits steroid secretion. Abnormal regulation of the Notch signaling pathway or direct mutations might lead to over-activation or under-activation of the receptors, resulting in Notch upregulation or downregulation. It can also disrupt the normal physiological functions of the ovary. The lncRNA HOTAIR and growth hormones improved premature ovarian failure (POF) and promoted follicle maturation in a mouse model of POF by upregulating Notch1 expression. They also stimulated the Notch1 signaling pathway, increased the level of plasma estradiol, and decreased the level of plasma follicle-stimulating hormone. Thus, Notch1 could serve as a novel therapeutic target for POF. Several studies have reported multiple roles of Notch in regulating female primordial follicle formation and follicle maturation. Direct mutations in Notch-related molecules or abnormal gene regulation in the signaling pathway can lead to ovarian dysfunction. However, the underlying mechanisms are not fully understood.
Collapse
Affiliation(s)
- Shuhan Guo
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Siyi Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Marca JEL, Somers WG. The Drosophila gonads: models for stem cell proliferation, self-renewal, and differentiation. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe male and female gonads of Drosophila melanogaster have developed into powerful model systems for both the study of stem cell behaviours, and for understanding how stem cell misregulation can lead to cancers. Using these systems, one is able to observe and manipulate the resident stem cell populations in vivo with a great deal of licence. The tractability of the testis and ovary also allow researchers to explore a range of cellular mechanisms, such as proliferation and polarity, as well as the influence exerted by the local environment through a host of highly-conserved signalling pathways. Importantly, many of the cellular behaviours and processes studied in the Drosophila testis and ovary are known to be disrupted, or otherwise misregulated, in human tumourigenic cells. Here, we review the mechanisms relating to stem cell behaviour, though we acknowledge there are many other fascinating aspects of gametogenesis, including the invasive behaviour of migratory border cells in the Drosophila ovary that, though relevant to the study of tumourigenesis, will unfortunately not be covered.
Collapse
Affiliation(s)
- John E. La Marca
- Department of Genetics, La Trobe University, Melbourne, VIC 3086, Australia
| | | |
Collapse
|
19
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
20
|
Distant activation of Notch signaling induces stem cell niche assembly. PLoS Genet 2021; 17:e1009489. [PMID: 33780456 PMCID: PMC8031783 DOI: 10.1371/journal.pgen.1009489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Here we show that multiple modes of Notch signaling activation specify the complexity of spatial cellular interactions necessary for stem cell niche assembly. In particular, we studied the formation of the germline stem cell niche in Drosophila ovaries, which is a two-step process whereby terminal filaments are formed first. Then, terminal filaments signal to the adjacent cap cell precursors, resulting in Notch signaling activation, which is necessary for the lifelong acquisition of stem cell niche cell fate. The genetic data suggest that in order to initiate the process of stem cell niche assembly, Notch signaling is activated among non-equipotent cells via distant induction, where germline Delta is delivered to somatic cells located several diameters away via cellular projections generated by primordial germ cells. At the same time, to ensure the robustness of niche formation, terminal filament cell fate can also be induced by somatic Delta via cis- or trans-inhibition. This exemplifies a double security mechanism that guarantees that the germline stem cell niche is formed, since it is indispensable for the adjacent germline precursor cells to acquire and maintain stemness necessary for successful reproduction. These findings contribute to our understanding of the formation of stem cell niches in their natural environment, which is important for stem cell biology and regenerative medicine. Adult organs often contain a stem cell niche that maintains stem cells necessary for the replenishment of different types of terminally differentiated cells that are continuously lost. This study reveals that various modes of Notch signaling activation induce the formation of the germline stem cell niche in Drosophila. We show for the first time that even among non-equipotent cells, Notch signaling can be trans-activated via distant induction mode, where the ligand Delta is delivered via cellular protrusions to the somatic stem cell niche precursors located several cell diameters away. Moreover, there is a second security mechanism controlled by the soma that additionally ensures that the stem cell niche is formed. In the stem cell niche precursors, Notch signaling can be locally inhibited by the somatic Delta. While Notch signaling trans-inhibition has been proposed via mathematical modelling, our findings show that a group of cells that have high Delta can be seen in a living organism, confirming that this mode of Notch signaling inhibition by trans-Delta exists in vivo. This work provides significant advances in the understanding of Notch signaling and the stem cell niche formation, which is important for the fields of stem cell biology and regenerative medicine.
Collapse
|
21
|
Hu X, Li M, Hao X, Lu Y, Zhang L, Wu G. The Osa-Containing SWI/SNF Chromatin-Remodeling Complex Is Required in the Germline Differentiation Niche for Germline Stem Cell Progeny Differentiation. Genes (Basel) 2021; 12:genes12030363. [PMID: 33806269 PMCID: PMC7998989 DOI: 10.3390/genes12030363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Drosophila ovary is recognized as a powerful model to study stem cell self-renewal and differentiation. Decapentaplegic (Dpp) is secreted from the germline stem cell (GSC) niche to activate Bone Morphogenic Protein (BMP) signaling in GSCs for their self-renewal and is restricted in the differentiation niche for daughter cell differentiation. Here, we report that Switch/sucrose non-fermentable (SWI/SNF) component Osa depletion in escort cells (ECs) results in a blockage of GSC progeny differentiation. Further molecular and genetic analyses suggest that the defective germline differentiation is partially attributed to the elevated dpp transcription in ECs. Moreover, ectopic Engrailed (En) expression in osa-depleted ECs partially contributes to upregulated dpp transcription. Furthermore, we show that Osa regulates germline differentiation in a Brahma (Brm)-associated protein (BAP)-complex-dependent manner. Additionally, the loss of EC long cellular processes upon osa depletion may also partly contribute to the germline differentiation defect. Taken together, these data suggest that the epigenetic factor Osa plays an important role in controlling EC characteristics and germline lineage differentiation.
