1
|
Dobbins BA, Tovar RU, Oddo BJ, Teague CG, Sindhi NA, Devitt TJ, Hillis DM, García DM. PAX6 protein in neuromasts of the lateral line system of salamanders (Eurycea). PLoS One 2024; 19:e0293163. [PMID: 39213295 PMCID: PMC11364236 DOI: 10.1371/journal.pone.0293163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
PAX6 is well known as a transcription factor that drives eye development in animals as widely divergent as flies and mammals. In addition to its localization in eyes, PAX6 expression has been reported in the central nervous system, the pancreas, testes, Merkel cells, nasal epithelium, developing cells of the inner ear, and embryonic submandibular salivary gland. Here we show that PAX6 also appears to be present in the mechanosensory neuromasts of the lateral line system in paedomorphic salamanders of the genus Eurycea. Using immunohistochemistry and confocal microscopy to examine a limited number of larvae of two species, listed by the United States of America's federal government as threatened (E. nana) or endangered (E. rathbuni), we found that anti-PAX6 antibody labeled structures that were extranuclear, and labeling was most intense in the apical appendages of the hair cells of the neuromast. This extranuclear localization raises the possibility of an as yet undescribed function for PAX6 as a cytoskeleton-associated protein.
Collapse
Affiliation(s)
- Brittany A. Dobbins
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Ruben U. Tovar
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Braden J. Oddo
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Christian G. Teague
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Nisa A. Sindhi
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| | - Thomas J. Devitt
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - David M. Hillis
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States of America
| | - Dana M. García
- Department of Biology, Texas State University, San Marcos, TX, United States of America
| |
Collapse
|
2
|
Rodríguez‐Morales R. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of Astyanax mexicanus. Ecol Evol 2024; 14:e11286. [PMID: 38654714 PMCID: PMC11036076 DOI: 10.1002/ece3.11286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Cave-adapted animals evolve a suite of regressive and constructive traits that allow survival in the dark. Most studies aiming at understanding cave animal evolution have focused on the genetics and environmental underpinnings of regressive traits, with special emphasis on vision loss. Possibly as a result of vision loss, other non-visual sensory systems have expanded and compensated in cave species. For instance, in many cave-dwelling fish species, including the blind cavefish of the Mexican tetra, Astyanax mexicanus, a major non-visual mechanosensory system called the lateral line, compensated for vision loss through morphological expansions. While substantial work has shed light on constructive adaptation of this system, there are still many open questions regarding its developmental origin, synaptic plasticity, and overall adaptive value. This review provides a snapshot of the current state of knowledge of lateral line adaption in A. mexicanus, with an emphasis on anatomy, synaptic plasticity, and behavior. Multiple open avenues for future research in this system, and how these can be leveraged as tools for both evolutionary biology and evolutionary medicine, are discussed.
Collapse
Affiliation(s)
- Roberto Rodríguez‐Morales
- Department of Anatomy & Neurobiology, School of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| |
Collapse
|
3
|
Minařík M, Modrell MS, Gillis JA, Campbell AS, Fuller I, Lyne R, Micklem G, Gela D, Pšenička M, Baker CVH. Identification of multiple transcription factor genes potentially involved in the development of electrosensory versus mechanosensory lateral line organs. Front Cell Dev Biol 2024; 12:1327924. [PMID: 38562141 PMCID: PMC10982350 DOI: 10.3389/fcell.2024.1327924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
In electroreceptive jawed vertebrates, embryonic lateral line placodes give rise to electrosensory ampullary organs as well as mechanosensory neuromasts. Previous reports of shared gene expression suggest that conserved mechanisms underlie electroreceptor and mechanosensory hair cell development and that electroreceptors evolved as a transcriptionally related "sister cell type" to hair cells. We previously identified only one transcription factor gene, Neurod4, as ampullary organ-restricted in the developing lateral line system of a chondrostean ray-finned fish, the Mississippi paddlefish (Polyodon spathula). The other 16 transcription factor genes we previously validated in paddlefish were expressed in both ampullary organs and neuromasts. Here, we used our published lateral line organ-enriched gene-set (arising from differential bulk RNA-seq in late-larval paddlefish), together with a candidate gene approach, to identify 25 transcription factor genes expressed in the developing lateral line system of a more experimentally tractable chondrostean, the sterlet (Acipenser ruthenus, a small sturgeon), and/or that of paddlefish. Thirteen are expressed in both ampullary organs and neuromasts, consistent with conservation of molecular mechanisms. Seven are electrosensory-restricted on the head (Irx5, Irx3, Insm1, Sp5, Satb2, Mafa and Rorc), and five are the first-reported mechanosensory-restricted transcription factor genes (Foxg1, Sox8, Isl1, Hmx2 and Rorb). However, as previously reported, Sox8 is expressed in ampullary organs as well as neuromasts in a catshark (Scyliorhinus canicula), suggesting the existence of lineage-specific differences between cartilaginous and ray-finned fishes. Overall, our results support the hypothesis that ampullary organs and neuromasts develop via largely conserved transcriptional mechanisms, and identify multiple transcription factors potentially involved in the formation of electrosensory versus mechanosensory lateral line organs.
