1
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01036-1. [PMID: 39313573 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Correa Brito L, Keselman A, Villegas F, Scaglia P, Esnaola Azcoiti M, Castro S, Sanguineti N, Izquierdo A, Maier M, Bergadá I, Arberas C, Rey RA, Ropelato MG. Case report: Novel SIN3A loss-of-function variant as causative for hypogonadotropic hypogonadism in Witteveen-Kolk syndrome. Front Genet 2024; 15:1354715. [PMID: 38528912 PMCID: PMC10961356 DOI: 10.3389/fgene.2024.1354715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Pubertal delay can be due to hypogonadotropic hypogonadism (HH), which may occur in association with anosmia or hyposmia and is known as Kallmann syndrome (OMIM #308700). Recently, hypogonadotropic hypogonadism has been suggested to overlap with Witteveen-Kolk syndrome (WITKOS, OMIM #613406) associated with 15q24 microdeletions encompassing SIN3A. Whether hypogonadotropic hypogonadism is due to haploinsufficiency of SIN3A or any of the other eight genes present in 15q24 is not known. We report the case of a female patient with delayed puberty associated with intellectual disability, behavior problems, dysmorphic facial features, and short stature, at the age of 14 years. Clinical, laboratory, and imaging assessments confirmed the diagnosis of Kallmann syndrome. Whole-exome sequencing identified a novel heterozygous frameshift variant, NM_001145358.2:c.3045_3046dup, NP_001138830.1:p.(Ile1016Argfs*6) in SIN3A, classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG/AMP) criteria. Reverse phenotyping led to the clinical diagnosis of WITKOS. No other variant was found in the 96 genes potentially related to hypogonadotropic hypogonadism. The analysis of the other contiguous seven genes to SIN3A in 15q24 did not reveal any clinically relevant variant. In conclusion, these findings point to SIN3A as the gene in 15q24 related to the reproductive phenotype in patients with overlapping WITKOS and Kallmann syndrome.
Collapse
Affiliation(s)
- Lourdes Correa Brito
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Florencia Villegas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Esnaola Azcoiti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sebastián Castro
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marianela Maier
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Claudia Arberas
- Sección Genética Médica, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Ropelato
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
3
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
4
|
Gui Z, Lv M, Han M, Li S, Mo Z. Effect of CPP-related genes on GnRH secretion and Notch signaling pathway during puberty. Biomed J 2022; 46:100575. [PMID: 36528337 DOI: 10.1016/j.bj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Puberty is a complex biological process of sexual development, influenced by genetic, metabolic-nutritional, environmental and socioeconomic factors, characterized by the development of secondary sexual characteristics, maturation of the gonads, leading to the acquisition of reproductive capacity. The onset of central precocious puberty (CPP) is mainly associated with the early activation of the hypothalamic-pituitary-gonadal (HPG) axis and increased secretion of gonadotropin-releasing hormone (GnRH), leading to increased pituitary secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and activation of gonadal function. Due to the expense and invasiveness of current diagnostic testing and drug therapies for CPP, it would be helpful to find serum and genetic markers to facilitate diagnosis. In this paper, we summarized the related factors that may affect the expression of GnRH1 gene and the secretion and action pathway of GnRH and related sex hormones, and found several potential targets, such as MKRN3, DLK1 and KISS1. Although, the specific mechanism still needs to be further studied, we would be encouraged if the insights from this review could provide new insights for future research and clinical diagnosis and treatment of CPP.
