1
|
Bou Akar R, Lama C, Aubin D, Maruotti J, Onteniente B, Esteves de Lima J, Relaix F. Generation of highly pure pluripotent stem cell-derived myogenic progenitor cells and myotubes. Stem Cell Reports 2024; 19:84-99. [PMID: 38101399 PMCID: PMC10828960 DOI: 10.1016/j.stemcr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Driving efficient and pure skeletal muscle cell differentiation from pluripotent stem cells (PSCs) has been challenging. Here, we report an optimized protocol that generates skeletal muscle progenitor cells with high efficiency and purity in a short period of time. Human induced PSCs (hiPSCs) and murine embryonic stem cells (mESCs) were specified into the mesodermal myogenic fate using distinct and species-specific protocols. We used a specific maturation medium to promote the terminal differentiation of both human and mouse myoblast populations, and generated myotubes associated with a large pool of cell-cycle arrested PAX7+ cells. We also show that myotube maturation is modulated by dish-coating properties, cell density, and percentage of myogenic progenitor cells. Given the high efficiency in the generation of myogenic progenitors and differentiated myofibers, this protocol provides an attractive strategy for tissue engineering, modeling of muscle dystrophies, and evaluation of new therapeutic approaches in vitro.
Collapse
Affiliation(s)
- Reem Bou Akar
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France
| | - Chéryane Lama
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France
| | | | | | | | | | - Frédéric Relaix
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France.
| |
Collapse
|
2
|
Hicks MR, Saleh KK, Clock B, Gibbs DE, Yang M, Younesi S, Gane L, Gutierrez-Garcia V, Xi H, Pyle AD. Regenerating human skeletal muscle forms an emerging niche in vivo to support PAX7 cells. Nat Cell Biol 2023; 25:1758-1773. [PMID: 37919520 PMCID: PMC10709143 DOI: 10.1038/s41556-023-01271-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Skeletal muscle stem and progenitor cells including those derived from human pluripotent stem cells (hPSCs) offer an avenue towards personalized therapies and readily fuse to form human-mouse myofibres in vivo. However, skeletal muscle progenitor cells (SMPCs) inefficiently colonize chimeric stem cell niches and instead associate with human myofibres resembling foetal niches. We hypothesized competition with mouse satellite cells (SCs) prevented SMPC engraftment into the SC niche and thus generated an SC ablation mouse compatible with human engraftment. Single-nucleus RNA sequencing of SC-ablated mice identified the absence of a transient myofibre subtype during regeneration expressing Actc1. Similarly, ACTC1+ human myofibres supporting PAX7+ SMPCs increased in SC-ablated mice, and after re-injury we found SMPCs could now repopulate into chimeric niches. To demonstrate ACTC1+ myofibres are essential to supporting PAX7 SMPCs, we generated caspase-inducible ACTC1 depletion human pluripotent stem cells, and upon SMPC engraftment we found a 90% reduction in ACTC1+ myofibres and a 100-fold decrease in PAX7 cell numbers compared with non-induced controls. We used spatial RNA sequencing to identify key factors driving emerging human niche formation between ACTC1+ myofibres and PAX7+ SMPCs in vivo. This revealed that transient regenerating human myofibres are essential for emerging niche formation in vivo to support PAX7 SMPCs.
Collapse
Affiliation(s)
- Michael R Hicks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Physiology and Biophysics, University of California, Irvine, CA, USA.
| | - Kholoud K Saleh
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, USA
| | - Ben Clock
- Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Devin E Gibbs
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Mandee Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Shahab Younesi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Lily Gane
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | - Haibin Xi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonnson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
4
|
Hicks MR, Pyle AD. The emergence of the stem cell niche. Trends Cell Biol 2023; 33:112-123. [PMID: 35934562 PMCID: PMC9868094 DOI: 10.1016/j.tcb.2022.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Stem cell niches are composed of dynamic microenvironments that support stem cells over a lifetime. The emerging niche is distinct from the adult because its main role is to support the progenitors that build organ systems in development. Emerging niches mature through distinct stages to form the adult niche and enable proper stem cell support. As a model of emerging niches, this review highlights how differences in the skeletal muscle microenvironment influence emerging versus satellite cell (SC) niche formation in skeletal muscle, which is among the most regenerative tissue systems. We contrast how stem cell niches regulate intrinsic properties between progenitor and stem cells throughout development to adulthood. We describe new applications for generating emerging niches from human pluripotent stem cells (hPSCs) using developmental principles and highlight potential applications for regeneration and therapeutics.
