1
|
Wang G, Du Y, Cui X, Xu T, Li H, Dong M, Li W, Li Y, Cai W, Xu J, Li S, Yang X, Wu Y, Chen H, Li X. Directed differentiation of human embryonic stem cells into parathyroid cells and establishment of parathyroid organoids. Cell Prolif 2024; 57:e13634. [PMID: 38494923 PMCID: PMC11294423 DOI: 10.1111/cpr.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Differentiation of human embryonic stem cells (hESCs) into human embryonic stem cells-derived parathyroid-like cells (hESC-PT) has clinical significance in providing new therapies for congenital and acquired parathyroid insufficiency conditions. However, a highly reproducible, well-documented method for parathyroid differentiation remains unavailable. By imitating the natural process of parathyroid embryonic development, we proposed a new hypothesis about the in vitro differentiation of parathyroid-like cells. Transcriptome, differentiation marker protein detection and parathyroid hormone (PTH) secretion assays were performed after the completion of differentiation. To optimize the differentiation protocol and further improve the differentiation rate, we designed glial cells missing transcription factor 2 (GCM2) overexpression lentivirus transfection assays and constructed hESCs-derived parathyroid organoids. The new protocol enabled hESCs to differentiate into hESC-PT. HESC-PT cells expressed PTH, GCM2 and CaSR proteins, low extracellular calcium culture could stimulate hESC-PT cells to secrete PTH. hESC-PT cells overexpressing GCM2 protein secreted PTH earlier than their counterpart hESC-PT cells. Compared with the two-dimensional cell culture environment, hESCs-derived parathyroid organoids secreted more PTH. Both GCM2 lentiviral transfection and three-dimensional cultures could make hESC-PT cells functionally close to human parathyroid cells. Our study demonstrated that hESCs could differentiate into hESC-PT in vitro, which paves the road for applying the technology to treat hypoparathyroidism and introduces new approaches in the field of regenerative medicine.
Collapse
Affiliation(s)
- Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenjun Cai
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yonglin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Kologrivova IV, Naryzhnaya NV, Suslova TE. Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player? Biomedicines 2024; 12:1408. [PMID: 39061983 PMCID: PMC11273826 DOI: 10.3390/biomedicines12071408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The thymus represents a primary organ of the immune system, harboring the generation and maturation of T lymphocytes. Starting from childhood, the thymus undergoes involution, being replaced with adipose tissue, and by an advanced age nearly all the thymus parenchyma is represented by adipocytes. This decline of thymic function is associated with compromised maturation and selection of T lymphocytes, which may directly impact the development of inflammation and induce various autoinflammatory disorders, including atherosclerosis. For a long time, thymus health in adults has been ignored. The process of adipogenesis in thymus and impact of thymic fat on cardiometabolism remains a mysterious process, with many issues being still unresolved. Meanwhile, thymus functional activity has a potential to be regulated, since islets of thymopoeisis remain in adults even at an advanced age. The present review describes the intricate process of thymic adipose involution, focusing on the issues of the thymus' role in the development of atherosclerosis and metabolic health, tightly interconnected with the state of vessels. We also review the recent information on the key molecular pathways and biologically active substances that may be targeted to manipulate both thymic function and atherosclerosis.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (N.V.N.); (T.E.S.)