Collapse
Affiliation(s)
- Zihao Gui
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Clinical Medicine of Hengyang Medical School, University of South China, Hengyang, China
| | - Mei Lv
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Anshun City People's Hospital, Anshun, Guizhou, China
| | - Min Han
- Clinical Medicine of Hengyang Medical School, University of South China, Hengyang, China
| | - Shan Li
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Zhongcheng Mo
- Guangxi Provincial Postgraduate Co-training Base for Collaborative Innovation in Basic Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
5
|
Place E, Manning E, Kim DW, Kinjo A, Nakamura G, Ohyama K. SHH and Notch regulate SOX9+ progenitors to govern arcuate POMC neurogenesis. Front Neurosci 2022; 16:855288. [PMID: 36033614 PMCID: PMC9404380 DOI: 10.3389/fnins.2022.855288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the hypothalamic arcuate nucleus (ARC) play key roles in feeding and energy homoeostasis, hence their development is of great research interest. As the process of neurogenesis is accompanied by changes in adhesion, polarity, and migration that resemble aspects of epithelial-to-mesenchymal transitions (EMTs), we have characterised the expression and regulation within the prospective ARC of transcription factors with context-dependent abilities to regulate aspects of EMT. Informed by pseudotime meta-analysis of recent scRNA-seq data, we use immunohistochemistry and multiplex in situ hybridisation to show that SOX2, SRY-Box transcription factor 9 (SOX9), PROX1, Islet1 (ISL1), and SOX11 are sequentially expressed over the course of POMC neurogenesis in the embryonic chick. Through pharmacological studies ex vivo, we demonstrate that while inhibiting either sonic hedgehog (SHH) or Notch signalling reduces the number of SOX9+ neural progenitor cells, these treatments lead, respectively, to lesser and greater numbers of differentiating ISL1+/POMC+ neurons. These results are consistent with a model in which SHH promotes the formation of SOX9+ progenitors, and Notch acts to limit their differentiation. Both pathways are also required to maintain normal levels of proliferation and to suppress apoptosis. Together our findings demonstrate that hypothalamic neurogenesis is accompanied by dynamic expression of transcription factors (TFs) that mediate EMTs, and that SHH and Notch signalling converge to regulate hypothalamic cellular homoeostasis.
Collapse
Affiliation(s)
- Elsie Place
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Manning
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arisa Kinjo
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Go Nakamura
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Kyoji Ohyama
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Lin Y, He Y, Sun W, Wang Y, Yu J. Recent advances on the relationship between the DLK1 system and central precocious puberty. Biol Reprod 2022; 107:679-683. [PMID: 35594453 DOI: 10.1093/biolre/ioac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Precocious puberty, as a common pediatric endocrine disease, can be divided into central precocious puberty (CPP) and peripheral precocious puberty (PPP), even though most cases of precocious puberty are diagnosed as CPP. According to its etiology, CPP can be further divided into organic and idiopathic CPP. However, the mechanisms of idiopathic CPP have not yet been fully elucidated. Currently, four genes, including the kisspeptin gene (KISS1), the kisspeptin receptor gene (KISS1R), the makorin ring finger protein 3 (MKRN3), and the Delta-like non-canonical Notch ligand 1 (DLK1), have been implicated in CPP cases, of which DLK1 has been determined to represent a key, recently found CPP-related gene. In this review, we will not only highlight the latest discoveries on the relationship between the DLK1 system and CPP but also explore the involvement of the system as well as the Notch signaling pathway in CPP occurrence.
Collapse
Affiliation(s)
- Yating Lin
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yuanyuan He
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wen Sun
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yonghong Wang
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jian Yu
- Department of Traditional Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| |
Collapse
|
7
|
Ma Y, Murgia N, Liu Y, Li Z, Sirakawin C, Konovalov R, Kovzel N, Xu Y, Kang X, Tiwari A, Mwangi PM, Sun D, Erfle H, Konopka W, Lai Q, Najam SS, Vinnikov IA. Neuronal miR-29a protects from obesity in adult mice. Mol Metab 2022; 61:101507. [PMID: 35490865 PMCID: PMC9114687 DOI: 10.1016/j.molmet.2022.101507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Obesity, a growing threat to the modern society, represents an imbalance of metabolic queues that normally signal to the arcuate hypothalamic nucleus, a critical brain region sensing and regulating energy homeostasis. This is achieved by various neurons many of which developmentally originate from the proopiomelanocortin (POMC)-expressing lineage. Within the mature neurons originating from this lineage, we aimed to identify non-coding genes in control of metabolic function in the adulthood. Methods In this work, we used microRNA mimic delivery and POMCCre-dependent CRISPR-Cas9 knock-out strategies in young or aged mice. Importantly, we also used CRISPR guides directing suicide cleavage of Cas9 to limit the off-target effects. Results Here we found that mature neurons originating from the POMC lineage employ miR-29a to protect against