Collapse
Affiliation(s)
- Michael R Hicks
- Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - April D Pyle
- Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
6
|
Esteves de Lima J, Blavet C, Bonnin MA, Hirsinger E, Havis E, Relaix F, Duprez D. TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis. Development 2022; 149:274065. [PMID: 35005776 DOI: 10.1242/dev.199928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the gene encoding the NOTCH ligand JAG2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the transcriptional repressor HEYL from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France.,Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Emmanuelle Havis
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| |
Collapse
|
7
|
Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. CELL REGENERATION 2021; 10:31. [PMID: 34595600 PMCID: PMC8484369 DOI: 10.1186/s13619-021-00093-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
In vertebrates, the skeletal muscles of the body and their associated stem cells originate from muscle progenitor cells, during development. The specification of the muscles of the trunk, head and limbs, relies on the activity of distinct genetic hierarchies. The major regulators of trunk and limb muscle specification are the paired-homeobox transcription factors PAX3 and PAX7. Distinct gene regulatory networks drive the formation of the different muscles of the head. Despite the redeployment of diverse upstream regulators of muscle progenitor differentiation, the commitment towards the myogenic fate requires the expression of the early myogenic regulatory factors MYF5, MRF4, MYOD and the late differentiation marker MYOG. The expression of these genes is activated by muscle progenitors throughout development, in several waves of myogenic differentiation, constituting the embryonic, fetal and postnatal phases of muscle growth. In order to achieve myogenic cell commitment while maintaining an undifferentiated pool of muscle progenitors, several signaling pathways regulate the switch between proliferation and differentiation of myoblasts. The identification of the gene regulatory networks operating during myogenesis is crucial for the development of in vitro protocols to differentiate pluripotent stem cells into myoblasts required for regenerative medicine.
Collapse
Affiliation(s)
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010, Creteil, France.
| |
Collapse
|
8
|
Esteves de Lima J, Blavet C, Bonnin MA, Hirsinger E, Comai G, Yvernogeau L, Delfini MC, Bellenger L, Mella S, Nassari S, Robin C, Schweitzer R, Fournier-Thibault C, Jaffredo T, Tajbakhsh S, Relaix F, Duprez D. Unexpected contribution of fibroblasts to muscle lineage as a mechanism for limb muscle patterning. Nat Commun 2021; 12:3851. [PMID: 34158501 PMCID: PMC8219714 DOI: 10.1038/s41467-021-24157-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
Positional information driving limb muscle patterning is contained in connective tissue fibroblasts but not in myogenic cells. Limb muscles originate from somites, while connective tissues originate from lateral plate mesoderm. With cell and genetic lineage tracing we challenge this model and identify an unexpected contribution of lateral plate-derived fibroblasts to the myogenic lineage, preferentially at the myotendinous junction. Analysis of single-cell RNA-sequencing data from whole limbs at successive developmental stages identifies a population displaying a dual muscle and connective tissue signature. BMP signalling is active in this dual population and at the tendon/muscle interface. In vivo and in vitro gain- and loss-of-function experiments show that BMP signalling regulates a fibroblast-to-myoblast conversion. These results suggest a scenario in which BMP signalling converts a subset of lateral plate mesoderm-derived cells to a myogenic fate in order to create a boundary of fibroblast-derived myonuclei at the myotendinous junction that controls limb muscle patterning.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | - Cédrine Blavet
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
| | - Marie-Ange Bonnin
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
| | - Estelle Hirsinger
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
| | - Glenda Comai
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Laurent Yvernogeau
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences (KNAW), Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie-Claire Delfini
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
- Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Léa Bellenger
- Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-FR3631, ARTbio Bioinformatics Platform, Inserm US 037, Paris, France
| | - Sébastien Mella
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Sonya Nassari
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
| | - Catherine Robin
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences (KNAW), Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR, USA
| | - Claire Fournier-Thibault
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
| | - Thierry Jaffredo
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France
- Inserm U1156, Paris, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | - Delphine Duprez
- Developmental Biology Laboratory, Institut Biologie Paris Seine, Sorbonne Université, CNRS, IBPS-UMR 7622, Paris, France.
