1
|
Knop F, Zounarová A, Šabata V, Middelkoop TC, Macůrková M. Caenorhabditis elegans SEL-5/AAK1 regulates cell migration and cell outgrowth independently of its kinase activity. eLife 2024; 13:e91054. [PMID: 39028260 PMCID: PMC11333045 DOI: 10.7554/elife.91054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/19/2024] [Indexed: 07/20/2024] Open
Abstract
During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.
Collapse
Affiliation(s)
- Filip Knop
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Apolena Zounarová
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Vojtěch Šabata
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | | | - Marie Macůrková
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Bloch JS, John A, Mao R, Mukherjee S, Boilevin J, Irobalieva RN, Darbre T, Scott NE, Reymond JL, Kossiakoff AA, Goddard-Borger ED, Locher KP. Structure, sequon recognition and mechanism of tryptophan C-mannosyltransferase. Nat Chem Biol 2023; 19:575-584. [PMID: 36604564 PMCID: PMC10154233 DOI: 10.1038/s41589-022-01219-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023]
Abstract
C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.
Collapse
Affiliation(s)
- Joël S Bloch
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jérémy Boilevin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | | | - Tamis Darbre
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Li T, Wang X, Feng Z, Zou Y. Live imaging of postembryonic developmental processes in C. elegans. STAR Protoc 2022; 3:101336. [PMID: 35496803 PMCID: PMC9043753 DOI: 10.1016/j.xpro.2022.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Live imaging is an important tool to track dynamic processes such as neuronal patterning events. Here, we describe a protocol for time-lapse microscopy analysis using neuronal migration and dendritic growth as examples. This protocol can provide detailed information for understanding cellular dynamics during postembryonic development in Caenorhabditis elegans (C. elegans). For complete details on the use and execution of this protocol, please refer to Feng et al. (2020), Li et al. (2021), and Wang et al. (2021).
Collapse
Affiliation(s)
- Tingting Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Ochs ME, McWhirter RM, Unckless RL, Miller DM, Lundquist EA. Caenorhabditis elegans ETR-1/CELF has broad effects on the muscle cell transcriptome, including genes that regulate translation and neuroblast migration. BMC Genomics 2022; 23:13. [PMID: 34986795 PMCID: PMC8734324 DOI: 10.1186/s12864-021-08217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Migration of neuroblasts and neurons from their birthplace is central to the formation of neural circuits and networks. ETR-1 is the Caenorhabditis elegans homolog of the CELF1 (CUGBP, ELAV-like family 1) RNA-processing factor involved in neuromuscular disorders. etr-1 regulates body wall muscle differentiation. Our previous work showed that etr-1 in muscle has a non-autonomous role in neuronal migration, suggesting that ETR-1 is involved in the production of a signal emanating from body wall muscle that controls neuroblast migration and that interacts with Wnt signaling. etr-1 is extensively alternatively-spliced, and we identified the viable etr-1(lq61) mutant, caused by a stop codon in alternatively-spliced exon 8 and only affecting etr-1 isoforms containing exon 8. We took advantage of viable etr-1(lq61) to identify potential RNA targets of ETR-1 in body wall muscle using a combination of fluorescence activated cell sorting (FACS) of body wall muscles from wild-type and etr-1(lq61) and subsequent RNA-seq. This analysis revealed genes whose splicing and transcript levels were controlled by ETR-1 exon 8 isoforms, and represented a broad spectrum of genes involved in muscle differentiation, myofilament lattice structure, and physiology. Genes with transcripts underrepresented in etr-1(lq61) included those involved in ribosome function and translation, similar to potential CELF1 targets identified in chick cardiomyocytes. This suggests that at least some targets of ETR-1 might be conserved in vertebrates, and that ETR-1 might generally stimulate translation in muscles. As proof-of-principle, a functional analysis of a subset of ETR-1 targets revealed genes involved in AQR and PQR neuronal migration. One such gene, lev-11/tropomyosin, requires ETR-1 for alternative splicing, and another, unc-52/perlecan, requires ETR-1 for the production of long isoforms containing 3' exons. In sum, these studies identified gene targets of ETR-1/CELF1 in muscles, which included genes involved in muscle development and physiology, and genes with novel roles in neuronal migration.