Collapse
Affiliation(s)
- Xiaolong Hu
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
| | - Mengjie Li
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
| | - Xue Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou 215121, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
- Correspondence:
| |
Collapse
|
22
|
Miscopein Saler L, Hauser V, Bartoletti M, Mallart C, Malartre M, Lebrun L, Pret AM, Théodore L, Chalvet F, Netter S. The Bric-à-Brac BTB/POZ transcription factors are necessary in niche cells for germline stem cells establishment and homeostasis through control of BMP/DPP signaling in the Drosophila melanogaster ovary. PLoS Genet 2020; 16:e1009128. [PMID: 33151937 PMCID: PMC7643948 DOI: 10.1371/journal.pgen.1009128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/22/2020] [Indexed: 11/26/2022] Open
Abstract
Many studies have focused on the mechanisms of stem cell maintenance via their interaction with a particular niche or microenvironment in adult tissues, but how formation of a functional niche is initiated, including how stem cells within a niche are established, is less well understood. Adult Drosophila melanogaster ovary Germline Stem Cell (GSC) niches are comprised of somatic cells forming a stack called a Terminal Filament (TF) and associated Cap and Escort Cells (CCs and ECs, respectively), which are in direct contact with GSCs. In the adult ovary, the transcription factor Engrailed is specifically expressed in niche cells where it directly controls expression of the decapentaplegic (dpp) gene encoding a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules, which are key factors for GSC maintenance. In larval ovaries, in response to BMP signaling from newly formed niches, adjacent primordial germ cells become GSCs. The bric-à-brac paralogs (bab1 and bab2) encode BTB/POZ domain-containing transcription factors that are expressed in developing niches of larval ovaries. We show here that their functions are necessary specifically within precursor cells for TF formation during these stages. We also identify a new function for Bab1 and Bab2 within developing niches for GSC establishment in the larval ovary and for robust GSC maintenance in the adult. Moreover, we show that the presence of Bab proteins in niche cells is necessary for activation of transgenes reporting dpp expression as of larval stages in otherwise correctly specified Cap Cells, independently of Engrailed and its paralog Invected (En/Inv). Moreover, strong reduction of engrailed/invected expression during larval stages does not impair TF formation and only partially reduces GSC numbers. In the adult ovary, Bab proteins are also required for dpp reporter expression in CCs. Finally, when bab2 was overexpressed at this stage in somatic cells outside of the niche, there were no detectable levels of ectopic En/Inv, but ectopic expression of a dpp transgene was found in these cells and BMP signaling activation was induced in adjacent germ cells, which produced GSC-like tumors. Together, these results indicate that Bab transcription factors are positive regulators of BMP signaling in niche cells for establishment and homeostasis of GSCs in the Drosophila ovary.
Collapse
Affiliation(s)
- Laurine Miscopein Saler
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Hauser
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathieu Bartoletti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Charlotte Mallart
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marianne Malartre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Lebrun
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne-Marie Pret
- Université Paris-Saclay, UVSQ, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laurent Théodore
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Fabienne Chalvet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Netter
- Université Paris-Saclay, UVSQ, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
23
|
Molecular basis of reproductive senescence: insights from model organisms. J Assist Reprod Genet 2020; 38:17-32. [PMID: 33006069 DOI: 10.1007/s10815-020-01959-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Reproductive decline due to parental age has become a major barrier to fertility as couples have delayed having offspring into their thirties and forties. Advanced parental age is also associated with increased incidence of neurological and cardiovascular disease in offspring. Thus, elucidating the etiology of reproductive decline is of clinical importance. METHODS Deciphering the underlying processes that drive reproductive decline is particularly challenging in women in whom a discrete oocyte pool is established during embryogenesis and may remain dormant for tens of years. Instead, our understanding of the processes that drive reproductive senescence has emerged from studies in model organisms, both vertebrate and invertebrate, that are the focus of this literature review. CONCLUSIONS Studies of reproductive aging in model organisms not only have revealed the detrimental cellular changes that occur with age but also are helping identify major regulator proteins controlling them. Here, we discuss what we have learned from model organisms with respect to the molecular mechanisms that maintain both genome integrity and oocyte quality.
Collapse
|
24
|
Amartuvshin O, Lin C, Hsu S, Kao S, Chen A, Tang W, Chou H, Chang D, Hsu Y, Hsiao B, Rastegari E, Lin K, Wang Y, Yao C, Chen G, Chen B, Hsu H. Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell 2020; 19:e13191. [PMID: 32666649 PMCID: PMC7431834 DOI: 10.1111/acel.13191] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging-related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin-related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging-induced tissue degeneration.