- Inserm U1156, Paris, France.
| |
Collapse
|
9
|
Esteves de Lima J, Bou Akar R, Mansour M, Rocancourt D, Buckingham M, Relaix F. M-Cadherin Is a PAX3 Target During Myotome Patterning. Front Cell Dev Biol 2021; 9:652652. [PMID: 33869209 PMCID: PMC8047199 DOI: 10.3389/fcell.2021.652652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
PAX3 belongs to the paired-homeobox family of transcription factors and plays a key role as an upstream regulator of muscle progenitor cells during embryonic development. Pax3-mutant embryos display impaired somite development, yet the consequences for myotome formation have not been characterized. The early myotome is formed by PAX3-expressing myogenic cells that delaminate from the dermomyotomal lips and migrate between the dermomyotome and sclerotome where they terminally differentiate. Here we show that in Pax3-mutant embryos, myotome formation is impaired, displays a defective basal lamina and the regionalization of the structural protein Desmin is lost. In addition, this phenotype is more severe in embryos combining Pax3-null and Pax3 dominant-negative alleles. We identify the adhesion molecule M-Cadherin as a PAX3 target gene, the expression of which is modulated in the myotome according to Pax3 gain- and loss-of-function alleles analyzed. Taken together, we identify M-Cadherin as a PAX3-target linked to the formation of the myotome.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Reem Bou Akar
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Myriam Mansour
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| | - Didier Rocancourt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, Institut National de la Santé et de la Recherche Médicale (INSERM), EnvA, Etablissement Français du Sang (EFS), Assistance Publique Hopitaux de Paris (AP-HP), Institut Mondor de Recherche Biomedicale (IMRB), Creteil, France
| |
Collapse
|
10
|
Tsai SL, Noedl MT, Galloway JL. Bringing tendon biology to heel: Leveraging mechanisms of tendon development, healing, and regeneration to advance therapeutic strategies. Dev Dyn 2021; 250:393-413. [PMID: 33169466 PMCID: PMC8486356 DOI: 10.1002/dvdy.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Tendons are specialized matrix-rich connective tissues that transmit forces from muscle to bone and are essential for movement. As tissues that frequently transfer large mechanical loads, tendons are commonly injured in patients of all ages. Following injury, mammalian tendons heal poorly through a slow process that forms disorganized fibrotic scar tissue with inferior biomechanical function. Current treatments are limited and patients can be left with a weaker tendon that is likely to rerupture and an increased chance of developing degenerative conditions. More effective, alternative treatments are needed. However, our current understanding of tendon biology remains limited. Here, we emphasize why expanding our knowledge of tendon development, healing, and regeneration is imperative for advancing tendon regenerative medicine. We provide a comprehensive review of the current mechanisms governing tendon development and healing and further highlight recent work in regenerative tendon models including the neonatal mouse and zebrafish. Importantly, we discuss how present and future discoveries can be applied to both augment current treatments and design novel strategies to treat tendon injuries.