| | | | | |
Collapse
|
3
|
Zhou Y, Wu Q, Guo Y. Deciphering the emerging landscape of HOX genes in cardiovascular biology, atherosclerosis and beyond (Review). Int J Mol Med 2024; 53:17. [PMID: 38131178 PMCID: PMC10781420 DOI: 10.3892/ijmm.2023.5341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Atherosclerosis, a dominant driving force underlying multiple cardiovascular events, is an intertwined and chronic inflammatory disease characterized by lipid deposition in the arterial wall, which leads to diverse cardiovascular problems. Despite unprecedented advances in understanding the pathogenesis of atherosclerosis and the substantial decline in cardiovascular mortality, atherosclerotic cardiovascular disease remains a global public health issue. Understanding the molecular landscape of atherosclerosis is imperative in the field of molecular cardiology. Recently, compelling evidence has shown that an important family of homeobox (HOX) genes endows causality in orchestrating the interplay between various cardiovascular biological processes and atherosclerosis. Despite seemingly scratching the surface, such insight into the realization of biology promises to yield extraordinary breakthroughs in ameliorating atherosclerosis. Primarily recapitulated herein are the contributions of HOX in atherosclerosis, including diverse cardiovascular biology, knowledge gaps, remaining challenges and future directions. A snapshot of other cardiovascular biological processes was also provided, including cardiac/vascular development, cardiomyocyte pyroptosis/apoptosis, cardiac fibroblast proliferation and cardiac hypertrophy, which are responsible for cardiovascular disorders. Further in‑depth investigation of HOX promises to provide a potential yet challenging landscape, albeit largely undetermined to date, for partially pinpointing the molecular mechanisms of atherosclerosis. A plethora of new targeted therapies may ultimately emerge against atherosclerosis, which is rapidly underway. However, translational undertakings are crucially important but increasingly challenging and remain an ongoing and monumental conundrum in the field.
Collapse
Affiliation(s)
- Yu Zhou
- Medical College, Guizhou University, Guiyang, Guizhou 550025, P.R. China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yingchu Guo
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
4
|
Fu Y, Zhang X, Wu H, Zhang P, Liu S, Guo T, Shan H, Liang Y, Chen H, Xie J, Duan Y. HOXA3 functions as the on-off switch to regulate the development of hESC-derived third pharyngeal pouch endoderm through EPHB2-mediated Wnt pathway. Front Immunol 2024; 14:1258074. [PMID: 38259452 PMCID: PMC10800530 DOI: 10.3389/fimmu.2023.1258074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives Normal commitment of the endoderm of the third pharyngeal pouch (3PP) is essential for the development and differentiation of the thymus. The aim of this study was to investigate the role of transcription factor HOXA3 in the development and differentiation of 3PP endoderm (3PPE) from human embryonic stem cells (hESCs). Methods The 3PPE was differentiated from hESC-derived definitive endoderm (DE) by mimicking developmental queues with Activin A, WNT3A, retinoic acid and BMP4. The function of 3PPE was assessed by further differentiating into functional thymic epithelial cells (TECs). The effect of HOXA3 inhibition on cells of 3PPE was subsequently investigated. Results A highly efficient approach for differentiating 3PPE cells was developed and these cells expressed 3PPE related genes HOXA3, SIX1, PAX9 as well as EpCAM. 3PPE cells had a strong potential to develop into TECs which expressed both cortical TEC markers K8 and CD205, and medullary TEC markers K5 and AIRE, and also promoted the development and maturation of T cells. More importantly, transcription factor HOXA3 not only regulated the differentiation of 3PPE, but also had a crucial role for the proliferation and migration of 3PPE cells. Our further investigation revealed that HOXA3 controlled the commitment and function of 3PPE through the regulation of Wnt signaling pathway by activating EPHB2. Conclusion Our results demonstrated that HOXA3 functioned as the on-off switch to regulate the development of hESC-derived 3PPE through EPHB2-mediated Wnt pathway, and our findings will provide new insights into studying the development of 3PP and thymic organ in vitro and in vivo.
Collapse
Affiliation(s)
- Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xueyan Zhang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pingping Zhang
- Department of Laboratory Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huanhuan Shan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Liang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Petrelli B, Oztürk A, Pind M, Ayele H, Fainsod A, Hicks GG. Genetically programmed retinoic acid deficiency during gastrulation phenocopies most known developmental defects due to acute prenatal alcohol exposure in FASD. Front Cell Dev Biol 2023; 11:1208279. [PMID: 37397253 PMCID: PMC10311642 DOI: 10.3389/fcell.2023.1208279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) arises from maternal consumption of alcohol during pregnancy affecting 2%-5% of the Western population. In Xenopus laevis studies, we showed that alcohol exposure during early gastrulation reduces retinoic acid (RA) levels at this critical embryonic stage inducing craniofacial malformations associated with Fetal Alcohol Syndrome. A genetic mouse model that induces a transient RA deficiency in the node during gastrulation is described. These mice recapitulate the phenotypes characteristic of prenatal alcohol exposure (PAE) suggesting a molecular etiology for the craniofacial malformations seen in children with FASD. Gsc +/Cyp26A1 mouse embryos have a reduced RA domain and expression in the developing frontonasal prominence region and delayed HoxA1 and HoxB1 expression at E8.5. These embryos also show aberrant neurofilament expression during cranial nerve formation at E10.5 and have significant FASD sentinel-like craniofacial phenotypes at E18.5. Gsc +/Cyp26A1 mice develop severe maxillary malocclusions in adulthood. Phenocopying the PAE-induced developmental malformations with a genetic model inducing RA deficiency during early gastrulation strongly supports the alcohol/vitamin A competition model as a major molecular etiology for the neurodevelopmental defects and craniofacial malformations seen in children with FASD.