insulin resistance obesity, hyperphagia, decreased energy expenditure and obesity. Moreover, we validated the miR-29 family as a prominent regulator of the PI3K-Akt-mTOR pathway. Within the latter, we identified a direct target of miR-29a-3p, Nras, which was up-regulated in those and only those mature POMCCreCas9 neurons that were effectively transduced by anti-miR-29 CRISPR-equipped construct. Moreover, POMCCre-dependent co-deletion of Nras in mature neurons attenuated miR-29 depletion-induced obesity. Conclusions Thus, the first to our knowledge case of in situ Cre-dependent CRISPR-Cas9-mediated knock-out of microRNAs in a specific hypothalamic neuronal population helped us to decipher a critical metabolic circuit in adult mice. This work significantly extends our understanding about the involvement of neuronal microRNAs in homeostatic regulation. Delivery of miR-29a-3p to the arcuate hypothalamic nucleus attenuates obesity. Knock-out of genes in mature neurons by Cre-dependent CRISPR/Cas9 technique involving Cas9-cleaving sgRNAs to limit off-target effects. Deletion of miR-29a in mature PomcCre neurons leads to early-onset insulin resistance and later to hyperphagia and decreased energy expenditure. POMCCre-restricted deletion of miR-29a causes cell-autonomous Nras up-regulation leading to obesity. POMCCre-restricted knock-out of Nras, a direct target of miR-29a-3p, attenuates obesity in mice.
Collapse
Affiliation(s)
- Yuan Ma
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nicola Murgia
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixuan Li
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruslan Konovalov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nikolai Kovzel
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejia Kang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Anshul Tiwari
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Patrick Malonza Mwangi
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Donglei Sun
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Holger Erfle
- Advanced Biological Screening Facility, BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Witold Konopka
- Laboratory of Neuroplasticity and Metabolism, Department of Life Sciences and Biotechnology, Łukasiewicz PORT Polish Center for Technology Development, Wrocław, Poland
| | - Qingxuan Lai
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Syeda Sadia Najam
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ilya A Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Abstract
Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and noncoding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.
Collapse
Affiliation(s)
- Young Suk Shim
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sang Lee
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
9
|
Tajima T. Genetic causes of central precocious puberty. Clin Pediatr Endocrinol 2022; 31:101-109. [PMID: 35928377 PMCID: PMC9297165 DOI: 10.1297/cpe.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Central precocious puberty (CPP) is a condition in which the
hypothalamus–pituitary–gonadal system is activated earlier than the normal developmental
stage. The etiology includes organic lesions in the brain; however, in the case of
idiopathic diseases, environmental and/or genetic factors are involved in the development
of CPP. A genetic abnormality in KISS1R, that encodes the kisspeptin
receptor, was first reported in 2008 as a cause of idiopathic CPP. Furthermore, genetic
alterations in KISS1, MKRN3, DLK1, and
PROKR2 have been reported in idiopathic and/or familial CPP. Of these,
MKRN3 has the highest frequency of pathological variants associated
with CPP worldwide; but, abnormalities in MKRN3 are rare in patients in
East Asia, including Japan. MKRN3 and DLK1 are maternal
imprinting genes; thus, CPP develops when a pathological variant is inherited from the
father. The mechanism of CPP due to defects in MKRN3 and
DLK1 has not been completely clarified, but it is suggested that both
may negatively control the progression of puberty. CPP due to such a single gene
abnormality is extremely rare, but it is important to understand the mechanisms of puberty
and reproduction. A further development in the genetics of CPP is expected in the
future.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University Tochigi Children’ Medical Center, Tochigi, Japan
| |
Collapse
|
10
|
Murgia N, Ma Y, Najam SS, Liu Y, Przybys J, Guo C, Konopka W, Vinnikov IA. In Vivo Reductionist Approach Identifies miR-15a Protecting Mice From Obesity. Front Endocrinol (Lausanne) 2022; 13:867929. [PMID: 35873003 PMCID: PMC9302447 DOI: 10.3389/fendo.2022.867929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a growing medical and social problem worldwide. The control of energy homeostasis in the brain is achieved by various regions including the arcuate hypothalamic nucleus (ARH). The latter comprises a number of neuronal populations including the first order metabolic neurons, appetite-stimulating agouti-related peptide (AgRP) neurons and appetite-suppressing proopiomelanocortin (POMC) neurons. Using an in vivo reductionist approach and POMCCre-dependent CRISPR-Cas9, we demonstrate that miR-15a-5p protects from obesity. Moreover, we have identified Bace1, a gene previously linked to energy metabolism imbalance, as a direct target of miR-15a-5p. This work warrants further investigations of non-coding RNA-mediated regulation of energy homeostasis and might contribute to the development of novel therapeutic approaches to treat metabolic diseases.
