1
|
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:11043. [PMID: 39456824 PMCID: PMC11507918 DOI: 10.3390/ijms252011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (H.J.)
| |
Collapse
|
2
|
Lou Y, Xu B, Huang K, Li X, Jin H, Ding L, Ning S, Chen X. Knockdown of miR-1293 attenuates lung adenocarcinoma angiogenesis via Spry4 upregulation-mediated ERK1/2 signaling inhibition. Biochem Pharmacol 2024; 226:116414. [PMID: 38972427 DOI: 10.1016/j.bcp.2024.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Angiogenesis plays a pivotal role in LUAD progression via supplying oxygen and nutrients for cancer cells. Non-coding miR-1293, a significantly up-regulated miRNA in LUAD tissues, can be potentially used as a novel biomarker for predicting the prognosis of LUAD patients. However, little information is available about the function of miR-1293 in LUAD progression especially cancer-induced angiogenesis. Herein, we found that miR-1293 knockdown could obviously attenuate LUAD-induced angiogenesis in vitro and down-regulate two most important pro-angiogenic cytokines VEGF-A and bFGF expression and secretion. Indeed, miR-1293 abrogation inactivated the angiogenesis-promoting ERK1/2 signaling characterized by decreased ERK1/2 phosphorylation and translocation from nucleus to cytoplasm. Next we found that miR-1293 knockdown reactivated the endogenous ERK1/2 pathway inhibitor Spry4 expression and Spry4 perturbance with specific siRNA transfection abolished the inhibition of ERK1/2 pathway and LUAD-induced angiogenesis by miR-1293 knockdown. Finally, with in vivo assay, we found obvious Spry4 up-regulation and VEGF-A, bFGF, ERK1/2 phosphorylation, micro-vessel density marker CD31 expression down-regulation in vivo, respectively. Collectively, these results indicated that miR-1293 knockdown could significantly attenuate LUAD angiogenesis via Spry4-mediated ERK1/2 signaling inhibition, which might be helpful for uncovering more functions of miR-1293 in LUAD and providing experimental basis for possible LUAD therapeutic strategy targeting miR-1293.
Collapse
Affiliation(s)
- Yang Lou
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Bo Xu
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Kan Huang
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Xianshuai Li
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Huixian Jin
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Shilong Ning
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| | - Xianguo Chen
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China.
| |
Collapse
|
3
|
Wazin F, Lovicu FJ. Conditional Ablation of Spred1 and Spred2 in the Eye Lens Negatively Impacts Its Development and Growth. Cells 2024; 13:290. [PMID: 38391903 PMCID: PMC10886530 DOI: 10.3390/cells13040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The development and growth of the eye depends on normal lens morphogenesis and its growth. This growth, in turn, is dependent on coordinated proliferation of the lens epithelial cells and their subsequent differentiation into fiber cells. These cellular processes are tightly regulated to maintain the precise cellular structure and size of the lens, critical for its transparency and refractive properties. Growth factor-mediated MAPK signaling driven by ERK1/2 has been reported as essential for regulating cellular processes of the lens, with ERK1/2 signaling tightly regulated by endogenous antagonists, including members of the Sprouty and related Spred families. Our previous studies have demonstrated the importance of both these inhibitory molecules in lens and eye development. In this study, we build on these findings to highlight the importance of Spreds in regulating early lens morphogenesis by modulating ERK1/2-mediated lens epithelial cell proliferation and fiber differentiation. Conditional loss of both Spred1 and Spred2 in early lens morphogenesis results in elevated ERK1/2 phosphorylation, hyperproliferation of lens epithelia, and an associated increase in the rate of fiber differentiation. This results in transient microphakia and microphthalmia, which disappears, owing potentially to compensatory Sprouty expression. Our data support an important temporal role for Spreds in the early stages of lens morphogenesis and highlight how negative regulation of ERK1/2 signaling is critical for maintaining lens proliferation and fiber differentiation in situ throughout life.