Collapse
Affiliation(s)
- Stephanie L. Tsai
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Marie-Therese Noedl
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
11
|
N 6-methyladenine demethylase ALKBH1 inhibits the differentiation of skeletal muscle. Exp Cell Res 2021; 400:112492. [PMID: 33529710 DOI: 10.1016/j.yexcr.2021.112492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023]
Abstract
DNA N6-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown. In this study, we found that N6-mA showed a steady increase, going along with a strong decrease of ALKBH1 during skeletal muscle development. Our results also showed that ALKBH1 enhanced proliferation and inhibited differentiation of C2C12 cells. Genome-wide transcriptome analysis and reporter assays further revealed that ALKBH1 accomplished the differentiation inhibiting function by regulating a core set of genes and multiple signaling pathways, including increasing chemokine (C-X-C motif) ligand 14 (CXCL14) and activating ERK signaling. Taken together, our results demonstrated that ALKBH1 is critical for the myogenic differentiation of C2C12 cells, and suggested that N6-mA might be a new epigenetic mechanism for the regulation of myogenesis.
Collapse
|
12
|
Verbeek RJ, Mulder PB, Sollie KM, van der Hoeven JH, den Dunnen WFA, Maurits NM, Sival DA. Development of muscle ultrasound density in healthy fetuses and infants. PLoS One 2020; 15:e0235836. [PMID: 32649730 PMCID: PMC7351181 DOI: 10.1371/journal.pone.0235836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
Muscle ultrasound density (MUD) is a non-invasive parameter to indicate neuromuscular integrity in both children and adults. In healthy fetuses and infants, physiologic MUD values during development are still lacking. We therefore aimed to determine the physiologic, age-related MUD trend of biceps, quadriceps, tibialis anterior, hamstrings, gluteal and calf muscles, from pre- to the first year of postnatal life. To avoid a bias by pregnancy-related signal disturbances, we expressed fetal MUD as a ratio against bone ultrasound density. We used the full-term prenatal MUD ratio and the newborn postnatal MUD value as reference points, so that MUD development could be quantified from early pre- into postnatal life. Results: During the prenatal period, the total muscle group revealed a developmental MUD trend concerning a fetal increase in MUD-ratio from the 2nd trimester up to the end of the 3rd trimester [median increase: 27% (range 16-45), p < .001]. After birth, MUD-values increased up to the sixth month [median increase: 11% (range -7-27), p = 0.025] and stabilized thereafter. Additionally, there were also individual MUD characteristics per muscle group and developmental stage, such as relatively low MUD values of fetal hamstrings and high values of the paediatric gluteus muscles. These MUD trends are likely to concur with analogous developmentally, maturation-related alterations in the muscle water to peptide content ratios.
Collapse
Affiliation(s)
- Renate J. Verbeek
- Department of (Pediatric) Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Petra B. Mulder
- Department of Obstetrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Krystyna M. Sollie
- Department of Obstetrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes H. van der Hoeven
- Department of (Pediatric) Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilfred F. A. den Dunnen
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natalia M. Maurits
- Department of (Pediatric) Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Deborah A. Sival
- Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
13
|
Al Tanoury Z, Rao J, Tassy O, Gobert B, Gapon S, Garnier JM, Wagner E, Hick A, Hall A, Gussoni E, Pourquié O. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development 2020; 147:dev187344. [PMID: 32541004 PMCID: PMC7328153 DOI: 10.1242/dev.187344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Satellite cells (SC) are muscle stem cells that can regenerate adult muscles upon injury. Most SC originate from PAX7+ myogenic precursors set aside during development. Although myogenesis has been studied in mouse and chicken embryos, little is known about human muscle development. Here, we report the generation of human induced pluripotent stem cell (iPSC) reporter lines in which fluorescent proteins have been introduced into the PAX7 and MYOG loci. We use single cell RNA sequencing to analyze the developmental trajectory of the iPSC-derived PAX7+ myogenic precursors. We show that the PAX7+ cells generated in culture can produce myofibers and self-renew in vitro and in vivo Together, we demonstrate that cells exhibiting characteristics of human fetal satellite cells can be produced in vitro from iPSC, opening interesting avenues for muscular dystrophy cell therapy. This work provides significant insights into the development of the human myogenic lineage.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Grinstein M, Dingwall HL, O'Connor LD, Zou K, Capellini TD, Galloway JL. A distinct transition from cell growth to physiological homeostasis in the tendon. eLife 2019; 8:e48689. [PMID: 31535975 PMCID: PMC6791717 DOI: 10.7554/elife.48689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023] Open
Abstract
Changes in cell proliferation define transitions from tissue growth to physiological homeostasis. In tendons, a highly organized extracellular matrix undergoes significant postnatal expansion to drive growth, but once formed, it appears to undergo little turnover. However, tendon cell activity during growth and homeostatic maintenance is less well defined. Using complementary methods of genetic H2B-GFP pulse-chase labeling and BrdU incorporation in mice, we show significant postnatal tendon cell proliferation, correlating with longitudinal Achilles tendon growth. Around day 21, there is a transition in cell turnover with a significant decline in proliferation. After this time, we find low amounts of homeostatic tendon cell proliferation from 3 to 20 months. These results demonstrate that tendons harbor significant postnatal mitotic activity, and limited, but detectable activity in adult and aged stages. It also points towards the possibility that the adult tendon harbors resident tendon progenitor populations, which would have important therapeutic implications.