Collapse
Affiliation(s)
- B. Petrelli
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - A. Oztürk
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - M. Pind
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - H. Ayele
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - A. Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - G. G. Hicks
- Department of Biochemistry and Medical Genetics, Regenerative Medicine Program, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Tang H, Shan J, Liu J, Wang X, Wang F, Han S, Zhao X, Wang J. Molecular subtypes, clinical significance, and tumor immune landscape of angiogenesis-related genes in ovarian cancer. Front Oncol 2022; 12:995929. [PMID: 36106103 PMCID: PMC9464911 DOI: 10.3389/fonc.2022.995929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a physiological process, where new blood vessels are formed from pre-existing vessels through the mechanism called sprouting. It plays a significant role in supporting tumor growth and is expected to provide novel therapeutic ideas for treating tumors that are resistant to conventional therapies. We investigated the expression pattern of angiogenesis-related genes (ARGs) in ovarian cancer (OV) from public databases, in which the patients could be classified into two differential ARG clusters. It was observed that patients in ARGcluster B would have a better prognosis but lower immune cell infiltration levels in the tumor microenvironment. Then ARG score was computed based on differentially expressed genes via cox analysis, which exhibited a strong correlation to copy number variation, immunophenoscore, tumor mutation load, and chemosensitivity. In addition, according to the median risk score, patients were separated into two risk subgroups, of which the low-risk group had a better prognosis, increased immunogenicity, and stronger immunotherapy efficacy. Furthermore, we constructed a prognostic nomogram and demonstrated its predictive value. These findings help us better understand the role of ARGs in OV and offer new perspectives for clinical prognosis and personalized treatment.
Collapse
Affiliation(s)
- Haixia Tang
- Department of Gynecology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Jingsong Shan
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| | - Juan Liu
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Suping Han
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Suping Han, ; Xinyuan Zhao, ; Jinxiu Wang,
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Suping Han, ; Xinyuan Zhao, ; Jinxiu Wang,
| | - Jinxiu Wang
- Department of Gynecology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
- *Correspondence: Suping Han, ; Xinyuan Zhao, ; Jinxiu Wang,
| |
Collapse
|
7
|
Wang X, Liang Y, Zhu Z, Li W, Shi B, Deng Y, Li C, Sha O. Fn1 Regulates the Third Pharyngeal Pouch Patterning and Morphogenesis. J Dent Res 2022; 101:1082-1091. [PMID: 35259939 DOI: 10.1177/00220345221078775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The parathyroid and thymus are derived from the common primordia, the third pharyngeal pouch. During their development, endodermal cells actively interact with surrounding mesenchymal cells, mainly derived from neural crest cells (NCCs). However, the mechanism by which NCCs regulate the development of the third pharyngeal pouch remains largely unknown. In this study, we showed that fibronectin 1 (Fn1), which is synthesized by NCCs, modulates the functions of NCCs in the third pharyngeal pouch patterning and in the morphogenesis of the thymus/parathyroid. Loss of Fn1 in NCCs leads to decreased Foxn1 expression in the presumptive thymus domain at E11.5. In the mutant, we detected upregulation of the Hedgehog signaling activity in the presumptive parathyroid domain and downregulation of Bmp4 in the presumptive thymus domain. Tbx1, a Hedgehog signaling target gene in endoderm development, was ectopically expanded to the presumptive mutant thymus domain at E11.5. Fgf10, an important gene regulating the proliferation of endoderm development, was downregulated in the mutant NCCs. At later organogenesis stages, derivatives of the third pharyngeal pouch endoderm of mutant embryos were abnormal, showing conditions such as hypoparathyroidism, hypoplastic thymus, and ectopic thymus and parathyroid. These data support that Fn1 plays an important role in NCCs by regulating the patterning of the third pharyngeal pouch and morphogenesis of the thymus/parathyroid.
