1
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
3
|
Chen C, Zhou S, Lian Z, Jiang J, Gao X, Hu C, Zuo Q, Zhang Y, Chen G, Jin K, Li B. Tle4z1 Facilitate the Male Sexual Differentiation of Chicken Embryos. Front Physiol 2022; 13:856980. [PMID: 35464085 PMCID: PMC9022655 DOI: 10.3389/fphys.2022.856980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Sex differentiation is a complex and precisely regulated process by multiple genes in chicken. However, it is still unclear on the key genes of sex differentiation. Objective To explore the function of Tle4z1 screened by RNA-seq sequencing on sex differentiation during the development of chicken embryos. Methods Tle4z1 was differentially expressed from the RNA-seq of ESCs and PGCs in male and female chickens. Then, we established an effective method to overexpression or knocking down the expression of Tle4z1 in ovo and in vitro, respectively. Histomorphological observation, qRT-PCR and ELISA were applied to detect the function of Tle4z1 in the process of male sex differentiation by injecting vectors into embryos at day 0. Results It showed that Tle4z1 has significant male preference in embryonic day 4.5, such phenomenon persisted during the growth period of chicken embryos. Morphological observation results showed that the gonads on both sides of genetic male (ZZ) embryos with Tle4z1 knocking down developed asymmetrically, the gonadal cortex became thicker showing the typical characteristics of genetic female (ZW) gonads. Furthermore, the expression of Cyp19a1, which dominates female differentiation, was significantly increased, while the expression of male marker genes Dmrt1, Sox9, WT1 and AR was significantly downregulated. In addition, the concentration of testosterone also significantly decreased, which was positively correlated with the expression of Tle4z1 (P < 0.01). Conversely, the ZW embryo showed defeminized development when Tle4z1 was overexpressed. Conclusion We prove that the Tle4z1 is a novel gene through the male sexual differentiation via gene regulation process and synthesis of testosterone, which construct the basis for understanding the molecular mechanism of sex differentiation in chickens.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shujian Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ziyi Lian
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyi Jiang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaomin Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Cai Hu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Kai Jin,
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Bichun Li,
| |
Collapse
|
4
|
Buonaiuto S, Biase ID, Aleotti V, Ravaei A, Marino AD, Damaggio G, Chierici M, Pulijala M, D'Ambrosio P, Esposito G, Ayub Q, Furlanello C, Greco P, Capalbo A, Rubini M, Biase SD, Colonna V. Prioritization of putatively detrimental variants in euploid miscarriages. Sci Rep 2022; 12:1997. [PMID: 35132093 PMCID: PMC8821623 DOI: 10.1038/s41598-022-05737-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.
Collapse
Affiliation(s)
| | | | - Valentina Aleotti
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | | | | | - Madhuri Pulijala
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | | | - Qasim Ayub
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | - Pantaleo Greco
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | | | - Michele Rubini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, 80111, Italy.
| |
Collapse
|
5
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
6
|
Nayak P, Colas A, Mercola M, Varghese S, Subramaniam S. Temporal mechanisms of myogenic specification in human induced pluripotent stem cells. SCIENCE ADVANCES 2021; 7:eabf7412. [PMID: 33731358 PMCID: PMC7968833 DOI: 10.1126/sciadv.abf7412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
Understanding the mechanisms of myogenesis in human induced pluripotent stem cells (hiPSCs) is a prerequisite to achieving patient-specific therapy for diseases of skeletal muscle. hiPSCs of different origin show distinctive kinetics and ability to differentiate into myocytes. To address the unique cellular and temporal context of hiPSC differentiation, we perform a longitudinal comparison of the transcriptomic profiles of three hiPSC lines that display differential myogenic specification, one robust and two blunted. We detail temporal differences in mechanisms that lead to robust myogenic specification. We show gene expression signatures of putative cell subpopulations and extracellular matrix components that may support myogenesis. Furthermore, we show that targeted knockdown of ZIC3 at the outset of differentiation leads to improved myogenic specification in blunted hiPSC lines. Our study suggests that β-catenin transcriptional cofactors mediate cross-talk between multiple cellular processes and exogenous cues to facilitate specification of hiPSCs to mesoderm lineage, leading to robust myogenesis.