Collapse
Affiliation(s)
- Nicola Murgia
- Laboratory of Molecular Neurobiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Ma
- Laboratory of Molecular Neurobiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Syeda Sadia Najam
- Laboratory of Molecular Neurobiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Laboratory of Molecular Neurobiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Joanna Przybys
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Chenkai Guo
- Laboratory of Molecular Neurobiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Neuroplasticity and Metabolism, Department of Life Sciences and Biotechnology, Łukasiewicz PORT Polish Center for Technology Development, Wrocław, Poland
| | - Ilya A. Vinnikov
- Laboratory of Molecular Neurobiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ilya A. Vinnikov,
| |
Collapse
|
11
|
Whittaker DE, Oleari R, Gregory LC, Le Quesne-Stabej P, Williams HJ, Torpiano JG, Formosa N, Cachia MJ, Field D, Lettieri A, Ocaka LA, Paganoni AJ, Rajabali SH, Riegman KL, De Martini LB, Chaya T, Robinson IC, Furukawa T, Cariboni A, Basson MA, Dattani MT. A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. J Clin Invest 2021; 131:e141587. [PMID: 34730112 PMCID: PMC8670848 DOI: 10.1172/jci141587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The positive regulatory (PR) domain containing 13 (PRDM13) putative chromatin modifier and transcriptional regulator functions downstream of the transcription factor PTF1A, which controls GABAergic fate in the spinal cord and neurogenesis in the hypothalamus. Here, we report a recessive syndrome associated with PRDM13 mutation. Patients exhibited intellectual disability, ataxia with cerebellar hypoplasia, scoliosis, and delayed puberty with congenital hypogonadotropic hypogonadism (CHH). Expression studies revealed Prdm13/PRDM13 transcripts in the developing hypothalamus and cerebellum in mouse and human. An analysis of hypothalamus and cerebellum development in mice homozygous for a Prdm13 mutant allele revealed a significant reduction in the number of Kisspeptin (Kiss1) neurons in the hypothalamus and PAX2+ progenitors emerging from the cerebellar ventricular zone. The latter was accompanied by ectopic expression of the glutamatergic lineage marker TLX3. Prdm13-deficient mice displayed cerebellar hypoplasia and normal gonadal structure, but delayed pubertal onset. Together, these findings identify PRDM13 as a critical regulator of GABAergic cell fate in the cerebellum and of hypothalamic kisspeptin neuron development, providing a mechanistic explanation for the cooccurrence of CHH and cerebellar hypoplasia in this syndrome. To our knowledge, this is the first evidence linking disrupted PRDM13-mediated regulation of Kiss1 neurons to CHH in humans.
Collapse
Affiliation(s)
- Danielle E. Whittaker
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Louise C. Gregory
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Polona Le Quesne-Stabej
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hywel J. Williams
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - GOSgene
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- GOSgene is detailed in Supplemental Acknowledgments
| | - John G. Torpiano
- Department of Paediatrics and
- Adult Endocrinology Service, Mater Dei Hospital, Msida, Malta
| | | | - Mario J. Cachia
- Adult Endocrinology Service, Mater Dei Hospital, Msida, Malta
| | - Daniel Field
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Louise A. Ocaka
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alyssa J.J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Sakina H. Rajabali
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Kimberley L.H. Riegman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Lisa B. De Martini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Mehul T. Dattani
- Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
12
|
Maione L, Bouvattier C, Kaiser UB. Central precocious puberty: Recent advances in understanding the aetiology and in the clinical approach. Clin Endocrinol (Oxf) 2021; 95:542-555. [PMID: 33797780 PMCID: PMC8586890 DOI: 10.1111/cen.14475] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Central precocious puberty (CPP) results from early activation of the hypothalamic-pituitary-gonadal (HPG) axis. The current state of knowledge of the complex neural network acting at the level of the hypothalamus and the GnRH neuron to control puberty onset has expanded, particularly in the context of molecular interactions. Along with these advances, the knowledge of pubertal physiology and pathophysiology has also increased. This review focuses on regulatory abnormalities occurring at the hypothalamic level of the HPG axis to cause CPP. The clinical approach to diagnosis of puberty and pubertal disorders is also reviewed, with a particular focus on aetiologies of CPP. The recent identification of mutations in MKRN3 and DLK1 in familial as well sporadic forms of CPP has changed the state of the art of the approach to patients with CPP. Genetic advances have also had important repercussions beyond consideration of puberty alone. Syndromic disorders and central nervous system lesions associated with CPP are also discussed. If untreated, these conditions may lead to adverse physical, psychosocial and medical outcomes.