Collapse
Affiliation(s)
- X Wang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Y Liang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Z Zhu
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| | - W Li
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - B Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Deng
- Department of Somatology, Shenzhen University General Hospital, Shenzhen, China
| | - C Li
- Department of Anatomy, Shantou University Medical College, Shantou, China
| | - O Sha
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
8
|
Khasawneh RR, Kist R, Queen R, Hussain R, Coxhead J, Schneider JE, Mohun TJ, Zaffran S, Peters H, Phillips HM, Bamforth SD. Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC DEVELOPMENTAL BIOLOGY 2021; 21:14. [PMID: 34615475 PMCID: PMC8493722 DOI: 10.1186/s12861-021-00245-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Successful embryogenesis relies on the coordinated interaction between genes and tissues. The transcription factors Pax9 and Msx1 genetically interact during mouse craniofacial morphogenesis, and mice deficient for either gene display abnormal tooth and palate development. Pax9 is expressed specifically in the pharyngeal endoderm at mid-embryogenesis, and mice deficient for Pax9 on a C57Bl/6 genetic background also have cardiovascular defects affecting the outflow tract and aortic arch arteries giving double-outlet right ventricle, absent common carotid arteries and interruption of the aortic arch. RESULTS In this study we have investigated both the effect of a different genetic background and Msx1 haploinsufficiency on the presentation of the Pax9-deficient cardiovascular phenotype. Compared to mice on a C57Bl/6 background, congenic CD1-Pax9-/- mice displayed a significantly reduced incidence of outflow tract defects but aortic arch defects were unchanged. Pax9-/- mice with Msx1 haploinsufficiency, however, have a reduced incidence of interrupted aortic arch, but more cases with cervical origins of the right subclavian artery and aortic arch, than seen in Pax9-/- mice. This alteration in arch artery defects was accompanied by a rescue in third pharyngeal arch neural crest cell migration and smooth muscle cell coverage of the third pharyngeal arch arteries. Although this change in phenotype could theoretically be compatible with post-natal survival, using tissue-specific inactivation of Pax9 to maintain correct palate development whilst inducing the cardiovascular defects was unable to prevent postnatal death in the mutant mice. Hyoid bone and thyroid cartilage formation were abnormal in Pax9-/- mice. CONCLUSIONS Msx1 haploinsufficiency mitigates the arch artery defects in Pax9-/- mice, potentially by maintaining the survival of the 3rd arch artery through unimpaired migration of neural crest cells to the third pharyngeal arches. With the neural crest cell derived hyoid bone and thyroid cartilage also being defective in Pax9-/- mice, we speculate that the pharyngeal endoderm is a key signalling centre that impacts on neural crest cell behaviour highlighting the ability of cells in different tissues to act synergistically or antagonistically during embryo development.