Collapse
Affiliation(s)
- Fatima Wazin
- Molecular and Cellular Biomedicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Frank J. Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Sugiyama Y, Reed DA, Herrmann D, Lovicu FJ, Robinson ML, Timpson P, Masai I. Fibroblast growth factor-induced lens fiber cell elongation is driven by the stepwise activity of Rho and Rac. Development 2024; 151:dev202123. [PMID: 38240393 PMCID: PMC10911273 DOI: 10.1242/dev.202123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Frank J. Lovicu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Sugiyama Y, Reed DA, Herrmann D, Lovicu FJ, Robinson ML, Timpson P, Masai I. Fibroblast Growth Factor-induced lens fiber cell elongation is driven by the stepwise activity of Rho and Rac. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569812. [PMID: 38106159 PMCID: PMC10723307 DOI: 10.1101/2023.12.03.569812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The spheroidal shape of the eye lens is critical for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating lamellipodium is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin, and actin reduced the height of both early and later fibers, indicating elongation of these fibers relies on actomyosin contractility. Consistently, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose it to do so through regulation of Rho activity.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Frank J. Lovicu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, USA
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research & The Kinghorn Cancer Centre, St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
VanSlyke JK, Boswell BA, Musil LS. ErbBs in Lens Cell Fibrosis and Secondary Cataract. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37418274 PMCID: PMC10337807 DOI: 10.1167/iovs.64.10.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose TGFβ-induced epithelial-to-myofibroblast transition (EMyT) of lens cells has been linked to the most common vision-disrupting complication of cataract surgery-namely, posterior capsule opacification (PCO; secondary cataract). Although inhibitors of the ErbB family of receptor tyrosine kinases have been shown to block some PCO-associated processes in model systems, our knowledge of ErbB signaling in the lens is very limited. Here, we investigate the expression of ErbBs and their ligands in primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) and how TGFβ affects ErbB function. Methods DCDMLs were analyzed by immunofluorescence microscopy and Western blotting under basal and profibrotic conditions. Results Small-molecule ErbB kinase blockers, including the human therapeutic lapatinib, selectively inhibit TGFβ-induced EMyT of DCDMLs. Lens cells constitutively express ErbB1 (EGFR), ErbB2, and ErbB4 protein on the plasma membrane and release into the medium ErbB-activating ligand. Culturing DCDMLs with TGFβ increases soluble bioactive ErbB ligand and markedly alters ErbBs, reducing total and cell surface ErbB2 and ErbB4 while increasing ErbB1 expression and homodimer formation. Similar, TGFβ-dependent changes in relative ErbB expression are induced when lens cells are exposed to the profibrotic substrate fibronectin. A single, 1-hour treatment with lapatinib inhibits EMyT in DCDMLs assessed 6 days later. Short-term exposure to lower doses of lapatinib is also capable of eliciting a durable response when combined with suboptimal levels of a mechanistically distinct multikinase inhibitor. Conclusions Our findings support ErbB1 as a therapeutic target for fibrotic PCO, which could be leveraged to pharmaceutically preserve the vision of millions of patients with cataracts.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
7
|
FGF-2 Differentially Regulates Lens Epithelial Cell Behaviour during TGF-β-Induced EMT. Cells 2023; 12:cells12060827. [PMID: 36980168 PMCID: PMC10046997 DOI: 10.3390/cells12060827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-β) can regulate and/or dysregulate lens epithelial cell (LEC) behaviour, including proliferation, fibre differentiation, and epithelial–mesenchymal transition (EMT). Earlier studies have investigated the crosstalk between FGF and TGF-β in dictating lens cell fate, that appears to be dose dependent. Here, we tested the hypothesis that a fibre-differentiating dose of FGF differentially regulates the behaviour of lens epithelial cells undergoing TGF-β-induced EMT. Postnatal 21-day-old rat lens epithelial explants were treated with a fibre-differentiating dose of FGF-2 (200 ng/mL) and/or TGF-β2 (50 pg/mL) over a 7-day culture period. We compared central LECs (CLECs) and peripheral LECs (PLECs) using immunolabelling for changes in markers for EMT (α-SMA), lens fibre differentiation (β-crystallin), epithelial cell adhesion (β-catenin), and the cytoskeleton (alpha-tropomyosin), as well as Smad2/3- and MAPK/ERK1/2-signalling. Lens epithelial explants cotreated with FGF-2 and TGF-β2 exhibited a differential response, with CLECs undergoing EMT while PLECs favoured more of a lens fibre differentiation response, compared to the TGF-β-only-treated explants where all cells in the explants underwent EMT. The CLECs cotreated with FGF and TGF-β immunolabelled for α-SMA, with minimal β-crystallin, whereas the PLECs demonstrated strong β-crystallin