Collapse
Affiliation(s)
- Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Université Paris-Saclay, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Lee HS, Jeong HR, Rho JG, Kum CD, Kim KH, Kim DW, Cheong JY, Jeong SY, Hwang JS. Identification of rare missense mutations in NOTCH2 and HERC2 associated with familial central precocious puberty via whole-exome sequencing. Gynecol Endocrinol 2020; 36:682-686. [PMID: 32400230 DOI: 10.1080/09513590.2020.1760241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: Genetic factors play a critical role in pubertal progression; however, mutations associated with central precocious puberty (CPP) have been reported only in four genes: KISS1, KISS1R, DLK1, and MKRN3. This study aimed to identify novel, potentially pathogenic variants in patients with familial CPP via whole-exome sequencing (WES).Methods: WES analysis was applied in 28 patients (25 girls and three boys) belonging to 14 families, wherein all siblings were diagnosed with CPP. Data analysis aimed to select only very rare variants (minor allele frequency <1%). Nonsense, splice-site, and frameshift variants were considered the most ideal candidate variants. Additionally, non-synonymous missense variants predicted as being deleterious using in silico analysis tools were further considered.Results: The analysis of exome sequencing data resulted in the identification of rare mutations in two promising candidate genes (NOTCH2 and HERC2) in a family. Siblings with CPP exhibited two heterozygous missense mutations (p. Leu15Phe in NOTCH2 and p. Arg4081His in HERC2). Moreover, their parents without history of CPP had a missense variant in either NOTCH2 or HERC2.Conclusions: We identified new candidate genes with potential roles in pubertal development. Digenic inheritance of the two genetic mutations associated with the Notch signaling pathway may have a synergistic effect resulting in CPP.
Collapse
Affiliation(s)
- Hae Sang Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jung Gi Rho
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang Dae Kum
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyung Hee Kim
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Do Wan Kim
- Ajou Translational Omics Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Ajou Translational Omics Center, Ajou University Medical Center, Suwon, Republic of Korea
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
15
|
Fujiyama T, Miyashita S, Tsuneoka Y, Kanemaru K, Kakizaki M, Kanno S, Ishikawa Y, Yamashita M, Owa T, Nagaoka M, Kawaguchi Y, Yanagawa Y, Magnuson MA, Muratani M, Shibuya A, Nabeshima YI, Yanagisawa M, Funato H, Hoshino M. Forebrain Ptf1a Is Required for Sexual Differentiation of the Brain. Cell Rep 2019; 24:79-94. [PMID: 29972793 DOI: 10.1016/j.celrep.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
The mammalian brain undergoes sexual differentiation by gonadal hormones during the perinatal critical period. However, the machinery at earlier stages has not been well studied. We found that Ptf1a is expressed in certain neuroepithelial cells and immature neurons around the third ventricle that give rise to various neurons in several hypothalamic nuclei. We show that conditional Ptf1a-deficient mice (Ptf1a cKO) exhibit abnormalities in sex-biased behaviors and reproductive organs in both sexes. Gonadal hormone administration to gonadectomized animals revealed that the abnormal behavior is caused by disorganized sexual development of the knockout brain. Accordingly, expression of sex-biased genes was severely altered in the cKO hypothalamus. In particular, Kiss1, important for sexual differentiation of the brain, was drastically reduced in the cKO hypothalamus, which may contribute to the observed phenotypes in the Ptf1a cKO. These findings suggest that forebrain Ptf1a is one of the earliest regulators for sexual differentiation of the brain.