Collapse
Affiliation(s)
- Ramada R. Khasawneh
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK ,grid.14440.350000 0004 0622 5497Present Address: Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ralf Kist
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK ,grid.1006.70000 0001 0462 7212School of Dental Sciences, Newcastle University, Newcastle, NE2 4BW UK
| | - Rachel Queen
- grid.1006.70000 0001 0462 7212Bioinformatics Support Unit, Newcastle University, Newcastle, NE1 3BZ UK
| | - Rafiqul Hussain
- grid.1006.70000 0001 0462 7212Genomics Core Facility, Newcastle University, Newcastle, NE1 3BZ UK
| | - Jonathan Coxhead
- grid.1006.70000 0001 0462 7212Genomics Core Facility, Newcastle University, Newcastle, NE1 3BZ UK
| | - Jürgen E. Schneider
- grid.9909.90000 0004 1936 8403Biomedical Imaging, University of Leeds, Leeds, LS2 9JT UK
| | - Timothy J. Mohun
- grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, NW1 1AT UK
| | - Stéphane Zaffran
- grid.5399.60000 0001 2176 4817INSERM, Marseille Medical Genetics, U1251, Aix Marseille University, Marseille, France
| | - Heiko Peters
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| | - Helen M. Phillips
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| | - Simon D. Bamforth
- grid.419328.50000 0000 9225 6820Newcastle University Biosciences Institute, Centre for Life, Newcastle, NE1 3BZ UK
| |
Collapse
|
9
|
Integrated Insight into the Molecular Mechanisms of Spontaneous Abortion during Early Pregnancy in Pigs. Int J Mol Sci 2021; 22:ijms22126644. [PMID: 34205766 PMCID: PMC8235555 DOI: 10.3390/ijms22126644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the high rate of spontaneous abortion (SAB) in porcine pregnancy, there is a major interest and concern on commercial pig farming worldwide. Whereas the perturbed immune response at the maternal–fetal interface is an important mechanism associated with the spontaneous embryo loss in the early stages of implantation in porcine, data on the specific regulatory mechanism of the SAB at the end stage of the implantation remains scant. Therefore, we used high-throughput sequencing and bioinformatics tools to analyze the healthy and arresting endometrium on day 28 of pregnancy. We identified 639 differentially expressed lncRNAs (DELs) and 2357 differentially expressed genes (DEGs) at the end stage of implantation, and qRT-PCR was used to verify the sequencing data. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and immunohistochemistry analysis demonstrated weaker immune response activities in the arresting endometrium compared to the healthy one. Using the lasso regression analysis, we screened the DELs and constructed an immunological competitive endogenous RNA (ceRNA) network related to SAB, including 4 lncRNAs, 11 miRNAs, and 13 genes. In addition, Blast analysis showed the applicability of the constructed ceRNA network in different species, and subsequently determined HOXA-AS2 in pigs. Our study, for the first time, demonstrated that the SAB events at the end stages of implantation is associated with the regulation of immunobiological processes, and a specific molecular regulatory network was obtained. These novel findings may provide new insight into the possibility of increasing the litter size of sows, making pig breeding better and thus improving the efficiency of animal husbandry production.
Collapse
|
10
|
Zhang H, Xie J, So KKH, Tong KK, Sae-Pang JJ, Wang L, Tsang SL, Chan WY, Wong EYM, Sham MH. Hoxb3 Regulates Jag1 Expression in Pharyngeal Epithelium and Affects Interaction With Neural Crest Cells. Front Physiol 2021; 11:612230. [PMID: 33505317 PMCID: PMC7830521 DOI: 10.3389/fphys.2020.612230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Craniofacial morphogenesis depends on proper migration of neural crest cells and their interactions with placodes and other cell types. Hox genes provide positional information and are important in patterning the neural crest and pharyngeal arches (PAs) for coordinated formation of craniofacial structures. Hox genes are expressed in the surface ectoderm and epibranchial placodes, their roles in the pharyngeal epithelium and their downstream targets in regulating PA morphogenesis have not been established. We altered the Hox code in the pharyngeal region of the Hoxb3Tg/+ mutant, in which Hoxb3 is driven to ectopically expressed in Hoxb2 domain in the second pharyngeal arch (PA2). In the transgenic mutant, ectopic Hoxb3 expression was restricted to the surface ectoderm, including the proximal epibranchial placodal region and the distal pharyngeal epithelium. The Hoxb3Tg/+ mutants displayed hypoplasia of PA2, multiple neural crest-derived facial skeletal and nerve defects. Interestingly, we found that in the Hoxb3Tg/+ mutant, expression of the Notch ligand Jag1 was specifically up-regulated in the ectodermal pharyngeal epithelial cells of PA2. By molecular experiments, we demonstrated that Hoxb3 could bind to an upstream genomic site S2 and directly regulate Jag1 expression. In the Hoxb3Tg/+ mutant, elevated expression of Jag1 in the pharyngeal epithelium led to abnormal cellular interaction and deficiency of neural crest cells migrating into PA2. In summary, we showed that Hoxb3 regulates Jag1 expression and proposed a model of pharyngeal epithelium and neural crest interaction during pharyngeal arch development.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Junjie Xie