Collapse
Affiliation(s)
- Martin Minařík
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Melinda S. Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - J. Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Alexander S. Campbell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Isobel Fuller
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Lyne
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David Gela
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Clare V. H. Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Anselmi C, Fuller GK, Stolfi A, Groves AK, Manni L. Sensory cells in tunicates: insights into mechanoreceptor evolution. Front Cell Dev Biol 2024; 12:1359207. [PMID: 38550380 PMCID: PMC10973136 DOI: 10.3389/fcell.2024.1359207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates, the sister group of vertebrates, offer a unique perspective for evolutionary developmental studies (Evo-Devo) due to their simple anatomical organization. Moreover, the separation of tunicates from vertebrates predated the vertebrate-specific genome duplications. As adults, they include both sessile and pelagic species, with very limited mobility requirements related mainly to water filtration. In sessile species, larvae exhibit simple swimming behaviors that are required for the selection of a suitable substrate on which to metamorphose. Despite their apparent simplicity, tunicates display a variety of mechanoreceptor structures involving both primary and secondary sensory cells (i.e., coronal sensory cells). This review encapsulates two decades of research on tunicate mechanoreception focusing on the coronal organ's sensory cells as prime candidates for understanding the evolution of vertebrate hair cells of the inner ear and the lateral line organ. The review spans anatomical, cellular and molecular levels emphasizing both similarity and differences between tunicate and vertebrate mechanoreception strategies. The evolutionary significance of mechanoreception is discussed within the broader context of Evo-Devo studies, shedding light on the intricate pathways that have shaped the sensory system in chordates.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Gwynna K. Fuller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
5
|
Miao KZ, Cozzone A, Caetano-Lopes J, Harris MP, Fisher S. Osteoclast activity sculpts craniofacial form to permit sensorineural patterning in the zebrafish skull. Front Endocrinol (Lausanne) 2022; 13:969481. [PMID: 36387889 PMCID: PMC9664155 DOI: 10.3389/fendo.2022.969481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals. Using a cathepsinK reporter, we documented osteoclast location in the developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm standard length (approximately 15 to 34 days post fertilization). While broad distribution of osteoclasts is consistent across individuals, they are sparse and the exact locations vary among fish and across developmental time points. Interestingly, we observed osteoclasts concentrating at areas associated with neuromasts and their associated nerves, in particular the hyomandibular foramina and around the supraorbital lateral line. These are areas of active remodeling. In contrast, other areas of rapid bone growth, such as the osteogenic fronts of the frontal and parietal bones, show no particular concentration of osteoclasts, suggesting that they play a special role in shaping bone near neuromasts and nerves. In csf1ra mutants lacking functional osteoclasts, the morphology of the cranial bone was disrupted in both areas. The hyomandibular foramen is present in the initial cartilage template, but after the initiation of ossification, the diameter of the canal is significantly smaller in the absence of osteoclasts. The diameter of the supraorbital lateral line canals was also reduced in the mutants, as was the number of pores associated with neuromasts, which allow for the passage of associated nerves through the bone. Our findings define important and previously unappreciated roles for osteoclast activity in shaping craniofacial skeletal structures with a particular role in bone modeling around peripheral cranial nerves, providing a scaffold for wiring the sensioneural system during craniofacial development. This has important implications for the formation of the evolutionarily diverse lateral line system, as well understanding the mechanism of neurologic sequelae of congenital osteoclast dysfunction in human craniofacial development.
Collapse
Affiliation(s)
- Kelly Z. Miao
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Austin Cozzone
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
| | - Joana Caetano-Lopes
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Shannon Fisher
- Department of Pharmacology and Experimental Therapeutics, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
- *Correspondence: Shannon Fisher,
| |
Collapse
|
6
|
Luo Z, Guo S, Ho NY, Takamiya M, Strähle U, Yang L. Methylmercury-induced hair cell loss requires hydrogen peroxide production and leukocytes in zebrafish embryos. Toxicol Lett 2021; 356:151-160. [PMID: 34954246 DOI: 10.1016/j.toxlet.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Hearing impairment and deafness is frequently observed as one of the neurological signs in patients with Minamata disease caused by methylmercury (MeHg) poisoning. Loss of hair cells in humans and animals is a consequence of MeHg poisoning. However, it is still not clear how MeHg causes hearing deficits. We employed the hair cells of the lateral line system of zebrafish embryos as a model to explore this question. We exposed transgenic zebrafish embryos to MeHg (30-360 μg/L) at the different stages, and scored the numbers of hair cells. We find that MeHg-induced reduction of hair cells is in a concentration dependent manner. By employing antisense morpholino against to pu.1, we confirm that loss of hair cells involves the action of leukocytes. Moreover, hair cell loss is attenuated by co-treating MeHg-exposed embryos with pharmacological inhibitors of NADPH oxidases named diphenyleneiodonium (DPI) and VAS2870. In situ gene expression analysis showed that genes encoding the SQSTM1-Keap1-Nrf2 systems involved in combating oxidative stress and immune responses are highly expressed in the lateral line organs of embryos exposed to MeHg. This suggests that induction of hydrogen peroxide (H2O2) is the primary effect of MeHg on the hair cells. Genes induced by MeHg are also involved in regeneration of the hair cells. These features are likely related to the capacity of the zebrafish to regenerate the lost hair cells.
Collapse
Affiliation(s)
- Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Nga Yu Ho
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China.
| |
Collapse
|
7
|
Seleit A, Ansai S, Yamahira K, Masengi KWA, Naruse K, Centanin L. Diversity of lateral line patterns and neuromast numbers in the genus Oryzias. J Exp Biol 2021; 224:273715. [PMID: 34897518 DOI: 10.1242/jeb.242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/20/2022]
Abstract
A remarkable diversity of lateral line patterns exists in adult teleost fishes, the basis of which is largely unknown. By analysing the lateral line patterns and organ numbers in 29 Oryzias species and strains we report a rapid diversification of the lateral line system within this genus. We show a strong dependence of lateral line elaboration (number of neuromasts per cluster, number of parallel lateral lines) on adult species body size irrespective of phylogenetic relationships. In addition, we report that the degree of elaboration of the anterior lateral line, posterior lateral line and caudal neuromast clusters is tightly linked within species, arguing for a globally coordinated mechanism controlling lateral line organ numbers and patterns. We provide evidence for a polygenic control over neuromast numbers and positioning in the genus Oryzias. Our data also indicate that the diversity in lateral lines can arise as a result of differences in patterning both during embryonic development and post-embryonically, where simpler embryonic patterns generate less complex adult patterns and organ numbers, arguing for a linkage between the two processes.