Collapse
Affiliation(s)
- P Nayak
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - A Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - M Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, USA
| | - S Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - S Subramaniam
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
7
|
Collombet S, Ranisavljevic N, Nagano T, Varnai C, Shisode T, Leung W, Piolot T, Galupa R, Borensztein M, Servant N, Fraser P, Ancelin K, Heard E. Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 2020; 580:142-146. [DOI: 10.1038/s41586-020-2125-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/16/2020] [Indexed: 11/09/2022]
|
8
|
Differential Regulation of TLE3 in Sertoli Cells of the Testes during Postnatal Development. Cells 2019; 8:cells8101156. [PMID: 31569653 PMCID: PMC6848928 DOI: 10.3390/cells8101156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Spermatogenesis is a process by which haploid cells differentiate from germ cells in the seminiferous tubules of the testes. TLE3, a transcriptional co-regulator that interacts with DNA-binding factors, plays a role in the development of somatic cells. However, no studies have shown its role during germ cell development in the testes. Here, we examined TLE3 expression in the testes during spermatogenesis. TLE3 was highly expressed in mouse testes and was dynamically regulated in different cell types of the seminiferous tubules, spermatogonia, spermatids, and Sertoli cells, but not in the spermatocytes. Interestingly, TLE3 was not detected in Sertoli cells on postnatal day 7 (P7) but was expressed from P10 onward. The microarray analysis showed that the expression of numerous genes changed upon TLE3 knockdown in a Sertoli cell line TM4. These include 1597 up-regulated genes and 1452 down-regulated genes in TLE3-knockdown TM4 cells. Ingenuity Pathway Analysis (IPA) showed that three factors were up-regulated and two genes were down-regulated upon TLE3 knockdown in TM4 cells. The abnormal expression of the three factors is associated with cellular malfunctions such as abnormal differentiation and Sertoli cell formation. Thus, TLE3 is differentially expressed in Sertoli cells and plays a crucial role in regulating cell-specific genes involved in the differentiation and formation of Sertoli cells during testicular development.
Collapse
|
9
|
Menchero S, Rollan I, Lopez-Izquierdo A, Andreu MJ, Sainz de Aja J, Kang M, Adan J, Benedito R, Rayon T, Hadjantonakis AK, Manzanares M. Transitions in cell potency during early mouse development are driven by Notch. eLife 2019; 8:42930. [PMID: 30958266 PMCID: PMC6486152 DOI: 10.7554/elife.42930] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/07/2019] [Indexed: 12/11/2022] Open
Abstract
The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions. We start life as a single cell, which immediately begins to divide to form an embryo that will eventually contain all the different kinds of cells found in the adult body. During the first few rounds of cell division, embryonic cells can become any type of adult cells, but also form the placenta, the organ that sustains the embryo while in the womb. As cells keep on dividing, they lose this ability, called potency, and they take on more specific and inflexible roles. The first choice embryonic cells must make is whether to become part of the placenta or part of the future body. These types of decisions are controlled by molecular cascades known as signalling pathways, which relay information from the cells surface to its control centre. There, specific genes get turned on or off in response to an outside signal. Previous research showed that two signalling pathways, Hippo and Notch, help separate placenta cells from those that will form the rest of the body. However, it was not known whether the two pathways worked independently, or if they were overlapping. Menchero et al. therefore wanted to find out when exactly the Notch pathway started to be active, and examine how it helped cells to either become the placenta or part of the future body. Experiments with developing mouse embryos showed that the Notch pathway was activated after the very first two cell divisions, when the embryo consists of only four cells. Genetic manipulations combined with drug treatments that changed the activity of the Notch pathway confirmed that Notch and Hippo acted independently at this stage. Further, larger-scale analysis of gene activity in these embryos also revealed that Notch signalling was working in a previously unknown way: it turned off the genes that maintain potency, pushing the cells to become more specialised. Ultimately, identifying this new mode of action for the Notch pathway in the early embryo may help to understand how the signalling cascade acts in other types of processes. This knowledge could be useful, for example, to push embryonic cells grown in the laboratory towards a desired fate.