Collapse
Affiliation(s)
- Matthew E Ochs
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Rebecca M McWhirter
- Department of Cell and Developmental Biology and Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37203, USA
| | - Robert L Unckless
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - David M Miller
- Department of Cell and Developmental Biology and Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37203, USA
| | - Erik A Lundquist
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
5
|
Tang LTH, Trivedi M, Freund J, Salazar CJ, Rahman M, Ramirez-Suarez NJ, Lee G, Wang Y, Grant BD, Bülow HE. The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genet 2021; 17:e1009475. [PMID: 34197450 PMCID: PMC8279360 DOI: 10.1371/journal.pgen.1009475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The assembly of neuronal circuits involves the migrations of neurons from their place of birth to their final location in the nervous system, as well as the coordinated growth and patterning of axons and dendrites. In screens for genes required for patterning of the nervous system, we identified the catp-8/P5A-ATPase as an important regulator of neural patterning. P5A-ATPases are part of the P-type ATPases, a family of proteins known to serve a conserved function as transporters of ions, lipids and polyamines in unicellular eukaryotes, plants, and humans. While the function of many P-type ATPases is relatively well understood, the function of P5A-ATPases in metazoans remained elusive. We show here, that the Caenorhabditis elegans ortholog catp-8/P5A-ATPase is required for defined aspects of nervous system development. Specifically, the catp-8/P5A-ATPase serves functions in shaping the elaborately sculpted dendritic trees of somatosensory PVD neurons. Moreover, catp-8/P5A-ATPase is required for axonal guidance and repulsion at the midline, as well as embryonic and postembryonic neuronal migrations. Interestingly, not all axons at the midline require catp-8/P5A-ATPase, although the axons run in the same fascicles and navigate the same space. Similarly, not all neuronal migrations require catp-8/P5A-ATPase. A CATP-8/P5A-ATPase reporter is localized to the ER in most, if not all, tissues and catp-8/P5A-ATPase can function both cell-autonomously and non-autonomously to regulate neuronal development. Genetic analyses establish that catp-8/P5A-ATPase can function in multiple pathways, including the Menorin pathway, previously shown to control dendritic patterning in PVD, and Wnt signaling, which functions to control neuronal migrations. Lastly, we show that catp-8/P5A-ATPase is required for localizing select transmembrane proteins necessary for dendrite morphogenesis. Collectively, our studies suggest that catp-8/P5A-ATPase serves diverse, yet specific, roles in different genetic pathways and may be involved in the regulation or localization of transmembrane and secreted proteins to specific subcellular compartments.
Collapse
Affiliation(s)
- Leo T. H. Tang
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meera Trivedi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jenna Freund
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christopher J. Salazar
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nelson J. Ramirez-Suarez
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Garrett Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yu Wang
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barth D. Grant
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Hannes E. Bülow
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
6
|
Abstract
Establishment of neural circuits requires reproducible and precise interactions between growing axons, dendrites and their tissue environment. Cell adhesion molecules and guidance factors are involved in the process, but how specificity is achieved remains poorly understood. Glycans are the third major class of biopolymers besides nucleic acids and proteins, and are usually covalently linked to proteins to form glycoconjugates. Common to most glycans is an extraordinary level of molecular diversity, making them attractive candidates to contribute specificity during neural development. Indeed, many genes important for neural development encode glycoproteins, or enzymes involved in synthesizing or modifying glycans. Glycoconjugates are classified based on both the types of glycans and type of attachment that link them to proteins. Here I discuss progress in understanding the function of glycans, glycan modifications and glycoconjugates during neural development in Caenorhabditis elegans. I will also highlight relevance to human disease and known roles of glycoconjugates in regeneration.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