Collapse
Affiliation(s)
- Ali Seleit
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, 69120Heidelberg, Germany
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Kawilarang W A Masengi
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, 95115 Manado, Indonesia
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Lázaro Centanin
- Laboratory of Clonal Analysis of Post-Embryonic Stem Cells, Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg Universität, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Peloggia J, Münch D, Meneses-Giles P, Romero-Carvajal A, Lush ME, Lawson ND, McClain M, Pan YA, Piotrowski T. Adaptive cell invasion maintains lateral line organ homeostasis in response to environmental changes. Dev Cell 2021; 56:1296-1312.e7. [PMID: 33878346 DOI: 10.1016/j.devcel.2021.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Mammalian inner ear and fish lateral line sensory hair cells (HCs) detect fluid motion to transduce environmental signals. Actively maintained ionic homeostasis of the mammalian inner ear endolymph is essential for HC function. In contrast, fish lateral line HCs are exposed to the fluctuating ionic composition of the aqueous environment. Using lineage labeling, in vivo time-lapse imaging and scRNA-seq, we discovered highly motile skin-derived cells that invade mature mechanosensory organs of the zebrafish lateral line and differentiate into Neuromast-associated (Nm) ionocytes. This invasion is adaptive as it is triggered by environmental fluctuations. Our discovery of Nm ionocytes challenges the notion of an entirely placodally derived lateral line and identifies Nm ionocytes as likely regulators of HC function possibly by modulating the ionic microenvironment. Nm ionocytes provide an experimentally accessible in vivo system to study cell invasion and migration, as well as the physiological adaptation of vertebrate organs to changing environmental conditions.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Daniela Münch
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrés Romero-Carvajal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Biológicas, Quito, Ecuador
| | - Mark E Lush
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Y Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | | |
Collapse
|
9
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
10
|
Seal S, Monsoro-Burq AH. Insights Into the Early Gene Regulatory Network Controlling Neural Crest and Placode Fate Choices at the Neural Border. Front Physiol 2020; 11:608812. [PMID: 33324244 PMCID: PMC7726110 DOI: 10.3389/fphys.2020.608812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The neural crest (NC) cells and cranial placodes are two ectoderm-derived innovations in vertebrates that led to the acquisition of a complex head structure required for a predatory lifestyle. They both originate from the neural border (NB), a portion of the ectoderm located between the neural plate (NP), and the lateral non-neural ectoderm. The NC gives rise to a vast array of tissues and cell types such as peripheral neurons and glial cells, melanocytes, secretory cells, and cranial skeletal and connective cells. Together with cells derived from the cranial placodes, which contribute to sensory organs in the head, the NC also forms the cranial sensory ganglia. Multiple in vivo studies in different model systems have uncovered the signaling pathways and genetic factors that govern the positioning, development, and differentiation of these tissues. In this literature review, we give an overview of NC and placode development, focusing on the early gene regulatory network that controls the formation of the NB during early embryonic stages, and later dictates the choice between the NC and placode progenitor fates.
Collapse
Affiliation(s)
- Subham Seal
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, Orsay Cedex, France
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, Orsay Cedex, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
11
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
12
|
Iwasaki M, Yokoi H, Suzuki T, Kawakami K, Wada H. Development of the anterior lateral line system through local tissue-tissue interactions in the zebrafish head. Dev Dyn 2020; 249:1440-1454. [PMID: 32658373 DOI: 10.1002/dvdy.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The distribution of sensory organs is important for detecting environmental signals efficiently. The mechanosensory receptors of the lateral line system, neuromasts, are stereotypically distributed over the head and body surface of fish, although how neuromasts arise in these predetermined positions during development remains unclear. RESULTS We investigated the development of the anterior lateral line (ALL) system in zebrafish head. The ALL neuromasts formed in the predetermined positions through proliferation and differentiation of (a) nonmigratory lateral line primordia, (b) migratory primordia, (c) interneuromast cells connecting preexisting neuromasts, and (d) budding primordia. We demonstrated that R-spondin2 (Rspo2), an activator of Wnt/β-catenin signaling, is required for the development of a particular set of neuromasts associated with hyomandibular cartilage. Further genetic analyses suggested that Rspo2, which emanates from the hyoid mesenchyme, acts on the adjacent neuromast progenitor cells to stimulate their proliferation through activating Wnt/β-catenin signaling. CONCLUSION This study has revealed novel mechanisms for neuromast positioning through local tissue-tissue interactions, providing insights into the development and evolution of the vertebrate head.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Japan
| | - Hayato Yokoi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tohru Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Koichi Kawakami
- National Institute of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
13
|
Karaiwa A, Yamada S, Yamamoto H, Wakasa M, Ishijima H, Akiyama R, Hosokawa Y, Bessho Y, Matsui T. Relationship between surrounding tissue morphology and directional collective migration of the posterior lateral line primordium in zebrafish. Genes Cells 2020; 25:582-592. [PMID: 32516841 DOI: 10.1111/gtc.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Abstract
Collective cell migration, in which cells assemble and move together, is an essential process in embryonic development, wound healing and cancer metastasis. Chemokine signaling guides cell assemblies to their destinations. In zebrafish posterior lateral line primordium (PLLP), a model system for collective cell migration, it has been proposed that the chemokine ligand Cxcl12a secreted from muscle pioneer cells (MPs) and muscle fast fibers (MFFs), which are distributed along with the horizontal midline, binds to the receptor Cxcr4b in PLLP and that Cxcl12a-Cxcr4b signaling guides the anterior-to-posterior migration of PLLP along the horizontal midline. However, how the surrounding tissues affect PLLP migration remains to be elucidated. Here, we investigated the relationship between the PLLP and the surrounding tissues and found that a furrow between the dorsal and ventral myotomes is generated by Sonic hedgehog (Shh) signaling-dependent MP and MFF differentiation and that the PLLP migrates in this furrow. When transient inhibition of Shh signaling impaired both the furrow formation and differentiation of cxcl12a-expressing MPs/MFFs, directional PLLP migration was severely perturbed. Furthermore, when differentiated MPs and MFFs were ablated by femtosecond laser irradiations, the furrow remained and PLLP migration was relatively unaffected. These results suggest that the furrow formation between the dorsal and ventral myotomes is associated with the migratory behavior of PLLP.