Collapse
Affiliation(s)
- Tomoyuki Fujiyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | - Kazumasa Kanemaru
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan; Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | - Mai Nagaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | - Yoshiya Kawaguchi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University, Maebashi 371-8511, Japan
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Masafumi Muratani
- Department of Genome Biology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yo-Ichi Nabeshima
- Foundation for Biomedical Research and Innovation, Kobe 650-0047, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Toho University, Tokyo 143-8540, Japan.
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
16
|
Abstract
The factors that trigger human puberty are among the central mysteries of reproductive biology. Several approaches, including mutational analysis of candidate genes, large-scale genome-wide association studies, whole exome sequencing, and whole genome sequencing have been performed in attempts to identify novel genetic factors that modulate the human hypothalamic-pituitary-gonadal axis to result in premature sexual development. Genetic abnormalities involving excitatory and inhibitory pathways regulating gonadotropin-releasing hormone secretion, represented by the kisspeptin (KISS1 and KISS1R) and makorin ring finger 3 (MKRN3) systems, respectively, have been associated with sporadic and familial cases of central precocious puberty (CPP). More recently, paternally inherited genetic defects of DLK1 were identified in four families with nonsyndromic CPP and a metabolic phenotype. DLK1 encodes a transmembrane protein that is important for adipose tissue homeostasis and neurogenesis and is located in the imprinted chromosome 14q32 region associated with Temple syndrome. In this review, we highlight the clinical and genetic features of patients with CPP caused by DLK1 mutations and explore the involvement of Notch signaling and DLK1 in the control of pubertal onset.
Collapse
Affiliation(s)
- Delanie B. Macedo
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Kaylan KB, Berg IC, Biehl MJ, Brougham-Cook A, Jain I, Jamil SM, Sargeant LH, Cornell NJ, Raetzman LT, Underhill GH. Spatial patterning of liver progenitor cell differentiation mediated by cellular contractility and Notch signaling. eLife 2018; 7:e38536. [PMID: 30589410 PMCID: PMC6342520 DOI: 10.7554/elife.38536] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022] Open
Abstract
The progenitor cells of the developing liver can differentiate toward both hepatocyte and biliary cell fates. In addition to the established roles of TGFβ and Notch signaling in this fate specification process, there is increasing evidence that liver progenitors are sensitive to mechanical cues. Here, we utilized microarrayed patterns to provide a controlled biochemical and biomechanical microenvironment for mouse liver progenitor cell differentiation. In these defined circular geometries, we observed biliary differentiation at the periphery and hepatocytic differentiation in the center. Parallel measurements obtained by traction force microscopy showed substantial stresses at the periphery, coincident with maximal biliary differentiation. We investigated the impact of downstream signaling, showing that peripheral biliary differentiation is dependent not only on Notch and TGFβ but also E-cadherin, myosin-mediated cell contractility, and ERK. We have therefore identified distinct combinations of microenvironmental cues which guide fate specification of mouse liver progenitors toward both hepatocyte and biliary fates.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ian C Berg
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Matthew J Biehl
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Aidan Brougham-Cook
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | | | | | | - Lori T Raetzman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To summarize advances in the genetics underlying variation in normal pubertal timing, precocious puberty, and delayed puberty, and to discuss mechanisms by which genes may regulate pubertal timing. RECENT FINDINGS Genome-wide association studies have identified hundreds of loci that affect pubertal timing in the general population in both sexes and across ethnic groups. Single genes have been implicated in both precocious and delayed puberty. Potential mechanisms for how these genetic loci influence pubertal timing may include effects on the development and function of the GnRH neuronal network and the responsiveness of end-organs. SUMMARY There has been significant progress in identifying genetic loci that affect normal pubertal timing, and the first single-gene causes of precocious and delayed puberty are being described. How these genes influence pubertal timing remains to be determined.