Collapse
Affiliation(s)
- Oyundari Amartuvshin
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Hung Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Shao‐Chun Hsu
- Imaging Core Facility at the Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
| | - Shih‐Han Kao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- Present address:
Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Alvin Chen
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Wei‐Chun Tang
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Han‐Lin Chou
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Dong‐Lin Chang
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Yen‐Yang Hsu
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Bai‐Shiou Hsiao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | | | - Kun‐Yang Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Yu‐Ting Wang
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Kuang Yao
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Guang‐Chao Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Bi‐Chang Chen
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Hwei‐Jan Hsu
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| |
Collapse
|
25
|
Weaver LN, Drummond-Barbosa D. The nuclear receptor seven up functions in adipocytes and oenocytes to control distinct steps of Drosophila oogenesis. Dev Biol 2019; 456:179-189. [PMID: 31470019 PMCID: PMC6884690 DOI: 10.1016/j.ydbio.2019.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 02/09/2023]
Abstract
Reproduction is intimately linked to the physiology of an organism. Nuclear receptors are widely expressed transcription factors that mediate the effects of many circulating molecules on physiology and reproduction. While multiple studies have focused on the roles of nuclear receptors intrinsically in the ovary, it remains largely unknown how the actions of nuclear receptors in peripheral tissues influence oogenesis. We identified the nuclear receptor encoded by svp as a novel regulator of oogenesis in adult Drosophila. Global somatic knockdown of svp reduces egg production by increasing GSC loss, death of early germline cysts, and degeneration of vitellogenic follicles. Tissue-specific knockdown experiments revealed that svp remotely controls these different steps of oogenesis through separate mechanisms involving distinct tissues. Specifically, adipocyte-specific svp knockdown impairs GSC maintenance and early germline cyst survival, whereas oenocyte-specific svp knockdown increases the death of vitellogenic follicles without any effects on GSCs or early cysts. These results illustrate that nuclear receptors can control reproduction through a variety of mechanisms involving peripheral tissues.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Lovegrove MR, Dearden PK, Duncan EJ. Ancestral hymenopteran queen pheromones do not share the broad phylogenetic repressive effects of honeybee queen mandibular pheromone. JOURNAL OF INSECT PHYSIOLOGY 2019; 119:103968. [PMID: 31669583 DOI: 10.1016/j.jinsphys.2019.103968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Queen pheromones effect the reproductive division of labour, a defining feature of eusociality. Reproductive division of labour ensures that one, or a small number of, females are responsible for the majority of reproduction within a colony. Much work on the evolution and function of these pheromones has focussed on Queen Mandibular Pheromone (QMP) which is produced by the Western or European honeybee (Apis mellifera). QMP has phylogenetically broad effects, repressing reproduction in a variety of arthropods, including those distantly related to the honeybee such as the fruit fly Drosophila melanogaster. QMP is highly derived and has little chemical similarity to the majority of hymenopteran queen pheromones which are derived from cuticular hydrocarbons. This raises the question of whether the phylogenetically widespread repression of reproduction by QMP also occurs with more basal saturated hydrocarbon-based queen-pheromones. Using D. melanogaster we show that saturated hydrocarbons are incapable of repressing reproduction, unlike QMP. We also show no interaction between the four saturated hydrocarbons tested or between the saturated hydrocarbons and QMP, implying that there is no conservation in the mechanism of detection or action between these compounds. We propose that the phylogenetically broad reproductive repression seen in response to QMP is not a feature of all queen pheromones, but unique to QMP itself, which has implications for our understanding of how queen pheromones act and evolve.