Collapse
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Javier Adan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
10
|
Melo TP, Fortes MRS, Bresolin T, Mota LFM, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci 2018; 96:4087-4099. [PMID: 30053002 DOI: 10.1093/jas/sky289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
11
|
Chanoumidou K, Hadjimichael C, Athanasouli P, Ahlenius H, Klonizakis A, Nikolaou C, Drakos E, Kostouros A, Stratidaki I, Grigoriou M, Kretsovali A. Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions. Sci Rep 2018; 8:13790. [PMID: 30214018 PMCID: PMC6137157 DOI: 10.1038/s41598-018-31696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Groucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties. The malignant characteristics of teratomas generated by ESCs that overexpress GRG5 reveal its pro-oncogenic potential. Furthermore, transcriptomic analysis and cell differentiation approaches underline GRG5 as a multifaceted signaling regulator that represses mesendodermal-related genes. When ESCs exit pluripotency, GRG5 promotes neuroectodermal specification via Wnt and BMP signaling suppression. Moreover, GRG5 promotes the neuronal reprogramming of fibroblasts and maintains the self-renewal of Neural Stem Cells (NSCs) by sustaining the activity of Notch/Hes and Stat3 signaling pathways. In summary, our results demonstrate that GRG5 has pleiotropic roles in stem cell biology functioning as a stemness factor and a neural fate specifier.
Collapse
Affiliation(s)
- Konstantina Chanoumidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Paraskevi Athanasouli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | - Henrik Ahlenius
- Lund Stem Cell Center, University Hospital, SE-221 84, Lund, Sweden
| | - Antonis Klonizakis
- Department of Biology, University of Crete, 71409, Heraklion, Crete, Greece
| | | | - Elias Drakos
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Antonis Kostouros
- School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Irene Stratidaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Maria Grigoriou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupoli, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.
| |
Collapse
|
12
|
Abstract
Tissue-specific transcription factors primarily act to define the phenotype of the cell. The power of a single transcription factor to alter cell fate is often minimal, as seen in gain-of-function analyses, but when multiple transcription factors cooperate synergistically it potentiates their ability to induce changes in cell fate. By contrast, transcription factor function is often dispensable in the maintenance of cell phenotype, as is evident in loss-of-function assays. Why does this phenomenon, commonly known as redundancy, occur? Here, I discuss the role that transcription factor networks play in collaboratively regulating stem cell fate and differentiation by providing multiple explanations for their functional redundancy.
Collapse
Affiliation(s)
- Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
13
|
Parker Gaddis K, Dikmen S, Null D, Cole J, Hansen P. Evaluation of genetic components in traits related to superovulation, in vitro fertilization, and embryo transfer in Holstein cattle. J Dairy Sci 2017; 100:2877-2891. [DOI: 10.3168/jds.2016-11907] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/21/2016] [Indexed: 01/12/2023]
|
14
|
Yuan D, Yang X, Yuan Z, Zhao Y, Guo J. TLE1 function and therapeutic potential in cancer. Oncotarget 2017; 8:15971-15976. [PMID: 27852056 PMCID: PMC5362539 DOI: 10.18632/oncotarget.13278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Groucho (Gro)/Transducin-like enhancer of split (TLE) family proteins act as co-repressors of many transcription factors, and are involved in key signaling pathways. TLE1 negatively regulates inflammation and has potential roles in various diseases, including cancer. Previous studies suggest TLE1 could be used as a diagnostic marker and is a possible therapeutic target in various malignancies. It is therefore important to elucidate the mechanisms underlying TLE1 function during cancer initiation and metastasis. In this review, we highlight the functions of TLE1 in cancer and explore targeted approaches for cancer diagnosis and treatment. In particular, we discuss the TLE1 function in pancreatic cancer.