Collapse
Affiliation(s)
- Akari Karaiwa
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Sohei Yamada
- Bio-Process Engineering Laboratory, Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hodaka Yamamoto
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Mizuho Wakasa
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hannosuke Ishijima
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ryutaro Akiyama
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoichiroh Hosokawa
- Bio-Process Engineering Laboratory, Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
14
|
Grimaldi C, Raz E. Germ cell migration-Evolutionary issues and current understanding. Semin Cell Dev Biol 2019; 100:152-159. [PMID: 31864795 DOI: 10.1016/j.semcdb.2019.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
Abstract
In many organisms, primordial germ cells (PGCs) are specified at a different location than where the gonad forms, meaning that PGCs must migrate toward the gonad within the early developing embryo. Following species-specific paths, PGCs can be passively carried by surrounding tissues and also perform active migration. When PGCs actively migrate through and along a variety of embryonic structures in different organisms, they adopt an ancestral robust migration mode termed "amoeboid motility", which allows cells to migrate within diverse environments. In this review, we discuss the possible significance of the PGC migration process in facilitating the evolution of animal body shape. In addition, we summarize the latest findings relevant for the molecular and cellular mechanisms controlling the movement and the directed migration of PGCs in different species.
Collapse
Affiliation(s)
- Cecilia Grimaldi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
15
|
Abstract
Deafness or hearing deficits are debilitating conditions. They are often caused by loss of sensory hair cells or defects in their function. In contrast to mammals, nonmammalian vertebrates robustly regenerate hair cells after injury. Studying the molecular and cellular basis of nonmammalian vertebrate hair cell regeneration provides valuable insights into developing cures for human deafness. In this review, we discuss the current literature on hair cell regeneration in the context of other models for sensory cell regeneration, such as the retina and the olfactory epithelium. This comparison reveals commonalities with, as well as differences between, the different regenerating systems, which begin to define a cellular and molecular blueprint of regeneration. In addition, we propose how new technical advances can address outstanding questions in the field.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sungmin Baek
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
16
|
PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nat Commun 2019; 10:3993. [PMID: 31488837 PMCID: PMC6728366 DOI: 10.1038/s41467-019-12005-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Planar cell polarity (PCP) plays crucial roles in developmental processes such as gastrulation, neural tube closure and hearing. Wnt pathway mutants are often classified as PCP mutants due to similarities between their phenotypes. Here, we show that in the zebrafish lateral line, disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in the PCP genes vangl2 and scrib cause random orientations of hair cells, mutations in wnt11f1, gpc4 and fzd7a/b induce hair cells to adopt a concentric pattern. This concentric pattern is not caused by defects in PCP but is due to misaligned support cells. The molecular basis of the support cell defect is unknown but we demonstrate that the PCP and Wnt pathways work in parallel to establish proper hair cell orientation. Consequently, hair cell orientation defects are not solely explained by defects in PCP signaling, and some hair cell phenotypes warrant re-evaluation. Planar cell polarity (PCP) regulates hair cell orientation in the zebrafish lateral line. Here, the authors show that mutating Wnt pathway genes (wnt11f1, fzd7a/b, and gpc4) causes concentric hair cell patterns not regulated by PCP, thus showing PCP/Wnt pathway genes have different consequences on hair cell orientation.
Collapse
|
17
|
Jenkins BA, Fontecilla NM, Lu CP, Fuchs E, Lumpkin EA. The cellular basis of mechanosensory Merkel-cell innervation during development. eLife 2019; 8:42633. [PMID: 30794158 PMCID: PMC6386521 DOI: 10.7554/elife.42633] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Touch sensation is initiated by mechanosensory neurons that innervate distinct skin structures; however, little is known about how these neurons are patterned during mammalian skin development. We explored the cellular basis of touch-receptor patterning in mouse touch domes, which contain mechanosensory Merkel cell-neurite complexes and abut primary hair follicles. At embryonic stage 16.5 (E16.5), touch domes emerge as patches of Merkel cells and keratinocytes clustered with a previously unsuspected population of Bmp4-expressing dermal cells. Epidermal Noggin overexpression at E14.5 disrupted touch-dome formation but not hair-follicle specification, demonstrating a temporally distinct requirement for BMP signaling in placode-derived structures. Surprisingly, two neuronal populations preferentially targeted touch domes during development but only one persisted in mature touch domes. Finally, Keratin-17-expressing keratinocytes but not Merkel cells were necessary to establish innervation patterns during development. These findings identify key cell types and signaling pathways required for targeting Merkel-cell afferents to discrete mechanosensory compartments.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
- Department of DermatologyColumbia UniversityNew YorkUnited States
| | - Natalia M Fontecilla
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
| | - Catherine P Lu
- Robin Neustein Laboratory of Mammalian Development and Cell BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Ellen A Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
18
|
Baker CVH, Modrell MS. Insights into Electroreceptor Development and Evolution from Molecular Comparisons with Hair Cells. Integr Comp Biol 2019; 58:329-340. [PMID: 29846597 DOI: 10.1093/icb/icy037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vertebrate lateral line system comprises a mechanosensory division, with neuromasts containing hair cells that detect local water movement ("distant touch"); and an electrosensory division, with electrosensory organs that detect the weak, low-frequency electric fields surrounding other animals in water (primarily used for hunting). The entire lateral line system was lost in the amniote lineage with the transition to fully terrestrial life; the electrosensory division was lost independently in several lineages, including the ancestors of frogs and of teleost fishes. (Electroreception with different characteristics subsequently evolved independently within two teleost lineages.) Recent gene expression studies in a non-teleost actinopterygian fish suggest that electroreceptor ribbon synapses employ the same transmission mechanisms as hair cell ribbon synapses, and show that developing electrosensory organs express transcription factors essential for hair cell development, including Atoh1 and Pou4f3. Previous hypotheses for electroreceptor evolution suggest either that electroreceptors and hair cells evolved independently in the vertebrate ancestor from a common ciliated secondary cell, or that electroreceptors evolved from hair cells. The close developmental and putative physiological similarities implied by the gene expression data support the latter hypothesis, i.e., that electroreceptors evolved in the vertebrate ancestor as a "sister cell-type" to lateral line hair cells.