7
|
Lang AE, Lundquist EA. The Collagens DPY-17 and SQT-3 Direct Anterior-Posterior Migration of the Q Neuroblasts in C. elegans. J Dev Biol 2021; 9:jdb9010007. [PMID: 33669899 PMCID: PMC8006237 DOI: 10.3390/jdb9010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cell adhesion molecules and their extracellular ligands control morphogenetic events such as directed cell migration. The migration of neuroblasts and neural crest cells establishes the structure of the central and peripheral nervous systems. In C. elegans, the bilateral Q neuroblasts and their descendants undergo long-range migrations with left/right asymmetry. QR and its descendants on the right migrate anteriorly, and QL and its descendants on the left migrate posteriorly, despite identical patterns of cell division, cell death, and neuronal generation. The initial direction of protrusion of the Q cells relies on the left/right asymmetric functions of the transmembrane receptors UNC-40/DCC and PTP-3/LAR in the Q cells. Here, we show that Q cell left/right asymmetry of migration is independent of the GPA-16/Gα pathway which regulates other left/right asymmetries, including nervous system L/R asymmetry. No extracellular cue has been identified that guides initial Q anterior versus posterior migrations. We show that collagens DPY-17 and SQT-3 control initial Q direction of protrusion. Genetic interactions with UNC-40/DCC and PTP-3/LAR suggest that DPY-17 and SQT-3 drive posterior migration and might act with both receptors or in a parallel pathway. Analysis of mutants in other collagens and extracellular matrix components indicated that general perturbation of collagens and the extracellular matrix (ECM) did not result in directional defects, and that the effect of DPY-17 and SQT-3 on Q direction is specific. DPY-17 and SQT-3 are components of the cuticle, but a role in the basement membrane cannot be excluded. Possibly, DPY-17 and SQT-3 are part of a pattern in the cuticle and/or basement membrane that is oriented to the anterior–posterior axis of the animal and that is deciphered by the Q cells in a left–right asymmetric fashion. Alternatively, DPY-17 and SQT-3 might be involved in the production or stabilization of a guidance cue that directs Q migrations. In any case, these results describe a novel role for the DPY-17 and SQT-3 collagens in directing posterior Q neuroblast migration.
Collapse
|
8
|
The Predicted RNA-Binding Protein ETR-1/CELF1 Acts in Muscles To Regulate Neuroblast Migration in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:2365-2376. [PMID: 32398235 PMCID: PMC7341121 DOI: 10.1534/g3.120.401182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroblast migration is a critical aspect of nervous system development (e.g., neural crest migration). In an unbiased forward genetic screen, we identified a novel player in neuroblast migration, the ETR-1/CELF1 RNA binding protein. CELF1 RNA binding proteins are involved in multiple aspects of RNA processing including alternative splicing, stability, and translation. We find that a specific mutation in alternatively-spliced exon 8 results in migration defects of the AQR and PQR neurons, and not the embryonic lethality and body wall muscle defects of complete knockdown of the locus. Surprisingly, ETR-1 was required in body wall muscle cells for AQR/PQR migration (i.e., it acts cell non-autonomously). Genetic interactions indicate that ETR-1 acts with Wnt signaling, either in the Wnt pathway or in a parallel pathway. Possibly, ETR-1 is involved in the production of a Wnt signal or a parallel signal by the body wall muscles that controls AQR and PQR neuronal migration. In humans, CELF1 is involved in a number of neuromuscular disorders. If the role of ETR-1/CELF1 is conserved, these disorders might also involve cell or neuronal migration. Finally, we describe a technique of amplicon sequencing to detect rare, cell-specific genome edits by CRISPR/Cas9 in vivo (CRISPR-seq) as an alternative to the T7E1 assay.