Collapse
Affiliation(s)
- Mackenzie R Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
27
|
Hsu HJ, Bahader M, Lai CM. Molecular control of the female germline stem cell niche size in Drosophila. Cell Mol Life Sci 2019; 76:4309-4317. [PMID: 31300869 PMCID: PMC11105562 DOI: 10.1007/s00018-019-03223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/17/2019] [Accepted: 07/05/2019] [Indexed: 11/26/2022]
Abstract
Adult stem cells have a unique capacity to renew themselves and generate differentiated cells that are needed in the body. These cells are recruited and maintained by the surrounding microenvironment, known as the stem cell niche, during organ development. Thus, the stem cell niche is required for proper tissue homeostasis, and its dysregulation is associated with tumorigenesis and tissue degeneration. The identification of niche components and the mechanisms that regulate niche establishment and maintenance, however, are just beginning to be uncovered. Germline stem cells (GSCs) of the Drosophila ovary provide an excellent model for studying the stem cell niche in vivo because of their well-characterized cell biology and the availability of genetic tools. In this review, we introduce the ovarian GSC niche, and the key signaling pathways for niche precursor segregation, niche specification, and niche extracellular environment establishment and niche maintenance that are involved in regulating niche size during development and adulthood.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Majid Bahader
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Ming Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
28
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
29
|
Lenaerts C, Monjon E, Van Lommel J, Verbakel L, Vanden Broeck J. Peptides in insect oogenesis. CURRENT OPINION IN INSECT SCIENCE 2019; 31:58-64. [PMID: 31109674 DOI: 10.1016/j.cois.2018.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
The physiological control of reproduction in insects depends on a combination of environmental and internal cues. In the adult stage, insects become sexually mature and generate gametes. In females, the latter process is designated as oogenesis. Peptides are a versatile class of extracellular signalling molecules that regulate many processes, including oogenesis. At present, the best documented physiological control mechanism of insect oogenesis is the insulin-related peptide signalling pathway. It regulates different stages of the process and provides a functional link between nutritional status and reproduction. Several other peptides have been shown to exert gonadoregulatory activities, but in most cases their exact mode of action still has to be unravelled and their effects on oogenesis could be direct or indirect. Some regulatory peptides, such as the Drosophila sex peptide, are being transferred from the male to the female during the mating process.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
Tseng CY, Su YH, Yang SM, Lin KY, Lai CM, Rastegari E, Amartuvshin O, Cho Y, Cai Y, Hsu HJ. Smad-Independent BMP Signaling in Somatic Cells Limits the Size of the Germline Stem Cell Pool. Stem Cell Reports 2018; 11:811-827. [PMID: 30122445 PMCID: PMC6135924 DOI: 10.1016/j.stemcr.2018.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
In developing organisms, proper tuning of the number of stem cells within a niche is critical for the maintenance of adult tissues; however, the involved mechanisms remain largely unclear. Here, we demonstrate that Thickveins (Tkv), a type I bone morphogenetic protein (BMP) receptor, acts in the Drosophila developing ovarian soma through a Smad-independent pathway to shape the distribution of BMP signal within the niche, impacting germline stem cell (GSC) recruitment and maintenance. Somatic Tkv promotes Egfr signaling to silence transcription of Dally, which localizes BMP signals on the cell surface. In parallel, Tkv promotes Hh signaling, which promotes escort cell cellular protrusions and upregulates expression of the Drosophila BMP homolog, Dpp, forming a positive feedback loop that enhances Tkv signaling and strengthens the niche boundary. Our results reveal a role for non-canonical BMP signaling in the soma during GSC establishment and generally illustrate how complex, cell-specific BMP signaling mediates niche-stem cell interactions. Tkv, a BMP receptor, in the developing ovarian soma controls fertility Knockdown Tkv in the developing soma causes ectopic germline stem cell (GSC) accumulation Tkv in the soma controls GSC number by limiting BMPs within the GSC niche BMP-Tkv signaling in the soma limits GSC number via Egfr and Hh signaling
Collapse
Affiliation(s)
- Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shun-Min Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kun-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chun-Ming Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Oyundari Amartuvshin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yueh Cho
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yu Cai
- Temasek Life Science Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan; Graduate Institute of Biotechnology and Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
31
|
Weaver LN, Drummond-Barbosa D. Maintenance of Proper Germline Stem Cell Number Requires Adipocyte Collagen in Adult Drosophila Females. Genetics 2018; 209:1155-1166. [PMID: 29884747 PMCID: PMC6063239 DOI: 10.1534/genetics.118.301137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in specialized niches and are regulated by a variety of physiological inputs. Adipocytes influence whole-body physiology and stem cell lineages; however, the molecular mechanisms linking adipocytes to stem cells are poorly understood. Here, we report that collagen IV produced in adipocytes is transported to the ovary to maintain proper germline stem cell (GSC) number in adult Drosophila females. Adipocyte-derived collagen IV acts through β-integrin signaling to maintain normal levels of E-cadherin at the niche, thereby ensuring proper adhesion to GSCs. These findings demonstrate that extracellular matrix components produced in adipocytes can be transported to and incorporated into an established adult tissue to influence stem cell number.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
32
|
Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 2018; 440:31-39. [PMID: 29729259 DOI: 10.1016/j.ydbio.2018.04.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Tissue-specific stem cells are tied to the nutritional and physiological environment of adult organisms. Adipocytes have key endocrine and nutrient-sensing roles and have emerged as major players in relaying dietary information to regulate other organs. For example, previous studies in Drosophila melanogaster revealed that amino acid sensing as well as diet-dependent metabolic pathways function in adipocytes to influence the maintenance of female germline stem cells (GSCs). How nutrient-sensing pathways acting within adipocytes influence adult stem cell lineages, however, is just beginning to be elucidated. Here, we report that insulin/insulin-like growth factor signaling in adipocytes promotes GSC maintenance, early germline cyst survival, and vitellogenesis. Further, adipocytes use distinct mechanisms downstream of insulin receptor activation to control these aspects of oogenesis, all of which are independent of FOXO. We find that GSC maintenance is modulated by Akt1 through GSK-3β, early germline cyst survival is downstream of adipocyte Akt1 but independent of GSK-3β, and vitellogenesis is regulated through an Akt1-independent pathway in adipocytes. These results indicate that, in addition to employing different types of nutrient sensing, adipocytes can use distinct axes of a single nutrient-sensing pathway to regulate multiple stages of the GSC lineage in the ovary.