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karl Kam Hei So
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka Kui Tong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jearn Jang Sae-Pang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sze Lan Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Elaine Yee Man Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mai Har Sham
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
11
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
12
|
GDF11 inhibits cardiomyocyte pyroptosis and exerts cardioprotection in acute myocardial infarction mice by upregulation of transcription factor HOXA3. Cell Death Dis 2020; 11:917. [PMID: 33100331 PMCID: PMC7585938 DOI: 10.1038/s41419-020-03120-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
NLRP3 (Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3) inflammasome-mediated cardiomyocytes pyroptosis plays a crucial part in progression of acute myocardial infarction (MI). GDF11 (Growth Differentiation Factor 11) has been reported to generate cytoprotective effects in phylogenesis and multiple diseases, but the mechanism that GDF11 contributes to cardioprotection of MI and cardiomyocytes pyroptosis remains poorly understood. In our study, we first determined that GDF11 was abnormally downregulated in the heart tissue of MI mice and hypoxic cardiomyocytes. Moreover, AAV9-GDF11 markedly alleviated heart function in MI mice. Meanwhile, GDF11 overexpression also decreased the pyroptosis of hypoxic cardiomyocytes. PROMO and JASPAR prediction software found that transcription factor HOXA3 was predicted as an important regulator of NLRP3, and was confirmed by ChIP assay. Further analysis identifying GDF11 promoted the Smad2/3 pathway resulted in HOXA3 overexpression. Taken together, our study implies that GDF11 prevents cardiomyocytes pyroptosis via HOXA3/NLRP3 signaling pathway in MI mice.
Collapse
|
13
|
Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. Int J Mol Sci 2020; 21:ijms21165765. [PMID: 32796710 PMCID: PMC7460828 DOI: 10.3390/ijms21165765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, embryonic structures that rely on environmental cues from the surrounding mesenchyme for its development. Here, we review the most recent advances in our understanding of the molecular mechanisms involved in early thymic organogenesis at stages preceding the expression of the transcription factor Foxn1, the early marker of thymic epithelial cells identity. Foxn1-independent developmental stages, such as the specification of the pharyngeal endoderm, patterning of the pouches, and thymus fate commitment are discussed, with a special focus on epithelial–mesenchymal interactions.
Collapse
|
14
|
Li J, Gordon J, Chen ELY, Xiao S, Wu L, Zúñiga-Pflücker JC, Manley NR. NOTCH1 signaling establishes the medullary thymic epithelial cell progenitor pool during mouse fetal development. Development 2020; 147:dev.178988. [PMID: 32467240 DOI: 10.1242/dev.178988] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
The cortical and medullary thymic epithelial cell (cTEC and mTEC) lineages are essential for inducing T cell lineage commitment, T cell positive selection and the establishment of self-tolerance, but the mechanisms controlling their fetal specification and differentiation are poorly understood. Here, we show that notch signaling is required to specify and expand the mTEC lineage. Notch1 is expressed by and active in TEC progenitors. Deletion of Notch1 in TECs resulted in depletion of mTEC progenitors and dramatic reductions in mTECs during fetal stages, consistent with defects in mTEC specification and progenitor expansion. Conversely, forced notch signaling in all TECs resulted in widespread expression of mTEC progenitor markers and profound defects in TEC differentiation. In addition, lineage-tracing analysis indicated that all mTECs have a history of receiving a notch signal, consistent with notch signaling occurring in mTEC progenitors. These data provide strong evidence for a requirement for notch signaling in specification of the mTEC lineage.