reactivity and little α-SMA. Interestingly, compared to the TGF-β-only-treated explants, α-SMA was significantly decreased in the CLECs cotreated with FGF/TGF-β. Smad-dependent and independent signalling was increased in the FGF-2/TGF-β2 co-treated CLECs, that had a heightened number of cells with nuclear localisation of Smad2/3 compared to the PLECs, that in contrast had more pronounced ERK1/2-signalling over Smad2/3 activation. The current study has confirmed that FGF-2 is influential in differentially regulating the behaviour of LECs during TGF-β-induced EMT, leading to a heterogenous cell population, typical of that observed in the development of post-surgical, posterior capsular opacification (PCO). This highlights the cooperative relationship between FGF and TGF-β leading to lens pathology, providing a different perspective when considering preventative measures for controlling PCO.
Collapse
|
8
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
9
|
Zhao G, Pan AY, Feng Y, Rasko JE, Bailey CG, Lovicu FJ. Sprouty and Spred temporally regulate ERK1/2-signaling to suppress TGFβ-induced lens EMT. Exp Eye Res 2022; 219:109070. [DOI: 10.1016/j.exer.2022.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
10
|
Makrides N, Wang Q, Tao C, Schwartz S, Zhang X. Jack of all trades, master of each: the diversity of fibroblast growth factor signalling in eye development. Open Biol 2022; 12:210265. [PMID: 35016551 PMCID: PMC8753161 DOI: 10.1098/rsob.210265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A central question in development biology is how a limited set of signalling pathways can instruct unlimited diversity of multicellular organisms. In this review, we use three ocular tissues as models of increasing complexity to present the astounding versatility of fibroblast growth factor (FGF) signalling. In the lacrimal gland, we highlight the specificity of FGF signalling in a one-dimensional model of budding morphogenesis. In the lens, we showcase the dynamics of FGF signalling in altering functional outcomes in a two-dimensional space. In the retina, we present the prolific utilization of FGF signalling from three-dimensional development to homeostasis. These examples not only shed light on the cellular basis for the perfection and complexity of ocular development, but also serve as paradigms for the diversity of FGF signalling.
Collapse
Affiliation(s)
- Neoklis Makrides
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Qian Wang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel Schwartz
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Xin Zhang
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Garg A, Hannan A, Wang Q, Makrides N, Zhong J, Li H, Yoon S, Mao Y, Zhang X. Etv transcription factors functionally diverge from their upstream FGF signaling in lens development. eLife 2020; 9:e51915. [PMID: 32043969 PMCID: PMC7069720 DOI: 10.7554/elife.51915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs - Etv1, Etv 4, and Etv 5 - in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Abdul Hannan
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Qian Wang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Jian Zhong
- Burke Neurological Institute and Feil Family Brain and Mind Research Institute, Weill Cornell MedicineWhite PlainsUnited States
| | - Hongge Li
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Sungtae Yoon
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Yingyu Mao
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Xin Zhang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
12
|
Wazin F, Lovicu FJ. The negative regulatory Spred1 and Spred2 proteins are required for lens and eye morphogenesis. Exp Eye Res 2020; 191:107917. [PMID: 31923414 DOI: 10.1016/j.exer.2020.107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/19/2019] [Accepted: 01/03/2020] [Indexed: 01/29/2023]
Abstract
The transparent and refractive properties of the ocular lens are dependent on its precise cellular structure, supported by the regulation of lens cellular processes of proliferation and differentiation that are essential throughout life. The ERK/MAPK-signalling pathway plays a crucial role in regulating lens cell proliferation and differentiation, and in turn is regulated by inhibitory molecules including the Spred family of proteins to modulate and attenuate the impact of growth factor stimulation. Given Spreds are strongly and distinctly expressed in lens, along with their established inhibitory role in a range of different tissues, we investigated the role these antagonists play in regulating lens cell proliferation and differentiation, and their contribution to lens structure and growth. Using established mice lines deficient for either or both Spred 1 and Spred 2, we demonstrate their role in regulating lens development by negatively regulating ERK1/2 activity. Mice deficient for both Spred 1 and Spred 2 have impaired lens and eye development, displaying irregular lens epithelial and fibre cell activity as a result of increased levels of phosphorylated ERK1/2. While Spred 1 and Spred 2 do not appear to be necessary for induction and early stages of lens morphogenesis (prior to E11.5), nor for the formation of the primary fibre cells, they are required for the continuous embryonic growth and differentiation of the lens.