Collapse
Affiliation(s)
- Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | - Melinda S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
19
|
Olson HM, Nechiporuk AV. Using Zebrafish to Study Collective Cell Migration in Development and Disease. Front Cell Dev Biol 2018; 6:83. [PMID: 30175096 PMCID: PMC6107837 DOI: 10.3389/fcell.2018.00083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
Cellular migration is necessary for proper embryonic development as well as maintenance of adult health. Cells can migrate individually or in groups in a process known as collective cell migration. Collectively migrating cohorts maintain cell-cell contacts, group polarization, and exhibit coordinated behavior. This mode of migration is important during numerous developmental processes including tracheal branching, blood vessel sprouting, neural crest cell migration and others. In the adult, collective cell migration is important for proper wound healing and is often misappropriated during cancer cell invasion. A variety of genetic model systems are used to examine and define the cellular and molecular mechanisms behind collective cell migration including border cell migration and tracheal branching in Drosophila melanogaster, neural crest cell migration in chick and Xenopus embryos, and posterior lateral line primordium (pLLP) migration in zebrafish. The pLLP is a group of about 100 cells that begins migrating around 22 hours post-fertilization along the lateral aspect of the trunk of the developing embryo. During migration, clusters of cells are deposited from the trailing end of the pLLP; these ultimately differentiate into mechanosensory organs of the lateral line system. As zebrafish embryos are transparent during early development and the pLLP migrates close to the surface of the skin, this system can be easily visualized and manipulated in vivo. These advantages together with the amenity to advance genetic methods make the zebrafish pLLP one of the premier model systems for studying collective cell migration. This review will describe the cellular behaviors and signaling mechanisms of the pLLP and compare the pLLP to collective cell migration in other popular model systems. In addition, we will examine how this type of migration is hijacked by collectively invading cancer cells.
Collapse
Affiliation(s)
- Hannah M Olson
- Department Cell, Developmental & Cancer Biology, The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.,Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, United States
| | - Alex V Nechiporuk
- Department Cell, Developmental & Cancer Biology, The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
20
|
McPherson DR, Swalla BJ. High Time for Hair Cells: An Introduction to the Symposium on Sensory Hair Cells. Integr Comp Biol 2018; 58:276-281. [PMID: 30137315 DOI: 10.1093/icb/icy070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sensory hair cells are highly specialized cells that form the basis for our senses of hearing, orientation to gravity, and perception of linear acceleration (head translation in space) and angular acceleration (head rotation). In many species of fish and aquatic amphibians, hair cells mediate perception of water movement through the lateral line system, and electroreceptors derived from hair cell precursors mediate electric field detection. In tunicates, cells of the mechanosensory coronal organ on the incurrent siphon meet the structural, functional, and developmental criteria to be described as hair cells, and they function to deflect large particles from entering the animal. The past two decades have witnessed significant breakthroughs in our understanding of hair cell biology and how their specialized structures influence their functions. This symposium combines the approaches of developmental biology, evolutionary biology, and physiology to share the gains of recent research in understanding hair cell function in different model systems. We brought together researchers working on sensory hair cells in organisms spanning the chordates in order to examine the depth and breadth of hair cell evolution. It is clear that these specialized cells serve a range of functions in different animals, due to evolutionary tinkering with a basic specialized cell type. This collection of papers will serve to mark the progress that has been made in this field and also stimulate the next wave of progress in this exciting field.
Collapse
Affiliation(s)
| | - Billie J Swalla
- Friday Harbor Laboratories, Friday Harbor, 620 University Road, WA 98250, USA
| |
Collapse
|
21
|
Wood TWP, Nakamura T. Problems in Fish-to-Tetrapod Transition: Genetic Expeditions Into Old Specimens. Front Cell Dev Biol 2018; 6:70. [PMID: 30062096 PMCID: PMC6054942 DOI: 10.3389/fcell.2018.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
The fish-to-tetrapod transition is one of the fundamental problems in evolutionary biology. A significant amount of paleontological data has revealed the morphological trajectories of skeletons, such as those of the skull, vertebrae, and appendages in vertebrate history. Shifts in bone differentiation, from dermal to endochondral bones, are key to explaining skeletal transformations during the transition from water to land. However, the genetic underpinnings underlying the evolution of dermal and endochondral bones are largely missing. Recent genetic approaches utilizing model organisms—zebrafish, frogs, chickens, and mice—reveal the molecular mechanisms underlying vertebrate skeletal development and provide new insights for how the skeletal system has evolved. Currently, our experimental horizons to test evolutionary hypotheses are being expanded to non-model organisms with state-of-the-art techniques in molecular biology and imaging. An integration of functional genomics, developmental genetics, and high-resolution CT scanning into evolutionary inquiries allows us to reevaluate our understanding of old specimens. Here, we summarize the current perspectives in genetic programs underlying the development and evolution of the dermal skull roof, shoulder girdle, and appendages. The ratio shifts of dermal and endochondral bones, and its underlying mechanisms, during the fish-to-tetrapod transition are particularly emphasized. Recent studies have suggested the novel cell origins of dermal bones, and the interchangeability between dermal and endochondral bones, obscuring the ontogenetic distinction of these two types of bones. Assimilation of ontogenetic knowledge of dermal and endochondral bones from different structures demands revisions of the prevalent consensus in the evolutionary mechanisms of vertebrate skeletal shifts.
Collapse
Affiliation(s)
- Thomas W P Wood
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
22
|
Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. NPJ Regen Med 2018; 3:11. [PMID: 29872546 PMCID: PMC5986822 DOI: 10.1038/s41536-018-0050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration. A study on zebrafish has genetically screened 254 genes and identified 7 genes implicated in the development and regeneration of hair cells and other tissues. Humans and other mammals cannot regrow hair cells—inner-ear sensory receptors that enable hearing—whereas non-mammalian vertebrates, including zebrafish, can regrow these following injury. Researchers from the United States, led by the National Institutes of Health’s Shawn Burgess, screened adult zebrafish for genes active during the regeneration of inner-ear epithelium. The researchers then produced zebrafish without these genes to study their functions. The studies tested 254 genes known to respond during regeneration, and identified seven specifically impacting regeneration. Most of these seven genes also functioned in liver and fin tissue regeneration. Understanding the mechanisms of these genes may enable future research into regenerative therapies in humans.