Collapse
Affiliation(s)
- Jia Zhu
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital
| | - Temitope O Kusa
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Medicine, Boston Children's Hospital.,Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Cellular fate decisions in the developing female anteroventral periventricular nucleus are regulated by canonical Notch signaling. Dev Biol 2018; 442:87-100. [PMID: 29885287 DOI: 10.1016/j.ydbio.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/05/2018] [Indexed: 01/20/2023]
Abstract
The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number. Based on these findings, we hypothesized that the Notch signaling pathway may act similarly in the AVPV by promoting development of kisspeptin neurons at the expense of other neuronal subtypes. To address this hypothesis, we utilized a genetic mouse model with a conditional loss of Rbpj in Nkx2.1 expressing cells (Rbpj cKO). We noted an increase in cellular proliferation, as marked by Ki-67, in the hypothalamic ventricular zone (HVZ) in Rbpj cKO mice at E13.5. This corresponded to an increase in general neurogenesis and more TH-positive neurons. Additionally, an increase in OLIG2-positive early oligodendrocytic precursor cells was observed at postnatal day 0 in Rbpj cKO mice. By 5 weeks of age in Rbpj cKO mice, TH-positive cells were readily detected in the AVPV but few kisspeptin neurons were present. To elucidate the direct effects of Notch signaling on neuron and glia differentiation, an in vitro primary hypothalamic neurosphere assay was employed. We demonstrated that treatment with the chemical Notch inhibitor DAPT increased mKi67 and Olig2 mRNA expression while decreasing astroglial Gfap expression, suggesting Notch signaling regulates both proliferation and early glial fate decisions. A modest increase in expression of TH in both the cell soma and neurite extensions was observed after extended culture, suggesting that inhibition of Notch signaling alone is enough to bias progenitors towards a dopaminergic fate. Together, these data suggest that Notch signaling restricts early cellular proliferation and differentiation of neurons and oligodendrocytes both in vivo and in vitro and acts as a fate selector of kisspeptin neurons.
Collapse
|
20
|
Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 2018; 375:23-39. [PMID: 29869716 DOI: 10.1007/s00441-018-2859-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The neuroendocrine system consists of a heterogeneous collection of (mostly) neuropeptidergic neurons found in four hypothalamic nuclei and sharing the ability to secrete neurohormones (all of them neuropeptides except dopamine) into the bloodstream. There are, however, abundant hypothalamic non-neuroendocrine neuropeptidergic neurons developing in parallel with the neuroendocrine system, so that both cannot be entirely disentangled. This heterogeneity results from the workings of a network of transcription factors many of which are already known. Olig2 and Fezf2 expressed in the progenitors, acting through mantle-expressed Otp and Sim1, Sim2 and Pou3f2 (Brn2), regulate production of magnocellular and anterior parvocellular neurons. Nkx2-1, Rax, Ascl1, Neurog3 and Dbx1 expressed in the progenitors, acting through mantle-expressed Isl1, Dlx1, Gsx1, Bsx, Hmx2/3, Ikzf1, Nr5a2 (LH-1) and Nr5a1 (SF-1) are responsible for tuberal parvocellular (arcuate nucleus) and other neuropeptidergic neurons. The existence of multiple progenitor domains whose progeny undergoes intricate tangential migrations as one source of complexity in the neuropeptidergic hypothalamus is the focus of much attention. How neurosecretory cells target axons to the medial eminence and posterior hypophysis is gradually becoming clear and exciting progress has been made on the mechanisms underlying neurovascular interface formation. While rat neuroanatomy and targeted mutations in mice have yielded fundamental knowledge about the neuroendocrine system in mammals, experiments on chick and zebrafish are providing key information about cellular and molecular mechanisms. Looking forward, data from every source will be necessary to unravel the ways in which the environment affects neuroendocrine development with consequences for adult health and disease.
Collapse
|
21
|
Abstract
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.