Collapse
Affiliation(s)
- Da Yuan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Yang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhenpeng Yuan
- Department of Pediatric Cardiac Surgery, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanqing Zhao
- Institute of Medical Information, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Yang RW, Zeng YY, Wei WT, Cui YM, Sun HY, Cai YL, Nian XX, Hu YT, Quan YP, Jiang SL, Wang M, Zhao YL, Qiu JF, Li MX, Zhang JH, He MR, Liang L, Ding YQ, Liao WT. TLE3 represses colorectal cancer proliferation by inhibiting MAPK and AKT signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:152. [PMID: 27669982 PMCID: PMC5037636 DOI: 10.1186/s13046-016-0426-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 01/19/2023]
Abstract
Background Transducin-like enhancer of Split3 (TLE3) serves as a transcriptional corepressor during cell differentiation and shows multiple roles in different kinds of cancers. Recently, TLE3 together with many other genes involved in Wnt/β-catenin pathway were detected hyper-methylated in colorectal cancer (CRC). However, the potential role and the underlying mechanism of TLE3 in CRC progression remain scarce. Methods Gene expression profiles were analyzed in The Cancer Genome Atlas (TCGA) microarray dataset of 41 normal colorectal intestine tissues and 465 CRC tissues. Western blot and Real-time Quantitative PCR (RT-qPCR) were respectively performed to detect protein and mRNA expression in 8 pairs of CRC tissue and matched adjacent normal mucosa. Immunohistochemistry (IHC) was conducted to evaluate TLE3 protein expression in 105 paraffin-embedded, archived human CRC tissues from patients, whose survival data were analyzed with Kaplan-Meier method. In vitro experiments including MTT assay, colony formation assay, and soft agar formation assay were used to investigate the effects of TLE3 on CRC cell growth and proliferation. Additionally, subcutaneous tumorigenesis assay was performed in nude mice to confirm the effects of TLE3 in vivo. Furthermore, gene set enrichment analysis (GSEA) was run to explore potential mechanism of TLE3 in CRC, and then we measured the distribution of CRC cell cycle phases and apoptosis by flow cytometry, as well as the impacts of TLE3 on MAPK and AKT signaling pathways by Western blot and RT-qPCR. Results TLE3 was significantly down-regulated in 465 CRC tissues compared with 41 normal tissues. Both protein and mRNA expressions of TLE3 were down-regulated in CRC compared with matched adjacent normal mucosa. Lower expression of TLE3 was significantly associated with poorer survival of patients with CRC. Besides, knock down of TLE3 promoted CRC cell growth and proliferation, while overexpression of TLE3 showed suppressive effects. Furthermore, overexpression of TLE3 caused G1-S phase transition arrest, inhibition of MAPK and AKT pathways, and up-regulation of p21Cip1/WAF1 and p27Kip1. Conclusion This study indicated that TLE3 repressed CRC proliferation partly through inhibition of MAPK and AKT signaling pathways, suggesting the possibility of TLE3 as a biomarker for CRC prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0426-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Run-Wei Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ying-Yue Zeng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wen-Ting Wei
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Mei Cui
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Hui-Ying Sun
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yue-Long Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin-Xin Nian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yun-Teng Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yu-Ping Quan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Sheng-Lu Jiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Meng Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ya-Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jun-Feng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ming-Xuan Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jia-Huan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Mei-Rong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
16
|
Rezzoug F, Thomas SD, Rouchka EC, Miller DM. Discovery of a Family of Genomic Sequences Which Interact Specifically with the c-MYC Promoter to Regulate c-MYC Expression. PLoS One 2016; 11:e0161588. [PMID: 27551915 PMCID: PMC4995011 DOI: 10.1371/journal.pone.0161588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022] Open
Abstract