Collapse
|
9
|
Ebbing A, Middelkoop TC, Betist MC, Bodewes E, Korswagen HC. Partially overlapping guidance pathways focus the activity of UNC-40/DCC along the anteroposterior axis of polarizing neuroblasts. Development 2019; 146:dev.180059. [PMID: 31488562 DOI: 10.1242/dev.180059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Directional migration of neurons and neuronal precursor cells is a central process in nervous system development. In the nematode Caenorhabditis elegans, the two Q neuroblasts polarize and migrate in opposite directions along the anteroposterior body axis. Several key regulators of Q cell polarization have been identified, including MIG-21, DPY-19/DPY19L1, the netrin receptor UNC-40/DCC, the Fat-like cadherin CDH-4 and CDH-3/Fat, which we describe in this study. How these different transmembrane proteins act together to direct Q neuroblast polarization and migration is still largely unknown. Here, we demonstrate that MIG-21 and DPY-19, CDH-3 and CDH-4, and UNC-40 define three distinct pathways that have partially redundant roles in protrusion formation, but also separate functions in regulating protrusion direction. Moreover, we show that the MIG-21, DPY-19 and Fat-like cadherin pathways control the localization and clustering of UNC-40 at the leading edge of the polarizing Q neuroblast, and that this is independent of the UNC-40 ligands UNC-6/netrin and MADD-4. Our results provide insight into a novel mechanism for ligand-independent localization of UNC-40 that directs the activity of UNC-40 along the anteroposterior axis.
Collapse
Affiliation(s)
- Annabel Ebbing
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teije C Middelkoop
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Eduard Bodewes
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands .,Institute of Biodynamics and Biocomplexity, Developmental Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
10
|
The planar cell polarity protein VANG-1/Vangl negatively regulates Wnt/β-catenin signaling through a Dvl dependent mechanism. PLoS Genet 2018; 14:e1007840. [PMID: 30532125 PMCID: PMC6307821 DOI: 10.1371/journal.pgen.1007840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/27/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Van Gogh-like (Vangl) and Prickle (Pk) are core components of the non-canonical Wnt planar cell polarity pathway that controls epithelial polarity and cell migration. Studies in vertebrate model systems have suggested that Vangl and Pk may also inhibit signaling through the canonical Wnt/β-catenin pathway, but the functional significance of this potential cross-talk is unclear. In the nematode C. elegans, the Q neuroblasts and their descendants migrate in opposite directions along the anteroposterior body axis. The direction of these migrations is specified by Wnt signaling, with activation of canonical Wnt signaling driving posterior migration, and non-canonical Wnt signaling anterior migration. Here, we show that the Vangl ortholog VANG-1 influences the Wnt signaling response of the Q neuroblasts by negatively regulating canonical Wnt signaling. This inhibitory activity depends on a carboxy-terminal PDZ binding motif in VANG-1 and the Dishevelled ortholog MIG-5, but is independent of the Pk ortholog PRKL-1. Moreover, using Vangl1 and Vangl2 double mutant cells, we show that a similar mechanism acts in mammalian cells. We conclude that cross-talk between VANG-1/Vangl and the canonical Wnt pathway is an evolutionarily conserved mechanism that ensures robust specification of Wnt signaling responses. Wnt proteins are signaling molecules with a wide range of functions in embryonic development and the maintenance of adult tissues. Wnt proteins can trigger several different signaling pathways that are grouped in β-catenin dependent (canonical) and independent (non-canonical) signaling mechanisms. Here, we have investigated cross-talk between these different Wnt signaling pathways. We show that VANG-1/Vangl, a component of the non-canonical planar cell polarity pathway, negatively regulates canonical Wnt signaling. We propose that this cross-talk mechanism ensures that Wnt stimulated cells always activate the proper downstream signaling response.