Collapse
|
33
|
Yatsenko AS, Shcherbata HR. Stereotypical architecture of the stem cell niche is spatiotemporally established by miR-125-dependent coordination of Notch and steroid signaling. Development 2018; 145:dev.159178. [PMID: 29361571 PMCID: PMC5818007 DOI: 10.1242/dev.159178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Stem cell niches act as signaling platforms that regulate stem cell self-renewal and sustain stem cells throughout life; however, the specific developmental events controlling their assembly are not well understood. Here, we show that during Drosophila ovarian germline stem cell niche formation, the status of Notch signaling in the cell can be reprogrammed. This is controlled via steroid-induced miR-125, which targets a negative regulator of Notch signaling, Tom. Thus, miR-125 acts as a spatiotemporal coordinator between paracrine Notch and endocrine steroid signaling. Moreover, a dual security mechanism for Notch signaling activation exists to ensure the robustness of niche assembly. Particularly, stem cell niche cells can be specified either via lateral inhibition, in which a niche cell precursor acquires Notch signal-sending status randomly, or via peripheral induction, whereby Delta is produced by a specific cell. When one mechanism is perturbed due to mutations, developmental defects or environmental stress, the remaining mechanism ensures that the niche is formed, perhaps abnormally, but still functional. This guarantees that the germline stem cells will have their residence, thereby securing progressive oogenesis and, thus, organism reproduction. Highlighted Article: In Drosophila, the robustness of stem cell niche assembly is safeguarded via a dual mechanism of Notch activation. Cellular Notch status can be reprogrammed by miR-125, which spatiotemporally coordinates paracrine and endocrine signaling.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
34
|
Regulatory Mechanisms of the Germline Stem Cell Niche in Drosophila melanogaster. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Su YH, Rastegri E, Kao SH, Lai CM, Lin KY, Liao HY, Wang MH, Hsu HJ. Diet regulates membrane extension and survival of niche escort cells for germline homeostasis via insulin signaling. Development 2018; 145:dev.159186. [DOI: 10.1242/dev.159186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/09/2018] [Indexed: 12/29/2022]
Abstract
Diet is an important regulator of stem cell homeostasis, however, the underlying mechanisms of this regulation are not fully known. Here, we report that insulin signaling mediates dietary maintenance of Drosophila ovarian germline stem cells (GSCs) by promoting the extension of niche escort cell (EC) membranes to wrap around GSCs. This wrapping may facilitate the delivery of BMP stemness factors from ECs in the niche to GSCs. In addition to the effects on GSCs, insulin signaling-mediated regulation of EC number and protrusions controls the division and growth of GSC progeny. The effects of insulin signaling on EC membrane extension are, at least in part, driven by enhanced translation of Failed axon connections (Fax) via Ribosomal protein S6 kinase. Fax is a membrane protein that may participate in Abl-regulated cytoskeletal dynamics and is known to be involved in axon bundle formation. Therefore, we conclude that dietary cues stimulate insulin signaling in the niche to regulate EC cellular structure, probably via Fax-dependent cytoskeleton remodeling. This mechanism enhances intercellular contact and facilitates homeostatic interactions between somatic and germline cells in response to diet.
Collapse
Affiliation(s)
- Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Elham Rastegri
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 11529, Taiwan
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Min Lai
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hung-Yu Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mu-Hsiang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
36
|
Flora P, Schowalter S, Wong-Deyrup S, DeGennaro M, Nasrallah MA, Rangan P. Transient transcriptional silencing alters the cell cycle to promote germline stem cell differentiation in Drosophila. Dev Biol 2017; 434:84-95. [PMID: 29198563 PMCID: PMC5830152 DOI: 10.1016/j.ydbio.2017.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Transcriptional silencing is a conserved process used by embryonic germ cells to repress somatic fate and maintain totipotency and immortality. In Drosophila, this transcriptional silencing is mediated by polar granule component (pgc). Here, we show that in the adult ovary, pgc is required for timely germline stem cell (GSC) differentiation. Pgc is expressed transiently in the immediate GSC daughter (pre-cystoblast), where it mediates a pulse of transcriptional silencing. This transcriptional silencing mediated by pgc indirectly promotes the accumulation of Cyclin B (CycB) and cell cycle progression into late-G2 phase, when the differentiation factor bag of marbles (bam) is expressed. Pgc mediated accumulation of CycB is also required for heterochromatin deposition, which protects the germ line genome against selfish DNA elements. Our results suggest that transient transcriptional silencing in the pre-cystoblast “re-programs” it away from self-renewal and toward the gamete differentiation program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Sean Schowalter
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA; Boston University School of Medicine, 815 Albany Street, MA 02119, USA
| | - SiuWah Wong-Deyrup
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Matthew DeGennaro
- Biomolecular Sciences Institute, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Mohamad Ali Nasrallah
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA; University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Prashanth Rangan
- Department of Biological Sciences/The RNA Institute, University at Albany SUNY, Albany, NY 12222, USA.
| |
Collapse
|
37
|
Pekar O, Ow MC, Hui KY, Noyes MB, Hall SE, Hubbard EJA. Linking the environment, DAF-7/TGFβ signaling and LAG-2/DSL ligand expression in the germline stem cell niche. Development 2017; 144:2896-2906. [PMID: 28811311 DOI: 10.1242/dev.147660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
Abstract
The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFβ signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFβ causes a DAF-1/TGFβR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFβ signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFβ signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.