Collapse
Affiliation(s)
- Chitoku Toda
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut 06520; .,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520.,Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
22
|
Dauber A, Cunha-Silva M, Macedo DB, Brito VN, Abreu AP, Roberts SA, Montenegro LR, Andrew M, Kirby A, Weirauch MT, Labilloy G, Bessa DS, Carroll RS, Jacobs DC, Chappell PE, Mendonca BB, Haig D, Kaiser UB, Latronico AC. Paternally Inherited DLK1 Deletion Associated With Familial Central Precocious Puberty. J Clin Endocrinol Metab 2017; 102:1557-1567. [PMID: 28324015 PMCID: PMC5443333 DOI: 10.1210/jc.2016-3677] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023]
Abstract
CONTEXT Central precocious puberty (CPP) results from premature activation of the hypothalamic-pituitary-gonadal axis. Few genetic causes of CPP have been identified, with the most common being mutations in the paternally expressed imprinted gene MKRN3. OBJECTIVE To identify the genetic etiology of CPP in a large multigenerational family. DESIGN Linkage analysis followed by whole-genome sequencing was performed in a family with five female members with nonsyndromic CPP. Detailed phenotyping was performed at the time of initial diagnosis and long-term follow-up, and circulating levels of Delta-like 1 homolog (DLK1) were measured in affected individuals. Expression of DLK1 was measured in mouse hypothalamus and in kisspeptin-secreting neuronal cell lines in vitro. SETTING Endocrine clinic of an academic medical center. PATIENTS Patients with familial CPP were studied. RESULTS A complex defect of DLK1 (∼14-kb deletion and 269-bp duplication) was identified in this family. This deletion included the 5' untranslated region and the first exon of DLK1, including the translational start site. Only family members who inherited the defect from their father have precocious puberty, consistent with the known imprinting of DLK1. The patients did not demonstrate additional features of the imprinted disorder Temple syndrome except for increased fat mass. Serum DLK1 levels were undetectable in all affected individuals. Dlk1 was expressed in mouse hypothalamus and in kisspeptin neuron-derived cell lines. CONCLUSION We identified a genomic defect in DLK1 associated with isolated familial CPP. MKRN3 and DLK1 are both paternally expressed imprinted genes. These findings suggest a role of genomic imprinting in regulating the timing of human puberty.
Collapse
Affiliation(s)
- Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Marina Cunha-Silva
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Delanie B. Macedo
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Vinicius N. Brito
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Stephanie A. Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts 02115
| | - Luciana R. Montenegro
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Melissa Andrew
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Andrew Kirby
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Guillaume Labilloy
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229
| | - Danielle S. Bessa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dakota C. Jacobs
- Department of Biological Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
| | - Patrick E. Chappell
- Department of Biological Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331
| | - Berenice B. Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| | - David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-093, Brazil
| |
Collapse
|
23
|
Giannakopoulos A, Fryssira H, Tzetis M, Xaidara A, Kanaka-Gantenbein C. Central precocious puberty in a boy with 22q13 deletion syndrome and NOTCH-1 gene duplication. J Pediatr Endocrinol Metab 2016; 29:1307-1311. [PMID: 27235670 DOI: 10.1515/jpem-2015-0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
The 22q13 deletion syndrome or Phelan-McDermid syndrome is a neurodevelopmental disorder associated with developmental delay, hypotonia, delayed or absent speech, autistic-like behavior, normal to accelerated growth and dysmorphic faces. We report the occurrence of central precocious puberty in a boy diagnosed with Phelan-McDermid syndrome. At the age of 1 year, our patient presented with increased testicular volume for his age, bone age advancement and growth acceleration. Stimulated gonadotropin levels demonstrated a premature activation of the hypothalamic-pituitary-gonadal (HPG) axis. Central precocious puberty was treated with gonadotropin-releasing hormone (GnRH) analog. Molecular diagnosis with array-comparative genomic hybridization (CGH) revealed a major deletion of 5.8 Mb at the 22q13 chromosomal region and a 25 kb duplication at the 9q34.3 region that included the NOTCH-1 gene. On the background of 22q13 deletion syndrome and data from animals on the effect of abnormal NOTCH-1 gene expression on kisspeptin neuron formation, we discuss the probable role of Notch signaling in the premature activation of the HPG axis.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/drug therapy
- Abnormalities, Multiple/genetics
- Chromosome Deletion
- Chromosome Disorders/diagnosis
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 9
- Cytogenetic Analysis
- Delayed Diagnosis
- Drug Monitoring
- Gene Duplication
- Gonadotropin-Releasing Hormone/adverse effects
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Gonadotropin-Releasing Hormone/therapeutic use
- Greece
- Humans
- Infant, Newborn
- Male
- Puberty, Precocious/diagnosis
- Puberty, Precocious/drug therapy
- Puberty, Precocious/genetics
- Receptor, Notch1/genetics
- Reproductive Control Agents/adverse effects
- Reproductive Control Agents/therapeutic use
- Treatment Outcome
Collapse
|