Collapse
|
11
|
Watanabe K, Bizen N, Sato N, Takebayashi H. Endoplasmic Reticulum-Localized Transmembrane Protein Dpy19L1 Is Required for Neurite Outgrowth. PLoS One 2016; 11:e0167985. [PMID: 27959946 PMCID: PMC5154530 DOI: 10.1371/journal.pone.0167985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
The endoplasmic reticulum (ER), including the nuclear envelope, is a continuous and intricate membrane-bound organelle responsible for various cellular functions. In neurons, the ER network is found in cell bodies, axons, and dendrites. Recent studies indicate the involvement of the ER network in neuronal development, such as neuronal migration and axonal outgrowth. However, the regulation of neural development by ER-localized proteins is not fully understood. We previously reported that the multi-transmembrane protein Dpy19L1 is required for neuronal migration in the developing mouse cerebral cortex. A Dpy19L family member, Dpy19L2, which is a causative gene for human Globozoospermia, is suggested to act as an anchor of the acrosome to the nuclear envelope. In this study, we found that the patterns of exogenous Dpy19L1 were partially coincident with the ER, including the nuclear envelope in COS-7 cells at the level of the light microscope. The reticular distribution of Dpy19L1 was disrupted by microtubule depolymerization that induces retraction of the ER. Furthermore, Dpy19L1 showed a similar distribution pattern with a ER marker protein in embryonic mouse cortical neurons. Finally, we showed that Dpy19L1 knockdown mediated by siRNA resulted in decreased neurite outgrowth in cultured neurons. These results indicate that transmembrane protein Dpy19L1 is localized to the ER membrane and regulates neurite extension during development.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail:
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
12
|
Rella L, Fernandes Póvoa EE, Korswagen HC. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo. Genesis 2016; 54:198-211. [PMID: 26934462 DOI: 10.1002/dvg.22931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/08/2022]
Abstract
During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process.
Collapse
Affiliation(s)
- Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Euclides E Fernandes Póvoa
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
13
|
Levy-Strumpf N. Orchestrating A/P and D/V guidance - A Wnt/Netrin tale. WORM 2016; 5:e1146857. [PMID: 27073738 PMCID: PMC4805361 DOI: 10.1080/21624054.2016.1146857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
While ample information was gathered in identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is intracellularly to generate normal patterning. Netrin and Wnt signaling pathways play key roles in normal development as well as in malignancies. In C. elegans, as in vertebrates, dorso-ventral (D/V) graded distributions of UNC-6/Netrin and antero-posterior (A/P) graded distributions of Wnts provide instructive polarity information to guide cells and axons along their respective gradients. In this commentary, I will discuss recent findings demonstrating that these 2 signaling pathways also function redundantly to regulate polarity orthogonal to the axis of their gradation. Thus, Wnt signaling components contribute to D/V polarity, while Netrin signaling components contribute to A/P polarity and their joint action collaboratively governs migratory transitions from one axis to the other. These findings pave the way to unraveling broader roles of Wnt and Netrin signaling pathways, roles that are masked due to their redundant nature, and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated to establish polarity in multiple biological processes.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| |
Collapse
|
14
|
Hinou H, Abe Y, Hayakawa S, Naruchi K, Fujitani N, Nishimura SI. Solid-phase synthesis of C-mannosylated glycopeptide on WSXWS motif of human erythropoietin receptor. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
SDN-1/Syndecan Acts in Parallel to the Transmembrane Molecule MIG-13 to Promote Anterior Neuroblast Migration. G3-GENES GENOMES GENETICS 2015; 5:1567-74. [PMID: 26022293 PMCID: PMC4528313 DOI: 10.1534/g3.115.018770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration.
Collapse
|
16
|
Mentink RA, Middelkoop TC, Rella L, Ji N, Tang CY, Betist MC, van Oudenaarden A, Korswagen HC. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans. Dev Cell 2014; 31:188-201. [PMID: 25373777 DOI: 10.1016/j.devcel.2014.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/11/2014] [Accepted: 08/07/2014] [Indexed: 01/25/2023]
Abstract
Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly, the transition from the first to the second phase, which is the main determinant of the final position of the QR descendants along the anteroposterior body axis, is mediated through a cell-autonomous process in which the time-dependent expression of a Wnt receptor turns on the canonical Wnt/β-catenin signaling response that is required to terminate long-range anterior migration. Our results show that, in addition to direct guidance of cell migration by Wnt morphogenic gradients, cell migration can also be controlled indirectly through cell-intrinsic modulation of Wnt signaling responses.
Collapse
Affiliation(s)
- Remco A Mentink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Teije C Middelkoop
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ni Ji
- Department of Physics and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Chung Yin Tang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Physics and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
17
|
Sundararajan L, Norris ML, Schöneich S, Ackley BD, Lundquist EA. The fat-like cadherin CDH-4 acts cell-non-autonomously in anterior-posterior neuroblast migration. Dev Biol 2014; 392:141-52. [PMID: 24954154 DOI: 10.1016/j.ydbio.2014.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In Caenorhabditis elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts.