Collapse
Affiliation(s)
- Olga Pekar
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Kailyn Y Hui
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Sarah E Hall
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
39
|
Perez-Mockus G, Schweisguth F. Cell Polarity and Notch Signaling: Linked by the E3 Ubiquitin Ligase Neuralized? Bioessays 2017; 39. [DOI: 10.1002/bies.201700128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Gantas Perez-Mockus
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
- Univ. Pierre et Marie Curie; Cellule Pasteur UPMC; rue du Dr Roux 75015 Paris France
| | - Francois Schweisguth
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
| |
Collapse
|
40
|
Specification and spatial arrangement of cells in the germline stem cell niche of the Drosophila ovary depend on the Maf transcription factor Traffic jam. PLoS Genet 2017; 13:e1006790. [PMID: 28542174 PMCID: PMC5459507 DOI: 10.1371/journal.pgen.1006790] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 06/05/2017] [Accepted: 05/01/2017] [Indexed: 02/06/2023] Open
Abstract
Germline stem cells in the Drosophila ovary are maintained by a somatic niche. The niche is structurally and functionally complex and contains four cell types, the escort, cap, and terminal filament cells and the newly identified transition cell. We find that the large Maf transcription factor Traffic jam (Tj) is essential for determining niche cell fates and architecture, enabling each niche in the ovary to support a normal complement of 2–3 germline stem cells. In particular, we focused on the question of how cap cells form. Cap cells express Tj and are considered the key component of a mature germline stem cell niche. We conclude that Tj controls the specification of cap cells, as the complete loss of Tj function caused the development of additional terminal filament cells at the expense of cap cells, and terminal filament cells developed cap cell characteristics when induced to express Tj. Further, we propose that Tj controls the morphogenetic behavior of cap cells as they adopted the shape and spatial organization of terminal filament cells but otherwise appeared to retain their fate when Tj expression was only partially reduced. Our data indicate that Tj contributes to the establishment of germline stem cells by promoting the cap cell fate, and controls the stem cell-carrying capacity of the niche by regulating niche architecture. Analysis of the interactions between Tj and the Notch (N) pathway indicates that Tj and N have distinct functions in the cap cell specification program. We propose that formation of cap cells depends on the combined activities of Tj and the N pathway, with Tj promoting the cap cell fate by blocking the terminal filament cell fate, and N supporting cap cells by preventing the escort cell fate and/or controlling the number of cap cell precursors. Establishment and maintenance of stem cells often depends on associated niche cells. The germline stem cell niche of the Drosophila ovary has been a long-standing model for the analysis of the interactions between stem cells and niche cells. Surprisingly little is known, however, about the mechanisms that pattern this niche, leading to the specification of different niche cell types and to their distinct arrangement around the stem cells. The observation that Tj is expressed at different levels in the different cell types of the niche motivated us to ask what contribution this transcription factor makes to the formation of the niche. Our data suggest that Tj activity is needed for the presence of escort cells and for the correct specification of cap cells but appears to be dispensable for the formation of terminal filament cells in the germline stem cell niche. Moreover, our analysis indicates that the establishment of the cap cell fate depends on the cooperation between Tj and the N signaling pathway. We conclude that Tj regulates the germline stem cell carrying capacity of the niche by controlling the fate and the spatial arrangement of niche cells.
Collapse
|
41
|
Shimizu H, Wilkin MB, Woodcock SA, Bonfini A, Hung Y, Mazaleyrat S, Baron M. The Drosophila ZO-1 protein Polychaetoid suppresses Deltex-regulated Notch activity to modulate germline stem cell niche formation. Open Biol 2017; 7:rsob.160322. [PMID: 28424321 PMCID: PMC5413905 DOI: 10.1098/rsob.160322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
The developmental signalling protein Notch can be proteolytically activated following ligand-interaction at the cell surface, or can be activated independently of its ligands, following Deltex (Dx)-induced Notch endocytosis and trafficking to the lysosomal membrane. The means by which different pools of Notch are directed towards these alternative outcomes remains poorly understood. We found that the Drosophila ZO-1 protein Polychaetoid (Pyd) suppresses specifically the Dx-induced form of Notch activation both in vivo and in cell culture assays. In vivo we confirmed the physiological relevance and direction of the Pyd/Dx interaction by showing that the expanded ovary stem cell niche phenotypes of pyd mutants require the presence of functional Dx and other components that are specific to the Dx-induced Notch activation mechanism. In S2 cells we found that Pyd can form a complex with Dx and Notch at the cell surface and reduce Dx-induced Notch endocytosis. Similar to other known activities of ZO-1 family proteins, the action of Pyd on Dx-induced endocytosis and signalling was found to be cell density dependent. Thus, together, our results suggest an alternative means by which external cues can tune Notch signalling through Pyd regulation of Dx-induced Notch trafficking.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- University of Manchester, School of Biological Sciences, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Marian B Wilkin