Collapse
|
23
|
Laurà R, Abbate F, Germanà GP, Montalbano G, Germanà A, Levanti M. Fine structure of the canal neuromasts of the lateral line system in the adult zebrafish. Anat Histol Embryol 2018; 47:322-329. [PMID: 29582454 DOI: 10.1111/ahe.12356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
The mechanosensory lateral line system of fish is responsible for several functions such as balance, hearing, and orientation in water flow and is formed by neuromast receptor organs distributed on head, trunk and tail. Superficial and canal neuromasts can be distinguished for localization and morphological differences. Several information is present regarding the superficial neuromasts of zebrafish and other teleosts especially during larval and juvenile stages, while not as numerous data are so far available about the ultrastructural characteristics of the canal neuromasts in adult zebrafish. Therefore, the aim of this study was to investigate by transmission electron microscopy the ultrastructural aspects of cells present in the canal neuromasts. Besides the typical cellular aspects of the neuromast, different cellular types of hair cells were observed that could be identified as developing hair cells during the physiological turnover. The knowledge of the observed cellular types of the canal neuromasts and their origin could give a contribution to studies carried out on adult zebrafish used as model in neurological and non-neurological damages, such as deafness and vestibular disorders.
Collapse
Affiliation(s)
- R Laurà
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - F Abbate
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - G P Germanà
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - G Montalbano
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - A Germanà
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - M Levanti
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Li H, Pei W, Vergarajauregui S, Zerfas PM, Raben N, Burgess SM, Puertollano R. Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Hum Mol Genet 2018; 26:2701-2718. [PMID: 28449103 DOI: 10.1093/hmg/ddx158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease characterized by neurologic and ophthalmologic abnormalities. There is currently no effective treatment. MLIV is caused by mutations in MCOLN1, a lysosomal cation channel from the transient receptor potential (TRP) family. In this study, we used genome editing to knockout the two mcoln1 genes present in Danio rerio (zebrafish). Our model successfully reproduced the retinal and neuromuscular defects observed in MLIV patients, indicating that this model is suitable for studying the disease pathogenesis. Importantly, our model revealed novel insights into the origins and progression of the MLIV pathology, including the contribution of autophagosome accumulation to muscle dystrophy and the role of mcoln1 in embryonic development, hair cell viability and cellular maintenance. The generation of a MLIV model in zebrafish is particularly relevant given the suitability of this organism for large-scale in vivo drug screening, thus providing unprecedented opportunities for therapeutic discovery.
Collapse
Affiliation(s)
- Huiqing Li
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wuhong Pei
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sivia Vergarajauregui
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Sato S, Furuta Y, Kawakami K. Regulation of continuous but complex expression pattern of Six1 during early sensory development. Dev Dyn 2017; 247:250-261. [PMID: 29106072 DOI: 10.1002/dvdy.24603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In vertebrates, cranial sensory placodes give rise to neurosensory and endocrine structures, such as the olfactory epithelium, inner ear, and anterior pituitary. We report here the establishment of a transgenic mouse line that expresses Cre recombinase under the control of Six1-21, a major placodal enhancer of the homeobox gene Six1. RESULTS In the new Cre-expressing line, mSix1-21-NLSCre, the earliest Cre-mediated recombination was induced at embryonic day 8.5 in the region overlapping with the otic-epibranchial progenitor domain (OEPD), a transient, common precursor domain for the otic and epibranchial placodes. Recombination was later observed in the OEPD-derived structures (the entire inner ear and the VIIth-Xth cranial sensory ganglia), olfactory epithelium, anterior pituitary, pharyngeal ectoderm and pouches. Other Six1-positive structures, such as salivary/lacrimal glands and limb buds, were also positive for recombination. Moreover, comparison with another mouse line expressing Cre under the control of the sensory neuron enhancer, Six1-8, indicated that the continuous and complex expression pattern of Six1 during sensory organ formation is pieced together by separate enhancers. CONCLUSIONS mSix1-21-NLSCre has several unique characteristics to make it suitable for analysis of cell lineage and gene function in sensory placodes as well as nonplacodal Six1-positive structures. Developmental Dynamics 247:250-261, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
26
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
27
|
Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Dev Biol 2017; 431:48-58. [PMID: 28818669 PMCID: PMC5650464 DOI: 10.1016/j.ydbio.2017.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/05/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
The lateral line system is a useful model for studying the embryonic and evolutionary diversification of different organs and cell types. In jawed vertebrates, this ancestrally comprises lines of mechanosensory neuromasts over the head and trunk, flanked on the head by fields of electrosensory ampullary organs, all innervated by lateral line neurons in cranial lateral line ganglia. Both types of sense organs, and their afferent neurons, develop from cranial lateral line placodes. Current research primarily focuses on the posterior lateral line primordium in zebrafish, which migrates as a cell collective along the trunk; epithelial rosettes form in the trailing zone and are deposited as a line of neuromasts, within which hair cells and supporting cells differentiate. However, in at least some other teleosts (e.g. catfishes) and all non-teleosts, lines of cranial neuromasts are formed by placodes that elongate to form a sensory ridge, which subsequently fragments, with neuromasts differentiating in a line along the crest of the ridge. Furthermore, in many non-teleost species, electrosensory ampullary organs develop from the flanks of the sensory ridge. It is unknown to what extent the molecular mechanisms underlying neuromast formation from the zebrafish migrating posterior lateral line primordium are conserved with the as-yet unexplored molecular mechanisms underlying neuromast and ampullary organ formation from elongating lateral line placodes. Here, we report experiments in an electroreceptive non-teleost ray-finned fish, the Mississippi paddlefish Polyodon spathula, that suggest a conserved role for Notch signaling in regulating lateral line organ receptor cell number, but potentially divergent roles for the fibroblast growth factor signaling pathway, both between neuromasts and ampullary organs, and between paddlefish and zebrafish. Notch and Fgf pathway genes are expressed during paddlefish lateral line development. Fgf ligand genes are differentially expressed in neuromasts and ampullary organs. DAPT treatment results in irregular organ spacing and supernumerary receptor cells. SU5402 treatment yields fewer neuromasts, but ampullary organs form precociously. SU5402 treatment also results in supernumerary receptor cells.