G-quadruplex forming sequences are particularly enriched in the promoter regions of eukaryotic genes, especially of oncogenes. One of the most well studied G-quadruplex forming sequences is located in the nuclease hypersensitive element (NHE) III1 of the c-MYC promoter region. The oncoprotein c-MYC regulates a large array of genes which play important roles in growth regulation and metabolism. It is dysregulated in >70% of human cancers. The silencer NHEIII1 located upstream of the P1 promoter regulates up-to 80% of c-MYC transcription and includes a G-quadruplex structure (Pu27) that is required for promoter inhibition. We have identified, for the first time, a family of seventeen G-quadruplex-forming motifs with >90% identity with Pu27, located on different chromosomes throughout the human genome, some found near or within genes involved in stem cell maintenance or neural cell development. Notably, all members of the Pu27 family interact specifically with NHEIII1 sequence, in vitro. Crosslinking studies demonstrate that Pu27 oligonucleotide binds specifically to the C-rich strand of the NHEIII1 resulting in the G-quadruplex structure stabilization. Pu27 homologous sequences (Pu27-HS) significantly inhibit leukemic cell lines proliferation in culture. Exposure of U937 cells to the Pu27-HS induces cell growth inhibition associated with cell cycle arrest that is most likely due to downregulation of c-MYC expression at the RNA and/or protein levels. Expression of SOX2, another gene containing a Pu27-HS, was affected by Pu27-HS treatment as well. Our data suggest that the oligonucleotides encoding the Pu27 family target complementary DNA sequences in the genome, including those of the c-MYC and SOX2 promoters. This effect is most likely cell type and cell growth condition dependent. The presence of genomic G-quadruplex-forming sequences homologous to Pu27 of c-MYC silencer and the fact that they interact specifically with the parent sequence suggest a common regulatory mechanism for genes whose promoters contain these sequences.
Collapse
Affiliation(s)
- Francine Rezzoug
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville Kentucky, United States of America
- * E-mail: (FR); (DMM)
| | - Shelia D. Thomas
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville Kentucky, United States of America
| | - Eric C. Rouchka
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, Kentucky, United States of America
| | - Donald M. Miller
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville Kentucky, United States of America
- * E-mail: (FR); (DMM)
| |
Collapse
|
17
|
Bouhaddioui W, Provost PR, Tremblay Y. Expression profile of androgen-modulated microRNAs in the fetal murine lung. Biol Sex Differ 2016; 7:20. [PMID: 27042289 PMCID: PMC4818395 DOI: 10.1186/s13293-016-0072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 11/14/2022] Open
Abstract
Background Androgens are known to delay lung development. As a consequence, the incidence and morbidity of respiratory distress syndrome of the neonate are higher for male than for female premature infants. We previously reported that many genes were expressed with a sex difference in the mouse developing lung and that several genes were under the control of androgens in the male fetal lung. microRNAs are small non-coding RNAs known to negatively regulate the expression of specific genes. In this study, we examined whether murine miRNAs are under the control of androgens in the male developing lung. Methods Expression profiling of microRNAs was performed by microarrays using RNA extracted from male fetal lungs isolated on gestational day (GD) 17.0 and GD 18.0 after daily injection of pregnant mice from GD 10.0 with the antiandrogen flutamide or vehicle only. To identify putative miRNA target genes, the data obtained here were combined with gene profiling data reported previously using the same RNA preparations. qPCR was used to confirm microarray data with fetal lungs from other litters than those used in microarrays. Results Flutamide induced downregulation and upregulation of several miRNAs on GD 17.0 and GD 18.0. Of the 43 mature miRNAs modulated by flutamide on GD 17.0, 60 % were downregulated, whereas this proportion was only of 34 % for the 35 mature miRNAs modulated on GD 18.0. For 29 and 26 flutamide-responsive miRNAs, we found a corresponding target inversely regulated by androgens on GD 17.0 and 18.0, respectively. The androgen-regulated target genes were involved in several biological processes (lipid metabolism, cell proliferation, and lung development) and molecular functions, mainly transcription factor binding. Conclusions Regulation of male lung development involves several miRNAs that are under androgen modulation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0072-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| |
Collapse
|
18
|
Berto S, Perdomo-Sabogal A, Gerighausen D, Qin J, Nowick K. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe. Front Genet 2016; 7:31. [PMID: 27014338 PMCID: PMC4782181 DOI: 10.3389/fgene.2016.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies.