Collapse
Affiliation(s)
- Fatima Wazin
- Discipline of Anatomy and Histology, School of Medical Science, The University of Sydney, NSW, Australia and Save Sight Institute, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, School of Medical Science, The University of Sydney, NSW, Australia and Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
13
|
Liu W, Yang Y, Yan J, Wang L. MicroRNA-23b-3p promotes the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells by targeting Sprouty2. Acta Histochem 2019; 121:704-711. [PMID: 31235073 DOI: 10.1016/j.acthis.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Cataract, opacification of the lens, is one of the most important reasons of visual impairment and blindness. Though microRNAs (miRNAs) have been demonstrated to play important roles in cataractogenesis, the underlying molecular mechanisms in this progress remain obscure. In the present study, microRNA-23b-3p (miR-23b) overexpression promoted the proliferation, migration and epithelial-mesenchymal transition (EMT), whereas miR-23b knockdown markedly inhibited the proliferation, migration and TGF-β-induced EMT of lens epithelial cells (LECs). In TGF-β-induced LECs, the expression of miR-23b was markedly upregulated and the expression of Sprouty2 (SPRY2) was markedly downregulated, furthermore the mRNA and protein levels of SPRY2 were markedly decreased in miR-23b inhibitor-transfected LECs. We then performed a Dual-luciferase reporter assay to confirm that miR-23b directly targeted SPRY2. The promoted migration and EMT of LECs by enforced expression of miR-23b were suppressed by SPRY2 overexpression. The findings present the first evidence indicating that miR-23b can promote the proliferation, migration, and EMT of LECs by targeting SPRY2 and the inhibition of miR-23b may possess the therapeutic potential for cataract.
Collapse
|
14
|
ERK1/2-mediated EGFR-signaling is required for TGFβ-induced lens epithelial-mesenchymal transition. Exp Eye Res 2018; 178:108-121. [PMID: 30290164 DOI: 10.1016/j.exer.2018.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 02/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a critical role in the pathogenesis of fibrotic cataract. Transforming growth factor-beta (TGFβ) is a potent inducer of this fibrotic process in lens. Recent studies in cancer progression have shown that in addition to activating the canonical Smad signaling pathway, TGFβ can also transactivate the epidermal growth factor receptor (EGFR) to enhance invasive cell migration. The present study aims to elucidate the involvement of EGFR-signaling in TGFβ-induced EMT in LECs. Treatment with TGFβ2 induced transdifferentiation of LECs into myofibroblastic cells, typical of an EMT. TGFβ2 induced the phosphorylation of the EGFR and upregulation of Egfr and Hb-egf gene expression. Pharmacologic inhibition of EGFR-signaling using PD153035 inhibited TGFβ-induced EMT, including the upregulation of mesenchymal markers and downregulation of epithelial markers. Crosstalk between TGFβ2-induced EGFR and ERK1/2 was evident, with both pathways impacting on Smad2/3-signaling. Our finding that TGFβ2 transactivates downstream EGFR-signaling reveals a previously unknown mechanism in the pathogenesis of cataract. Understanding the complex interplay between divergent canonical and non-canonical signaling pathways, as well as downstream target genes involved in TGFβ-induced EMT, will enable the development of more effective targeted therapies in the pharmacological treatment of cataract.