Collapse
|
28
|
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:98-116. [PMID: 28988233 DOI: 10.1159/000456646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detection of motion is a feature essential to any living animal. In vertebrates, mechanosensory hair cells organized into the lateral line and vestibular systems are used to detect external water or head/body motion, respectively. While the neuronal components to detect these physical attributes are similar between the two sensory systems, the organizational pattern of the receptors in the periphery and the distribution of hindbrain afferent and efferent projections are adapted to the specific functions of the respective system. Here we provide a concise review comparing the functional organization of the vestibular and lateral line systems from the development of the organs to the wiring from the periphery and the first processing stages. The goal of this review is to highlight the similarities and differences to demonstrate how evolution caused a common neuronal substrate to adapt to different functions, one for the detection of external water stimuli and the generation of sensory maps and the other for the detection of self-motion and the generation of motor commands for immediate behavioral reactions.
Collapse
Affiliation(s)
- Boris P Chagnaud
- Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried-Planegg, Germany
| | | | | | | | | |
Collapse
|
29
|
Nikaido M, Navajas Acedo J, Hatta K, Piotrowski T. Retinoic acid is required and Fgf, Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish. Dev Biol 2017; 431:215-225. [PMID: 28923486 DOI: 10.1016/j.ydbio.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
The lateral line system is a mechanosensory systems present in aquatic animals. The anterior and posterior lateral lines develop from anterior and posterior lateral line placodes (aLLp and pLLp), respectively. Although signaling molecules required for the induction of other cranial placodes have been well studied, the molecular mechanisms underlying formation of the lateral line placodes are unknown. In this study we tested the requirement of multiple signaling pathways, such as Wnt, Bmp Fgf, and Retinoic Acid for aLLp and pLLp induction. We determined that aLLp specification requires Fgf signaling, whilst pLLp specification requires retinoic acid which inhibits Fgf signaling. pLLp induction is also independent of Wnt and Bmp activities, even though these pathways limit the boundaries of the pLLp. This is the first report that the aLLp and pLLp depend on different inductive mechanisms and that pLLp induction requires the inhibition of Fgf, Wnt and Bmp signaling.
Collapse
Affiliation(s)
- Masataka Nikaido
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | | - Kohei Hatta
- Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | |
Collapse
|
30
|
Modrell MS, Lyne M, Carr AR, Zakon HH, Buckley D, Campbell AS, Davis MC, Micklem G, Baker CV. Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome. eLife 2017; 6. [PMID: 28346141 PMCID: PMC5429088 DOI: 10.7554/elife.24197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution.
Collapse
Affiliation(s)
- Melinda S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mike Lyne
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adrian R Carr
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Harold H Zakon
- Department of Neuroscience, The University of Texas at Austin, Austin, United States.,Department of Integrative Biology, The University of Texas at Austin, Austin, United States
| | - David Buckley
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales-MNCN-CSIC, Madrid, Spain.,Department of Natural Sciences, Saint Louis University - Madrid Campus, Madrid, Spain
| | - Alexander S Campbell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marcus C Davis
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, United States
| | - Gos Micklem
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Clare Vh Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Becker EA, Bird NC, Webb JF. Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes. J Morphol 2016; 277:1273-91. [DOI: 10.1002/jmor.20574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/23/2016] [Accepted: 06/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Emily A. Becker
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Nathan C. Bird
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| | - Jacqueline F. Webb
- Department of Biological Sciences; University of Rhode Island; 120 Flagg Road Kingston Rhode Island 02881
| |
Collapse
|
32
|
Venero Galanternik M, Navajas Acedo J, Romero-Carvajal A, Piotrowski T. Imaging collective cell migration and hair cell regeneration in the sensory lateral line. Methods Cell Biol 2016; 134:211-56. [PMID: 27312495 DOI: 10.1016/bs.mcb.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The accessibility of the lateral line system and its amenability to long-term in vivo imaging transformed the developing lateral line into a powerful model system to study fundamental morphogenetic events, such as guided migration, proliferation, cell shape changes, organ formation, organ deposition, cell specification and differentiation. In addition, the lateral line is not only amenable to live imaging during migration stages but also during postembryonic events such as sensory organ tissue homeostasis and regeneration. The robust regenerative capabilities of the mature, mechanosensory lateral line hair cells, which are homologous to inner ear hair cells and the ease with which they can be imaged, have brought zebrafish into the spotlight as a model to develop tools to treat human deafness. In this chapter, we describe protocols for long-term in vivo confocal imaging of the developing and regenerating lateral line.
Collapse
Affiliation(s)
- M Venero Galanternik
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Utah, Salt Lake City, UT, United States
| | - J Navajas Acedo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - A Romero-Carvajal
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Utah, Salt Lake City, UT, United States
| | - T Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
33
|
Figueroa F, Singer SS, LeClair EE. Making maxillary barbels with a proximal-distal gradient of Wnt signals in matrix-bound mesenchymal cells. Evol Dev 2015; 17:367-79. [PMID: 26492827 PMCID: PMC4620582 DOI: 10.1111/ede.12167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolution of specific appendages is made possible by the ontogenetic deployment of general cell signaling pathways. Many fishes, amphibians and reptiles have unique skin appendages known as barbels, which are poorly understood at the cellular and molecular level. In this study, we examine the cell arrangements, cell division patterns, and gene expression profiles associated with the zebrafish maxillary barbel, or ZMB. The earliest cellular organization of the ZMB is an internal whorl of mesenchymal cells in the dermis of the maxilla; there is no epithelial placode, nor any axially-elongated epithelial cells as expected of an apical ectodermal ridge (AER). As the ZMB develops, cells in S-phase are at first distributed randomly throughout the appendage, gradually transitioning to a proliferative population concentrated at the distal end. By observing ZMB ontogenetic stages in a Wnt-responsive transgenic reporter line, TCFsiam, we identified a strongly fluorescent mesenchymal cell layer within these developing appendages. Using an in vitro explant culture technique on developing barbel tissues, we co-localized the fluorescent label in these cells with the mitotic marker EdU. Surprisingly, the labeled cells showed little proliferation, indicating a slow-cycling subpopulation. Transmission electron microscopy of the ZMB located these cells in a single, circumferential layer within the barbel's matrix core. Morphologically, these cells resemble fibroblasts or osteoblasts; in addition to their matrix-bound location, they are identified by their pancake-shaped nuclei, abundant rough endoplasmic reticulum, and cytoplasmic extensions into the surrounding extracellular matrix. Taken together, these features define a novel mesenchymal cell population in zebrafish, the "TCF(+) core cells." A working model of barbel development is proposed, in which these minimally mitotic mesodermal cells produce collagenous matrix in response to ectodermally-derived Wnt signals deployed in a proximal-distal gradient along the appendage. This documents a novel mechanism of vertebrate appendage outgrowth. Similar genetic signals and cell behaviors may be responsible for the independent and repeated evolution of barbel structures in other fish species.