Collapse
Affiliation(s)
- Stefano Berto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany; Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Alvaro Perdomo-Sabogal
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Daniel Gerighausen
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Jing Qin
- Department of Mathematics and Computer Sciences, University of Southern DenmarkOdense, Denmark; Institute for Theoretical Chemistry, University of ViennaVienna, Austria
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany
| |
Collapse
|
19
|
Tagliaferri D, De Angelis MT, Russo NA, Marotta M, Ceccarelli M, Del Vecchio L, De Felice M, Falco G. Retinoic Acid Specifically Enhances Embryonic Stem Cell Metastate Marked by Zscan4. PLoS One 2016; 11:e0147683. [PMID: 26840068 PMCID: PMC4740454 DOI: 10.1371/journal.pone.0147683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
Pluripotency confers Embryonic Stem Cells (ESCs) the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. Although the majority of ESCs divide without losing pluripotency, it has become evident that ESCs culture consists of multiple cell populations with different degrees of potency that are spontaneously induced in regular ESC culture conditions. Zscan4, a key pluripotency factor, marks ESC subpopulation that is referred to as high-level of pluripotency metastate. Here, we report that in ESC cultures treated with retinoic acid (RA), Zscan4 ESCs metastate is strongly enhanced. In particular, we found that induction of Zscan4 metastate is mediated via RA receptors (RAR-alpha, RAR-beta, and RAR-gamma), and it is dependent on phosphoinositide-3-kinase (PI3K) signaling. Remarkably, Zscan4 metastate induced by RA lacks canonical pluripotency genes Oct3/4 and Nanog but retained both self-renewal and pluripotency capabilities. Finally we demonstrated that the conditional ablation of Zscan4 subpopulation is dispensable for both endoderm and mesoderm but is required for ectoderm lineage. In conclusion, our research provides new insights about the role of RA signaling during ESCs high pluripotency metastate fluctuation.
Collapse
Affiliation(s)
- Daniela Tagliaferri
- Biogem, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
| | | | - Nicola Antonino Russo
- Biogem, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
| | - Maria Marotta
- Biogem, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
| | | | - Luigi Del Vecchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Mario De Felice
- Biogem, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Geppino Falco
- Biogem, Istituto di Ricerche Genetiche Gaetano Salvatore Biogem scarl, Ariano Irpino, Italy
- Department of Science, Università degli Studi del Sannio, Benevento, Italy
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
20
|
Zou D, McSweeney C, Sebastian A, Reynolds DJ, Dong F, Zhou Y, Deng D, Wang Y, Liu L, Zhu J, Zou J, Shi Y, Albert I, Mao Y. A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors. Neural Dev 2015; 10:18. [PMID: 26094033 PMCID: PMC4479087 DOI: 10.1186/s13064-015-0045-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 02/04/2023] Open
Abstract
Background Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. Result We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. Conclusions Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donghua Zou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Geriatrics, The 303 Hospital of Chinese People's Liberation Army, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Derrick James Reynolds
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Dazhi Deng
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Emergency, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi Province, 530021, China.
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Long Liu
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha, 410073, China.
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Jizhong Zou
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| | - Yongsheng Shi
- Department of Microbiology & Molecular Genetics School of Medicine, University of California, Irvine, CA, 92697, USA.
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yingwei Mao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, 530021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
21
|
Hamilton W, Brickman J. Erk Signaling Suppresses Embryonic Stem Cell Self-Renewal to Specify Endoderm. Cell Rep 2014; 9:2056-70. [DOI: 10.1016/j.celrep.2014.11.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/24/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022] Open
|