Collapse
Affiliation(s)
- Lakshmi Sundararajan
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Megan L Norris
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Sebastian Schöneich
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Brian D Ackley
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States
| | - Erik A Lundquist
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
18
|
Levy-Strumpf N, Culotti JG. Netrins and Wnts function redundantly to regulate antero-posterior and dorso-ventral guidance in C. elegans. PLoS Genet 2014; 10:e1004381. [PMID: 24901837 PMCID: PMC4046927 DOI: 10.1371/journal.pgen.1004381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/31/2014] [Indexed: 02/01/2023] Open
Abstract
Guided migrations of cells and developing axons along the dorso-ventral (D/V) and antero-posterior (A/P) body axes govern tissue patterning and neuronal connections. In C. elegans, as in vertebrates, D/V and A/P graded distributions of UNC-6/Netrin and Wnts, respectively, provide instructive polarity information to guide cells and axons migrating along these axes. By means of a comprehensive genetic analysis, we found that simultaneous loss of Wnt and Netrin signaling components reveals previously unknown and unexpected redundant roles for Wnt and Netrin signaling pathways in both D/V and A/P guidance of migrating cells and axons in C. elegans, as well as in processes essential for organ function and viability. Thus, in addition to providing polarity information for migration along the axis of their gradation, Wnts and Netrin are each able to guide migrations orthogonal to the axis of their gradation. Netrin signaling not only functions redundantly with some Wnts, but also counterbalances the effects of others to guide A/P migrations, while the involvement of Wnt signaling in D/V guidance identifies Wnt signaling as one of the long sought mechanisms that functions in parallel to Netrin signaling to promote D/V guidance of cells and axons. These findings provide new avenues for deciphering how A/P and D/V guidance signals are integrated within the cell to establish polarity in multiple biological processes, and implicate broader roles for Netrin and Wnt signaling - roles that are currently masked due to prevalent redundancy. While ample information was gathered in past decades on identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is integrated within the cell to generate normal patterning. Netrin and Wnt signaling pathways are both critical to multiple developmental processes and play key roles in normal development as well as in malignancies. The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis. In this study we show that these two signaling pathways function redundantly in both antero-posterior and dorso-ventral guidance as well as in processes essential for viability. Furthermore, we demonstrate that a fine balance between Wnt and Netrin signaling pathways is critical for proper polarity establishment and identify Wnt signaling as one of the long sought mechanisms that signal in parallel to Netrin to promote dorso-ventral guidance of cells and axons in Caenorhabditis elegans. These findings pave the way to unraveling the broader roles of Wnt and Netrin signaling pathways and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joseph G. Culotti
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Pitchiaya S, Heinicke LA, Custer TC, Walter NG. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 2014; 114:3224-65. [PMID: 24417544 PMCID: PMC3968247 DOI: 10.1021/cr400496q] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Laurie A. Heinicke
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan,
Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
20
|
Ji N, Middelkoop TC, Mentink RA, Betist MC, Tonegawa S, Mooijman D, Korswagen HC, van Oudenaarden A. Feedback control of gene expression variability in the Caenorhabditis elegans Wnt pathway. Cell 2014; 155:869-80. [PMID: 24209624 DOI: 10.1016/j.cell.2013.09.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 07/26/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
Variability in gene expression contributes to phenotypic heterogeneity even in isogenic populations. Here, we used the stereotyped, Wnt signaling-dependent development of the Caenorhabditis elegans Q neuroblast to probe endogenous mechanisms that control gene expression variability. We found that the key Hox gene that orients Q neuroblast migration exhibits increased gene expression variability in mutants in which Wnt pathway activity has been perturbed. Distinct features of the gene expression distributions prompted us on a systematic search for regulatory interactions, revealing a network of interlocked positive and negative feedback loops. Interestingly, positive feedback appeared to cooperate with negative feedback to reduce variability while keeping the Hox gene expression at elevated levels. A minimal model correctly predicts the increased gene expression variability across mutants. Our results highlight the influence of gene network architecture on expression variability and implicate feedback regulation as an effective mechanism to ensure developmental robustness.