- University of Manchester, School of Biological Sciences, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Simon A Woodcock
- University of Manchester, School of Biological Sciences, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Alessandro Bonfini
- University of Manchester, School of Biological Sciences, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Yvonne Hung
- University of Manchester, School of Biological Sciences, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Sabine Mazaleyrat
- University of Manchester, School of Biological Sciences, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Martin Baron
- University of Manchester, School of Biological Sciences, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
42
|
Hsu HJ, Drummond-Barbosa D. A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines. Gene Expr Patterns 2017; 23-24:13-21. [PMID: 28093350 DOI: 10.1016/j.gep.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/06/2017] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
The effect of diet on reproduction is well documented in a large number of organisms; however, much remains to be learned about the molecular mechanisms underlying this connection. The Drosophila ovary has a well described, fast and largely reversible response to diet. Ovarian stem cells and their progeny proliferate and grow faster on a yeast-rich diet than on a yeast-free (poor) diet, and death of early germline cysts, degeneration of early vitellogenic follicles and partial block in ovulation further contribute to the ∼60-fold decrease in egg laying observed on a poor diet. Multiple diet-dependent factors, including insulin-like peptides, the steroid ecdysone, the nutrient sensor Target of Rapamycin, AMP-dependent kinase, and adipocyte factors mediate this complex response. Here, we describe the results of a visual screen using a collection of green fluorescent protein (GFP) protein trap lines to identify additional factors potentially involved in this response. In each GFP protein trap line, an artificial GFP exon is fused in frame to an endogenous protein, such that the GFP fusion pattern parallels the levels and subcellular localization of the corresponding native protein. We identified 53 GFP-tagged proteins that exhibit changes in levels and/or subcellular localization in the ovary at 12-16 hours after switching females from rich to poor diets, suggesting them as potential candidates for future functional studies.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Laws KM, Drummond-Barbosa D. Control of Germline Stem Cell Lineages by Diet and Physiology. Results Probl Cell Differ 2017; 59:67-99. [PMID: 28247046 DOI: 10.1007/978-3-319-44820-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tight coupling of reproduction to environmental factors and physiological status is key to long-term species survival. In particular, highly conserved pathways modulate germline stem cell lineages according to nutrient availability. This chapter focuses on recent in vivo studies in genetic model organisms that shed light on how diet-dependent signals control the proliferation, maintenance, and survival of adult germline stem cells and their progeny. These signaling pathways can operate intrinsically in the germ line, modulate the niche, or act through intermediate organs to influence stem cells and their differentiating progeny. In addition to illustrating the extent of dietary regulation of reproduction, findings from these studies have implications for fertility during aging or disease states.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
44
|
Identification of Development-Related Genes in the Ovaries of Adult Harmonia axyridis (Pallas) Lady Beetles Using a Time- Series Analysis by RNA-seq. Sci Rep 2016; 6:39109. [PMID: 27966611 PMCID: PMC5155419 DOI: 10.1038/srep39109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
Adults of the lady beetle species Harmonia axyridis (Pallas) are bred artificially en masse for classic biological control, which requires egg-laying by the H. axyridis ovary. Development-related genes may impact the growth of the H. axyridis adult ovary but have not been reported. Here, we used integrative time-series RNA-seq analysis of the ovary in H. axyridis adults to detect development-related genes. A total of 28,558 unigenes were functionally annotated using seven types of databases to obtain an annotated unigene database for ovaries in H. axyridis adults. We also analysed differentially expressed genes (DEGs) between samples. Based on a combination of the results of this bioinformatics analysis with literature reports and gene expression level changes in four different stages, we focused on the development of oocyte reproductive stem cell and yolk formation process and identified 26 genes with high similarity to development-related genes. 20 DEGs were randomly chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results. This study establishes a robust pipeline for the discovery of key genes using high-throughput sequencing and the identification of a class of development-related genes for characterization.