Collapse
Affiliation(s)
- Francisco Figueroa
- DePaul University Department of Biological Sciences, Chicago, Il 60614 USA
| | - Susan S. Singer
- DePaul University Department of Biological Sciences, Chicago, Il 60614 USA
| | | |
Collapse
|
34
|
Lehoux C, Cloutier R. Building blocks of a fish head: Developmental and variational modularity in a complex system. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:614-28. [DOI: 10.1002/jez.b.22639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Caroline Lehoux
- Laboratoire de biologie évolutive; Université du Québec à Rimouski; Rimouski Québec Canada
| | - Richard Cloutier
- Laboratoire de biologie évolutive; Université du Québec à Rimouski; Rimouski Québec Canada
| |
Collapse
|
35
|
McLennan R, Schumacher LJ, Morrison JA, Teddy JM, Ridenour DA, Box AC, Semerad CL, Li H, McDowell W, Kay D, Maini PK, Baker RE, Kulesa PM. Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front. Development 2015; 142:2014-25. [PMID: 25977364 DOI: 10.1242/dev.117507] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/09/2015] [Indexed: 12/30/2022]
Abstract
Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - Linus J Schumacher
- Oxford University, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
| | - Jason A Morrison
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - Dennis A Ridenour
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - Andrew C Box
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - Craig L Semerad
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - William McDowell
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA
| | - David Kay
- Oxford University, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
| | - Philip K Maini
- Oxford University, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Ruth E Baker
- Oxford University, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E. 50th St, Kansas City, MO 64110, USA Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Luminal signaling: it's what's on the inside that counts. Dev Cell 2014; 31:519-20. [PMID: 25490261 DOI: 10.1016/j.devcel.2014.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During organogenesis, FGFs are diffusible communication signals that allow cells to coordinate morphogenesis and establish tissue architecture. Recently in Nature, Durdu et al. (2014) show that epithelial cell clusters secrete FGFs into a microlumen, restricting FGF localization so that participating cells coordinate differentiation and collective migration via luminal signaling.
Collapse
|
37
|
Duran I, Ruiz-Sánchez J, Santamaría JA, Marí-Beffa M. Holmgren's principle of delamination during fin skeletogenesis. Mech Dev 2014; 135:16-30. [PMID: 25460362 DOI: 10.1016/j.mod.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
During fin morphogenesis, several mesenchyme condensations occur to give rise to the dermal skeleton. Although each of them seems to create distinctive and unique structures, they all follow the premises of the same morphogenetic principle. Holmgren's principle of delamination was first proposed to describe the morphogenesis of skeletal elements of the cranium, but Jarvik extended it to the development of the fin exoskeleton. Since then, some cellular or molecular explanations, such as the "flypaper" model (Thorogood et al.), or the evolutionary description by Moss, have tried to clarify this topic. In this article, we review new data from zebrafish studies to meet these criteria described by Holmgren and other authors. The variety of cell lineages involved in these skeletogenic condensations sheds light on an open discussion of the contributions of mesoderm- versus neural crest-derived cell lineages to the development of the head and trunk skeleton. Moreover, we discuss emerging molecular studies that are disclosing conserved regulatory mechanisms for dermal skeletogenesis and similarities during fin development and regeneration, which may have important implications in the potential use of the zebrafish fin as a model for regenerative medicine.
Collapse
Affiliation(s)
- I Duran
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Orthopedic Surgery, University of California, Los Angeles, CA 90095, USA; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| | - J Ruiz-Sánchez
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - J A Santamaría
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - M Marí-Beffa
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| |
Collapse
|
38
|
Thomas ED, Cruz IA, Hailey DW, Raible DW. There and back again: development and regeneration of the zebrafish lateral line system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 4:1-16. [PMID: 25330982 DOI: 10.1002/wdev.160] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/10/2014] [Accepted: 08/24/2014] [Indexed: 12/23/2022]
Abstract
The zebrafish lateral line is a sensory system used to detect changes in water flow. It is comprised of clusters of mechanosensory hair cells called neuromasts. The lateral line is initially established by a migratory group of cells, called a primordium, that deposits neuromasts at stereotyped locations along the surface of the fish. Wnt, FGF, and Notch signaling are all important regulators of various aspects of lateral line development, from primordium migration to hair cell specification. As zebrafish age, the organization of the lateral line becomes more complex in order to accommodate the fish's increased size. This expansion is regulated by many of the same factors involved in the initial development. Furthermore, unlike mammalian hair cells, lateral line hair cells have the capacity to regenerate after damage. New hair cells arise from the proliferation and differentiation of surrounding support cells, and the molecular and cellular pathways regulating this are beginning to be elucidated. All in all, the zebrafish lateral line has proven to be an excellent model in which to study a diverse array of processes, including collective cell migration, cell polarity, cell fate, and regeneration.
Collapse
Affiliation(s)
- Eric D Thomas
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA, USA; Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
39
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
40
|
Patthey C, Schlosser G, Shimeld SM. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev Biol 2014; 389:82-97. [PMID: 24495912 DOI: 10.1016/j.ydbio.2014.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Gerhard Schlosser
- Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, University Road, Galway, Ireland
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|