Collapse
Affiliation(s)
- Ni Ji
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration. Proc Natl Acad Sci U S A 2013; 110:11175-80. [PMID: 23784779 DOI: 10.1073/pnas.1301849110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Directional cell migration is a fundamental process in neural development. In Caenorhabditis elegans, Q neuroblasts on the left (QL) and right (QR) sides of the animal generate cells that migrate in opposite directions along the anteroposterior body axis. The homeobox (Hox) gene lin-39 promotes the anterior migration of QR descendants (QR.x), whereas the canonical Wnt signaling pathway activates another Hox gene, mab-5, to ensure the QL descendants' (QL.x) posterior migration. However, the regulatory targets of LIN-39 and MAB-5 remain elusive. Here, we showed that MIG-13, an evolutionarily conserved transmembrane protein, cell-autonomously regulates the asymmetric distribution of the actin cytoskeleton in the leading migratory edge. We identified mig-13 as a cellular target of LIN-39 and MAB-5. LIN-39 establishes QR.x anterior polarity by binding to the mig-13 promoter and promoting mig-13 expression, whereas MAB-5 inhibits QL.x anterior polarity by associating with the lin-39 promoter and downregulating lin-39 and mig-13 expression. Thus, MIG-13 links the Wnt signaling and Hox genes that guide migrations, to the actin cytoskeleton, which executes the motility response in neuronal migration.
Collapse
|
22
|
Tamayo JV, Gujar M, Macdonald SJ, Lundquist EA. Functional transcriptomic analysis of the role of MAB-5/Hox in Q neuroblast migration in Caenorhabditis elegans. BMC Genomics 2013; 14:304. [PMID: 23642123 PMCID: PMC3651406 DOI: 10.1186/1471-2164-14-304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/01/2013] [Indexed: 01/11/2023] Open
Abstract
Background Directed cell migration is a fundamental process in normal development and in tumor metastasis. In C. elegans the MAB-5/Hox transcription factor is a determinant of posterior migration of the Q neuroblast descendants. In this work, mab-5 transcriptional targets that control Q descendant migration are identified by comparing RNA-seq profiles in wild type and mab-5 mutant backgrounds. Results Transcriptome profiling is a widely-used and potent tool to identify genes involved in developmental and pathological processes, and is most informative when RNA can be isolated from individual cell or tissue types. Cell-specific RNA samples can be difficult to obtain from invertebrate model organisms such as Drosophila and C. elegans. Here we test the utility of combining a whole organism RNA-seq approach with mab-5 loss and gain-of-function mutants and functional validation using RNAi to identify genes regulated by MAB-5 to control Q descendant migration. We identified 22 genes whose expression was controlled by mab-5 and that controlled Q descendant migration. Genes regulated by mab-5 were enriched for secreted and transmembrane molecules involved in basement membrane interaction and modification, and some affected Q descendant migration. Conclusions Our results indicate that a whole-organism RNA-seq approach, when combined with mutant analysis and functional validation, can be a powerful method to identify genes involved in a specific developmental process, in this case Q descendant posterior migration. These genes could act either autonomously in the Q cells, or non-autonomously in other cells that express MAB-5. The identities of the genes regulated by MAB-5 indicate that MAB-5 acts by modifying interactions with the basement membrane, resulting in posterior versus anterior migration.