Collapse
Affiliation(s)
- Mor Grinstein
- Center for Regenerative Medicine, Department of Orthopaedic SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Heather L Dingwall
- Department of Human Evolutionary BiologyHarvard UniversityCambridgeUnited States
| | - Luke D O'Connor
- Center for Regenerative Medicine, Department of Orthopaedic SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Ken Zou
- Center for Regenerative Medicine, Department of Orthopaedic SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Terence Dante Capellini
- Department of Human Evolutionary BiologyHarvard UniversityCambridgeUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Jenna Lauren Galloway
- Center for Regenerative Medicine, Department of Orthopaedic SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| |
Collapse
|
15
|
The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Sci Rep 2017; 7:17279. [PMID: 29222527 PMCID: PMC5722906 DOI: 10.1038/s41598-017-17490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Connective tissues (CT) support and connect organs together. Understanding the formation of CT is important, as CT deregulation leads to fibrosis. The identification of CT specific markers has contributed to a better understanding of CT function during development. In developing limbs, Osr1 transcription factor is involved in the differentiation of irregular CT while the transcription factor Scx labels tendon. In this study, we show that the CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during chick development. CXCL12 positively regulates the expression of OSR1 and COL3A1, a collagen subtype of irregular CT, while CXCL14 activates the expression of the tendon marker SCX. We provide evidence that the CXCL12 effect on irregular CT involves CXCR4 receptor and vessels. In addition, the expression of CXCL12, CXCL14 and OSR genes is suppressed by the anti-fibrotic BMP signal. Finally, mechanical forces, known to be involved in adult fibrosis, control the expression of chemokines, CT-associated transcription factors and collagens during limb development. Such unexpected roles of CXCL12 and CXCL14 chemokines during CT differentiation can contribute to a better understanding of the fibrosis mechanisms in adult pathological conditions.
Collapse
|
16
|
Nakanishi R, Hirayama Y, Tanaka M, Maeshige N, Kondo H, Ishihara A, Roy RR, Fujino H. Nucleoprotein supplementation enhances the recovery of rat soleus mass with reloading after hindlimb unloading-induced atrophy via myonuclei accretion and increased protein synthesis. Nutr Res 2016; 36:1335-1344. [PMID: 27866827 DOI: 10.1016/j.nutres.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023]
Abstract
Hindlimb unloading results in muscle atrophy and a period of reloading has been shown to partially recover the lost muscle mass. Two of the mechanisms involved in this recovery of muscle mass are the activation of protein synthesis pathways and an increase in myonuclei number. The additional myonuclei are provided by satellite cells that are activated by the mechanical stress associated with the reloading of the muscles and eventually incorporated into the muscle fibers. Amino acid supplementation with exercise also can increase skeletal muscle mass through enhancement of protein synthesis and nucleotide supplements can promote cell cycle activity. Therefore, we hypothesized that nucleoprotein supplementation, a combination of amino acids and nucleotides, would enhance the recovery of muscle mass to a greater extent than reloading alone after a period of unloading. Adult rats were assigned to 4 groups: control, hindlimb unloaded (HU; 14 days), reloaded (5 days) after hindlimb unloading (HUR), and reloaded after hindlimb unloading with nucleoprotein supplementation (HUR + NP). Compared with the HUR group, the HUR + NP group had larger soleus muscles and fiber cross-sectional areas, higher levels of phosphorylated rpS6, and higher numbers of myonuclei and myogenin-positive cells. These results suggest that nucleoprotein supplementation has a synergistic effect with reloading in recovering skeletal muscle properties after a period of unloading via rpS6 activation and satellite cell differentiation and incorporation into the muscle fibers. Therefore, this supplement may be an effective therapeutic regimen to include in rehabilitative strategies for a variety of muscle wasting conditions such as aging, cancer cachexia, muscular dystrophy, bed rest, and cast immobilization.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Yusuke Hirayama
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Minoru Tanaka
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan; Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Soujiji, Ibaraki 567-0801, Japan
| | - Noriaki Maeshige
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, 3-40 Shiojicho, Nagoya 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Kyoto 606-8501, Japan
| | - Roland R Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7239, USA
| | - Hidemi Fujino
- Rehabilitation Science, Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Kobe 654-0142, Japan.