Collapse
|
15
|
Zhao G, Bailey CG, Feng Y, Rasko J, Lovicu FJ. Negative regulation of lens fiber cell differentiation by RTK antagonists Spry and Spred. Exp Eye Res 2018; 170:148-159. [PMID: 29501879 PMCID: PMC5924633 DOI: 10.1016/j.exer.2018.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/25/2018] [Indexed: 11/19/2022]
Abstract
Sprouty (Spry) and Spred proteins have been identified as closely related negative regulators of the receptor tyrosine kinase (RTK)-mediated MAPK pathway, inhibiting cellular proliferation, migration and differentiation in many systems. As the different members of this antagonist family are strongly expressed in the lens epithelium in overlapping patterns, in this study we used lens epithelial explants to examine the impact of these different antagonists on the morphologic and molecular changes associated with fibroblast growth factor (FGF)-induced lens fiber differentiation. Cells in lens epithelial explants were transfected using different approaches to overexpress the different Spry (Spry1, Spry2) and Spred (Spred1, Spred2, Spred3) members, and we compared their ability to undergo FGF-induced fiber differentiation. In cells overexpressing any of the antagonists, the propensity for FGF-induced cell elongation was significantly reduced, indicative of a block to lens fiber differentiation. Of these antagonists, Spry1 and Spred2 appeared to be the most potent among their respective family members, demonstrating the greatest block in FGF-induced fiber differentiation based on the percentage of cells that failed to elongate. Consistent with the reported activity of Spry and Spred, we show that overexpression of Spry2 was able to suppress FGF-induced ERK1/2 phosphorylation in lens cells, as well as the ERK1/2-dependent fiber-specific marker Prox1, but not the accumulation of β-crystallins. Taken together, Spry and Spred proteins that are predominantly expressed in the lens epithelium in situ, appear to have overlapping effects on negatively regulating ERK1/2-signaling associated with FGF-induced lens epithelial cell elongation leading to fiber differentiation. This highlights the important regulatory role for these RTK antagonists in establishing and maintaining the distinct architecture and polarity of the lens.
Collapse
Affiliation(s)
- Guannan Zhao
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia
| | - Yue Feng
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - John Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, NSW, Australia; Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
16
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
17
|
Tan X, Zhu Y, Chen C, Chen X, Qin Y, Qu B, Luo L, Lin H, Wu M, Chen W, Liu Y. Sprouty2 Suppresses Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells through Blockade of Smad2 and ERK1/2 Pathways. PLoS One 2016; 11:e0159275. [PMID: 27415760 PMCID: PMC4944964 DOI: 10.1371/journal.pone.0159275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a key role in the pathogenesis of anterior subcapsular cataract (ASC) and capsule opacification. In mouse lens, Sprouty2 (Spry2) has a negative regulatory role on TGFβ signaling. However, the regulation of Spry2 during ASC development and how Spry2 modulates TGFβ signaling pathway in human LECs have not been characterized. Here, we demonstrate that Spry2 expression level is decreased in anterior capsule LECs of ASC patients. Spry2 negatively regulates TGFβ2-induced EMT and migration of LECs through inhibition of Smad2 and ERK1/2 phosphorylation. Also, blockade of Smad2 or ERK1/2 activation suppresses EMT caused by Spry2 downregulation. Collectively, our results for the first time show in human LECs that Spry2 has an inhibitory role in TGFβ signaling pathway. Our findings in human lens tissue and epithelial cells suggest that Spry2 may become a novel therapeutic target for the prevention and treatment of ASC and capsule opacification.
Collapse
Affiliation(s)
- Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|