Collapse
Affiliation(s)
- Jie Li
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Edward L Y Chen
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Luying Wu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Lin S, Zhang R, An X, Li Z, Fang C, Pan B, Chen W, Xu G, Han W. LncRNA HOXA-AS3 confers cisplatin resistance by interacting with HOXA3 in non-small-cell lung carcinoma cells. Oncogenesis 2019; 8:60. [PMID: 31615976 PMCID: PMC6794325 DOI: 10.1038/s41389-019-0170-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Many studies have indicated that the aberrant expression of long noncoding RNAs (lncRNAs) is responsible for drug resistance, which represents a substantial obstacle for cancer therapy. In the present study, we aimed to investigate the role of the lncRNA HOXA-AS3 in drug resistance and elucidate its underlying mechanisms in non-small-cell lung carcinoma (NSCLC) cells. The role of HOXA-AS3 in drug resistance was demonstrated by the cell counting kit-8 assay (CCK-8), ethynyldeoxyuridine (EDU) assay, and flow cytometry analysis. Tumor xenografts in nude mice were established to evaluate the antitumor effects of HOXA-AS3 knockdown in vivo. Western blotting and quantitative real-time PCR were used to evaluate protein and RNA expression. RNA pull-down assays, mass spectrometry, and RNA immunoprecipitation were performed to confirm the molecular mechanism of HOXA-AS3 in the cisplatin resistance of NSCLC cells. We found that HOXA-AS3 levels increased with cisplatin treatment and knockdown of HOXA-AS3 enhance the efficacy of cisplatin in vitro and in vivo. Mechanistic investigations showed that HOXA-AS3 conferred cisplatin resistance by down-regulating homeobox A3 (HOXA3) expression. Moreover, HOXA-AS3 was demonstrated to interact with both the mRNA and protein forms of HOXA3. In addition, HOXA3 knockdown increased cisplatin resistance and induced epithelial-mesenchymal transition (EMT). Taken together, our findings suggested that additional research into HOXA-AS3 might provide a better understanding of the mechanisms of drug resistance and promote the development of a novel and efficient strategy to treat NSCLC.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Zhang
- Department of Internal medicine, Hangzhou Wuyunshan Sanatorium, the Affiliated Hangzhou First People's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxia An
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhoubin Li
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Fang
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Pan
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key laboratory of cancer prevention and therapy combining traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310012, China
| | - Guodong Xu
- Department of Cardiovascular Surgery, The Affiliated Hospital, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, 315041, China
| | - Weili Han
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
da Silva RA, Fuhler GM, Janmaat VT, da C Fernandes CJ, da Silva Feltran G, Oliveira FA, Matos AA, Oliveira RC, Ferreira MR, Zambuzzi WF, Peppelenbosch MP. HOXA cluster gene expression during osteoblast differentiation involves epigenetic control. Bone 2019; 125:74-86. [PMID: 31054377 DOI: 10.1016/j.bone.2019.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/17/2023]
Abstract
The HOXA gene cluster is generally recognized as a pivotal mediator of positional identity in the skeletal system, expression of different orthologues conferring alternative locational phenotype of the vertebrate bone. Strikingly, however, the molecular mechanisms that regulate orthologue-specific expression of different HOXA cluster members in gestating osteoblasts remain largely obscure, but in analogy to the processes observed in acute lymphatic leukemia it is assumed that alternative methylation of HOXA promoter regions drives position specific expression patterns. In an effort to understand HOXA cluster gene expression in osteogenesis we characterize both expression and the epigenetic landscape of the HOXA gene cluster during in vitro osteoblast formation from mesenchymal precursors. We observe that osteoblast formation per se provokes strong upregulation of HOXA gene cluster expression, in particular of midcluster genes, and paradoxal downregulation of HOXA7 and HOXA10. These differences in expression appear related to promoter methylation. LnRNAs HOTAIR and HOTTIP, known to modulate HOXA expression, are also regulated by their promoter methylation processing, but do not correlate with HOXA cluster expression profile. We thus conclude that HOXA expression is profoundly regulated during osteoblast differentiation through canonical methylation-dependent mechanisms but not through the flanking lnRNAs.
Collapse
Affiliation(s)
- Rodrigo A da Silva
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo 18618-970, Brazil; Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Vincent T Janmaat
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Célio Júnior da C Fernandes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo 18618-970, Brazil
| | - Geórgia da Silva Feltran
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo 18618-970, Brazil
| | - Flávia Amadeu Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Adriana Arruda Matos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo 18618-970, Brazil
| | - Willian F Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo 18618-970, Brazil.