| |
Collapse
|
17
|
Robbins AK, Mateson AB, Khandha A, Pugarelli JE, Buchanan TS, Akins RE, Barthold JS. Fetal Rat Gubernaculum Mesenchymal Cells Adopt Myogenic and Myofibroblast-Like Phenotypes. J Urol 2015; 196:270-8. [PMID: 26748163 DOI: 10.1016/j.juro.2015.12.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE Gubernaculum-cremaster complex development is hormonally regulated and abnormal in a cryptorchid rat model. Using cell tracking techniques and imaging we studied myogenic phenotypes and fates in the fetal rat gubernaculum-cremaster complex. MATERIALS AND METHODS Embryonic day 17 gubernaculum-cremaster complexes were labeled with CellTracker™ or the DNA synthesis marker EdU (5-ethynyl-2'-deoxyuridine), or immobilized in Matrigel® and grown in culture. Embryonic day 17 to 21 gubernaculum-cremaster complex sections and cells were imaged using wide field and deconvolution immunofluorescence microscopy, and muscle and/or myofibroblast specific antibodies. Deconvolved image stacks were used to create a 3-dimensional model of embryonic day 21 gubernaculum-cremaster complex muscle. RESULTS PAX7 (paired box 7) positive and myogenin positive muscle precursors were visible in a desmin-rich myogenic zone between muscle layers that elongated and became thicker during development. Gubernaculum-cremaster complex inner mesenchymal cells expressed desmin and αSMA (α smooth muscle actin) at lower levels than in the myogenic zone. After pulse labeling with CellTracker or EdU mesenchymal cells became incorporated into differentiated muscle. Conversely, mesenchymal cells migrated beyond Matrigel immobilized gubernaculum-cremaster complexes, expressed PAX7 and fused to form striated myotubes. Mesenchymal gubernaculum-cremaster complex cell lines proliferated more than 40 passages and showed contractile behavior but did not form striated muscle. Our 3-dimensional gubernaculum-cremaster complex model had 2 orthogonal ventral layers and an arcing inner layer of muscle. CONCLUSIONS Our data suggest that mesenchymal cells in the peripheral myogenic zone of the fetal gubernaculum-cremaster complex contribute to formation of a distinctively patterned cremaster muscle. Nonmyogenic, desmin and αSMA positive gubernaculum-cremaster complex mesenchymal cells proliferate and have a myofibroblast-like phenotype in culture. Intrinsic mechanical properties of these divergent cell types may facilitate perinatal inversion of the gubernaculum-cremaster complex.
Collapse
Affiliation(s)
- Alan K Robbins
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Abigail B Mateson
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ashutosh Khandha
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Joan E Pugarelli
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Thomas S Buchanan
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware; Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Robert E Akins
- Tissue Engineering and Regenerative Medicine Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware; Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Julia Spencer Barthold
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware.
| |
Collapse
|