Collapse
Affiliation(s)
- Joel V Tamayo
- Department of Molecular Biosciences, Programs in Genetics and Molecular, Cellular, and Developmental Biology, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
23
|
C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol Cell 2013; 50:295-302. [PMID: 23562325 DOI: 10.1016/j.molcel.2013.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/22/2013] [Accepted: 03/01/2013] [Indexed: 11/20/2022]
Abstract
Among the different types of protein glycosylation, C-mannosylation of tryptophan residues stands out because of the unique linkage formed between sugar and protein. Instead of the typical O- or N-glycosidic linkage, a C-C bond is used for attachment of a single mannose. C-mannose is characteristically found in thrombospondin type 1 repeats and in the WSXWS motif of type I cytokine receptors. The genetic base of the enzymatic activity catalyzing C-mannosylation was not known. Here we demonstrate that Caenorhabditis elegans DPY-19 is a C-mannosyltransferase. DPY-19 exhibits topological and sequential homology to the N-glycan oligosaccharyltransferase, highlighting an evolutionary link between N- and C-glycosylation. We show that the C. elegans surface receptors MIG-21 and UNC-5 are acceptor substrates of DPY-19 and that C-mannosylation is essential for the secretion of soluble MIG-21. Thereby, our data provide an explanation for the previously described identical Q neuroblast migration phenotypes of dpy-19 and mig-21 mutants.
Collapse
|
24
|
Hensel Z, Xiao J. Single-molecule methods for studying gene regulation in vivo. Pflugers Arch 2013; 465:383-95. [PMID: 23430319 PMCID: PMC3595547 DOI: 10.1007/s00424-013-1243-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 01/25/2023]
Abstract
The recent emergence of new experimental tools employing sensitive fluorescence detection in vivo has made it possible to visualize various aspects of gene regulation at the single-molecule level in the native, intracellular context. In this review, we will first describe general considerations for in vivo, single-molecule fluorescence detection of DNA, mRNA, and protein molecules involved in gene regulation. We will then give an overview of the rapidly evolving suite of molecular tools available for observing gene regulation in vivo and discuss new insights they have brought into gene regulation.
Collapse
Affiliation(s)
- Zach Hensel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | | |
Collapse
|
25
|
Chai Y, Li W, Feng G, Yang Y, Wang X, Ou G. Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development. Nat Protoc 2012; 7:2090-102. [PMID: 23138350 DOI: 10.1038/nprot.2012.128] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postembryonic development is an important process of organismal maturation after embryonic growth. Despite key progress in recent years in understanding embryonic development via fluorescence time-lapse microscopy, comparatively less live-cell imaging of postembryonic development has been done. Here we describe a protocol to image larval development in the nematode Caenorhabditis elegans. Our protocol describes the construction of fluorescent transgenic C. elegans, immobilization of worm larvae and time-lapse microscopy analysis. To improve the throughput of imaging, we developed a C. elegans triple-fluorescence imaging approach with a worm-optimized blue fluorescent protein (TagBFP), green fluorescent protein (GFP) and mCherry. This protocol has been previously applied to time-lapse imaging analysis of Q neuroblast asymmetric division, migration and apoptosis, and we show here that it can also be used to image neuritogenesis in the L1 larvae. Other applications are also possible. The protocol can be completed within 3 h and may provide insights into understanding postembryonic development.
Collapse
Affiliation(s)
- Yongping Chai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
26
|
Transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21 control anterior-posterior neuroblast migration with left-right functional asymmetry in Caenorhabditis elegans. Genetics 2012; 192:1373-88. [PMID: 23051647 DOI: 10.1534/genetics.112.145706] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Migration of neurons and neural crest cells is of central importance to the development of nervous systems. In Caenorhabditis elegans, the QL neuroblast on the left migrates posteriorly, and QR on the right migrates anteriorly, despite similar lineages and birth positions with regard to the left-right axis. Initial migration is independent of a Wnt signal that controls later anterior-posterior Q descendant migration. Previous studies showed that the transmembrane proteins UNC-40/DCC and MIG-21, a novel thrombospondin type I repeat containing protein, act redundantly in left-side QL posterior migration. Here we show that the LAR receptor protein tyrosine phosphatase PTP-3 acts with MIG-21 in parallel to UNC-40 in QL posterior migration. We also show that in right-side QR, the UNC-40 and PTP-3/MIG-21 pathways mutually inhibit each other's role in posterior migration, allowing anterior QR migration. Finally, we present evidence that these proteins act autonomously in the Q neuroblasts. These studies indicate an inherent left-right asymmetry in the Q neuroblasts with regard to UNC-40, PTP-3, and MIG-21 function that results in posterior vs. anterior migration.
Collapse
|