Collapse
|
45
|
Laws KM, Drummond-Barbosa D. AMP-activated protein kinase has diet-dependent and -independent roles in Drosophila oogenesis. Dev Biol 2016; 420:90-99. [PMID: 27729213 DOI: 10.1016/j.ydbio.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
Multiple aspects of organismal physiology influence the number and activity of stem cells and their progeny, including nutritional status. Previous studies demonstrated that Drosophila germline stem cells (GSCs), follicle stem cells (FSCs), and their progeny sense and respond to diet via complex mechanisms involving many systemic and local signals. AMP-activated protein kinase, or AMPK, is a highly conserved regulator of energy homeostasis known to be activated under low cellular energy conditions; however, its role in the ovarian response to diet has not been investigated. Here, we describe nutrient-dependent and -independent requirements for AMPK in Drosophila oogenesis. We found that AMPK is cell autonomously required for the slow down in GSC and follicle cell proliferation that occurs on a poor diet. Similarly, AMPK activity is necessary in the germline for the degeneration of vitellogenic stages in response to nutrient deprivation. In contrast, AMPK activity is not required within the germline to modulate its growth. Instead, AMPK acts in follicle cells to negatively regulate their growth and proliferation, thereby indirectly limiting the size of the underlying germline cyst within developing follicles. Paradoxically, AMPK is required for GSC maintenance in well-fed flies (when AMPK activity is presumably at its lowest), suggesting potentially important roles for basal AMPK activity in specific cell types. Finally, we identified a nutrient-independent, developmental role for AMPK in cyst encapsulation by follicle cells. These results uncover specific AMPK requirements in multiple cell types in the ovary and suggest that AMPK can function outside of its canonical nutrient-sensing role in specific developmental contexts.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Duncan EJ, Hyink O, Dearden PK. Notch signalling mediates reproductive constraint in the adult worker honeybee. Nat Commun 2016; 7:12427. [PMID: 27485026 PMCID: PMC4976197 DOI: 10.1038/ncomms12427] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. In honeybees, pheromones produced by the queen inhibit reproduction by workers and enforce a eusocial division of labour. Here, Duncan, Hyink and Dearden show that this inhibition is mediated by the Notch signalling pathway in the workers' ovaries.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| | - Otto Hyink
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| | - Peter K Dearden
- Department of Biochemistry, Laboratory for Evolution and Development, Genetics Otago and Gravida (The National Centre for Growth and Development), University of Otago, P.O. Box 56, Dunedin 9054, Aotearoa-New Zealand
| |
Collapse
|
47
|
Sieber MH, Thomsen MB, Spradling AC. Electron Transport Chain Remodeling by GSK3 during Oogenesis Connects Nutrient State to Reproduction. Cell 2016; 164:420-32. [PMID: 26824655 PMCID: PMC6894174 DOI: 10.1016/j.cell.2015.12.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/30/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022]
Abstract
Reproduction is heavily influenced by nutrition and metabolic state. Many common reproductive disorders in humans are associated with diabetes and metabolic syndrome. We characterized the metabolic mechanisms that support oogenesis and found that mitochondria in mature Drosophila oocytes enter a low-activity state of respiratory quiescence by remodeling the electron transport chain (ETC). This shift in mitochondrial function leads to extensive glycogen accumulation late in oogenesis and is required for the developmental competence of the oocyte. Decreased insulin signaling initiates ETC remodeling and mitochondrial respiratory quiescence through glycogen synthase kinase 3 (GSK3). Intriguingly, we observed similar ETC remodeling and glycogen uptake in maturing Xenopus oocytes, suggesting that these processes are evolutionarily conserved aspects of oocyte development. Our studies reveal an important link between metabolism and oocyte maturation.
Collapse
Affiliation(s)
- Matthew H Sieber
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
48
|
Barton LJ, Lovander KE, Pinto BS, Geyer PK. Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin. Dev Biol 2016; 415:75-86. [PMID: 27174470 DOI: 10.1016/j.ydbio.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The nuclear lamina is an extensive protein network that underlies the inner nuclear envelope. This network includes the LAP2-emerin-MAN1-domain (LEM-D) protein family, proteins that share an association with the chromatin binding protein Barrier-to-autointegration factor (BAF). Loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Mechanisms associated with laminopathies are not yet understood. Here we present our studies of one of the Drosophila nuclear lamina LEM-D proteins, Otefin (Ote), a homologue of emerin. Previous studies have shown that Ote is autonomously required for the survival of female germline stem cells (GSCs). We demonstrate that Ote is also required for survival of somatic cells in the ovarian niche, with loss of Ote causing a decrease in cap cell number and altered signal transduction. We show germ cell-restricted expression of Ote rescues these defects, revealing a non-autonomous function for Ote in niche maintenance and emphasizing that GSCs contribute to the maintenance of their own niches. Further, we investigate the requirement of Ote in the male fertility. We show that ote mutant males become prematurely sterile as they age. Parallel to observations in females, this sterility is associated with GSC loss and changes in somatic cells of the niche, phenotypes that are largely rescued by germ cell-restricted Ote expression. Taken together, our studies demonstrate that Ote is required autonomously for survival of two stem cell populations, as well as non-autonomously for maintenance of two somatic niches. Finally, our data add to growing evidence that LEM-D proteins have critical roles in stem cell survival and tissue homeostasis.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Belinda S Pinto
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Seidel HS, Kimble J. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch. eLife 2015; 4. [PMID: 26551561 PMCID: PMC4718729 DOI: 10.7554/elife.10832] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022] Open
Abstract
Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.
Collapse
Affiliation(s)
- Hannah S Seidel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,The Ellison Medical Foundation Fellow of the Life Sciences Research Foundation, The Lawrence Ellison Foundation, Mount Airy, United States
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
50
|
Feng L, Chen X. Epigenetic regulation of germ cells-remember or forget? Curr Opin Genet Dev 2015; 31:20-7. [PMID: 25930104 DOI: 10.1016/j.gde.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
Unlike somatic cells, germ cells retain the potential to reproduce an entire new organism upon fertilization. In order to accomplish the process of fertilization, germ cells undergo an extreme cellular differentiation process known as gametogenesis in order to produce morphologically and functionally distinct oocyte and sperm. In addition to changes in genetic content changes from diploid to haploid, epigenetic mechanisms that modify chromatin state without altering primary DNA sequences have profound influence on germ cell differentiation and moreover, the transgenerational effect. In this review, we will go over the most recent discoveries on epigenetic regulations in germline differentiation and transgenerational inheritance across different metazoan species.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|