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Friedl RM, Raja S, Metzler MA, Patel ND, Brittian KR, Jones SP, Sandell LL. RDH10 function is necessary for spontaneous fetal mouth movement that facilitates palate shelf elevation. Dis Model Mech 2019; 12:12/7/dmm039073. [PMID: 31300413 PMCID: PMC6679383 DOI: 10.1242/dmm.039073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cleft palate is a common birth defect, occurring in approximately 1 in 1000 live births worldwide. Known etiological mechanisms of cleft palate include defects within developing palate shelf tissues, defects in mandibular growth and defects in spontaneous fetal mouth movement. Until now, experimental studies directly documenting fetal mouth immobility as an underlying cause of cleft palate have been limited to models lacking neurotransmission. This study extends the range of anomalies directly demonstrated to have fetal mouth movement defects correlated with cleft palate. Here, we show that mouse embryos deficient in retinoic acid (RA) have mispatterned pharyngeal nerves and skeletal elements that block spontaneous fetal mouth movement in utero. Using X-ray microtomography, in utero ultrasound video, ex vivo culture and tissue staining, we demonstrate that proper retinoid signaling and pharyngeal patterning are crucial for the fetal mouth movement needed for palate formation. Embryos with deficient retinoid signaling were generated by stage-specific inactivation of retinol dehydrogenase 10 (Rdh10), a gene crucial for the production of RA during embryogenesis. The finding that cleft palate in retinoid deficiency results from a lack of fetal mouth movement might help elucidate cleft palate etiology and improve early diagnosis in human disorders involving defects of pharyngeal development. Summary: Fetal mouth immobility and defects in pharyngeal patterning underlie cleft palate in retinoid-deficient Rdh10 mutant mouse embryos.
Collapse
Affiliation(s)
- Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Niti D Patel
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Abstract
The parathyroid glands are essential for regulating calcium homeostasis in the body. The genetic programs that control parathyroid fate specification, morphogenesis, differentiation, and survival are only beginning to be delineated, but are all centered around a key transcription factor, GCM2. Mutations in the Gcm2 gene as well as in several other genes involved in parathyroid organogenesis have been found to cause parathyroid disorders in humans. Therefore, understanding the normal development of the parathyroid will provide insight into the origins of parathyroid disorders.
Collapse
Affiliation(s)
- Kristen Peissig
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Brian G Condie
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Zhang X, Liu G, Ding L, Jiang T, Shao S, Gao Y, Lu Y. HOXA3 promotes tumor growth of human colon cancer through activating EGFR/Ras/Raf/MEK/ERK signaling pathway. J Cell Biochem 2017; 119:2864-2874. [PMID: 29073728 DOI: 10.1002/jcb.26461] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Homeobox A3 (HOXA3), one of HOX transcription factors, regulates gene expression during embryonic development. HOXA3 expression has been reported to be associated with several cancers; however, its role in colon cancer and underlying mechanism are still unclear. The expression of HOXA3 in 232 paired of human colon tumor and adjacent non-tumorous tissues were measured by qPCR. The relationship between HOXA3 expression and clinical outcomes were analyzed by Kaplan-Meier survival curves analysis. Human colon cancer cell lines HT29 and HTC116 were transfected with HOXA3 siRNA, or HOXA3 expressing vector, and then cell proliferation and apoptosis were assessed, respectively. Western blot was performed to detect the activation of EGFR/Ras/Raf/MEK/ERK signaling pathway. Moreover, HOXA3-overexpressing and HOXA3-suppressing HT29 cells were subcutaneous injected into nod mice to confirm the regulation of HOXA3 on EGFR/Ras/Raf/MEK/ERK signaling in regulating tumor growth. HOXA3 was upregulated in colon tumor tissues and cell lines, and upregulated expression of HOXA3 was associated with low survival rate. Knockdown of HOXA3 suppressed cell viability and clone formation, while induced cell apoptosis. HOXA3 knockdown could not induce the increase of cell apoptosis on the condition of EGFR overexpression. In vivo xenograft studies, HOXA3-suppressing cells showed less tumorigenic. Moreover, HOXA3 knockdown suppressed the activation of EGFR/Ras/Raf/MEK/ERK signaling pathway. To conclude, this study indicated that HOXA3 might act as a promoter of human colon cancer formation by regulating EGFR/Ras/Raf/MEK/ERK signaling pathway. HOXA3 might be a potential therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Xianxiang Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangwei Liu
- Department of Outpatient, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Ding
- Office of Medical Safety Management, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihong Shao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Gao
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yun Lu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|